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ABSTRACT 

 
Swarm intelligence algorithms are based on natural 
behaviors. Particle swarm optimization (PSO) is a 
stochastic search and optimization tool. Changes in the 
PSO parameters, namely the inertia weight and the 
cognitive and social acceleration constants, affect the 
performance of the search process. This paper presents a 
novel method to dynamically change the values of these 
parameters during the search. Adaptive critic design 
(ACD) has been applied for dynamically changing the 
values of the PSO parameters.  
 
 

1.   INTRODUCTION 

Particle Swarm is a swarm intelligence based algorithm 
developed by James Kennedy and Russell Eberhart in 
1995 [1]. This algorithm is modeled on the behavior of a 
school of fish / flock of birds. PSO has also been used in a 
variety of applications including generator maintenance 
scheduling, electromagnetics [2]. 
 
PSO is a powerful optimization tool. It is a stochastic 
algorithm and the PSO operation itself is complicated and 
difficult to understand. The performance of a PSO based 
search can be changed by varying the values of the PSO 
parameters, inertia weight ‘w’, cognitive and social 
acceleration constants ‘c1’ and ‘c2’ respectively, thereby 
giving it the flexibility to optimize its own performance. 
The dynamics of many systems change with time and 
therefore it may be difficult to find one set of the PSO 
parameters which are optimum over the entire range of 
operation.  
 
Approximate Dynamic Programming (ADP) is a concept 
that tries to find optimum solutions to problems where a 
method to find the exact solutions is difficult. ADP 
approximates an optimal solution to a problem based on a 
utility function. Adaptive Critics Design (ACD) is an 
optimization tool used to carry out ADP. It combines the 
concepts of dynamic programming and reinforcement 
learning [3]. ACD has been applied in this paper for 
dynamically changing the value of the PSO parameters 
(DPSO), w, c1 and c2. The technique has been applied to 

two benchmark functions, namely the Rastrigrin and the 
Rosenbrock minimization functions [4]. 
 
Sections 2 and 3 give a brief description of PSO and 
ACDs respectively. Section 4 describes the Dynamic PSO 
(DPSO) and section 5 presents some results for two 
benchmark functions. Finally, the conclusions and future 
work is given in Section 6. 

 

2.   PARTICLE SWARM OPTIMIZATION 

PSO is also a population based search strategy. A problem 
space is initialized with a population of random solutions 
in which it searches for the optimum over a number of 
generations/iterations and reproduction is based on prior 
generations. The concept of PSO is that each particle 
randomly searches through the problem space by updating 
itself with its own memory and the social information 
gathered from other particles [5]. 
 
Figure 1 gives the vector representation of the PSO search 
space. In figure 1, Vpd and Vld represent the effect of ‘Pbest’ 
and ‘Gbest’ on the individual. The basic PSO velocity and 
position update equations are given by (1) and (2) 
respectively.  
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Figure 1. Vector representation of PSO (T is the target) 
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Where, 
Vnew New velocity calculated for each particle 
Vold Velocity of the particle from the previous 

iteration 
Pnew New position calculated for each particle 
Pold Position of the particle from the previous 

iteration 
w Inertia weight constant 
c1 & c2 Cognitive and social acceleration constants  
rand Generates a random value in the range [0 1] 

 

3.   ADAPTIVE CRITICS DESIGNS 

Adaptive critic designs are used to determine the 
optimal control law for a dynamic process [3]. ACDs are 
used to approximate the Bellman’s equation of dynamic 
programming, the cost-to-go function given by (3), where 
γ is a discount factor and is in the range [0,1]. The 
objective of ACDs is to develop an optimal control 
strategy.  

          
( )

0
( ( )) ( ( ))k

k
J x k U x kγ

∞

=

= ∑      (3) 

 
U(k)  is called the utility function. The utility function is 
custom to the application and is chosen by the designer 
and it embodies the design requirements of the system.  
 
ACDs adapt two neural networks successively to learn the 
dynamics of the process. These are namely the Action 
Neural Network, which provides the control signal for the 
process and the Critic Neural Network which evaluates 
the performance of the action network or approximates 
the Bellman’s equation. The action network dispenses a 
control signal in order to optimize (minimize or 
maximize) the output of the critic. The action network 
may learn this control signal through a model network or 
directly through the critic’s performance. Thus, the two 
neural networks together learn the system dynamics and 
are able to achieve an optimal control law for the process 
dynamically. The initialization of the weights of the 
neural networks does not affect the final results. 
 
There are four types of adaptive critic designs [3]. This 
paper uses the Action Dependent Heuristic Dynamic 
Programming (ADHDP) structure. 
 

4.   DYNAMIC PARTICLE SWARM 
OPTIMIZATION 

The action and the critic network need to be trained for 
the problem at hand before the DPSO can be applied 
directly to the problem. Figure 2 shows the block diagram 
for DPSO. 
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Figure 2. Block diagram of DPSO  

As seen in figure 2, Gfit, a function of the fitness value of 
the PSO process, is taken as the input to the action and 
critic networks. The action network gives out the values 
of the PSO parameters w, c1 and c2 which drive the 
application. These values are also fed to the critic 
network. The output of the action network is given by (4) 

 

     ( ) ( ) ( ) ( )1 2, ,A k w k c k c k=         
                (4) 

 
A. Training the Critic Network 
 
Figure 3 shows the block diagram for the training of the 
critic network. The critic network is initially trained 
without the action network. The critic network can be 
trained for different values of the w, c1 and c2. They can 
be constants, linearly increasing or decreasing or 
randomly generated. w is generated in the range [0.2, 1.2] 
and, c1 and c2 are generated in the range [0.4, 2]. These 
inputs are fed to both the PSO application as well as the 
critic network.  The error signal generated at the output is 
backpropagated and the weights of the critic network are 
updated.  
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Figure 3. Block diagram for the critic training 

 



Equation (5) gives the error value for which the critic 
network is trained. Equation (6) gives the value of the 
utility function. The critic network needs to be trained for 
a number of runs of the PSO applications. The fitness 
function of the PSO application is fed to the critic 
network in order to tune the network for the application at 
hand. This training is carried out till the output of the 
critic follows the target as closely as possible.  

 

  ( ) ( ) ( )1cE J k U k J kγ= × + − −                (5) 

 
            ( ) ( )( )fitU k G kf=                (6) 
 
B. Training the Action Network 
 
The action network provides the control action for the 
PSO based system. This value is given as the input to the 
critic network instead of the random values of w, c1 and c2 
as described above. The critic responds to this signal by 
generating the output J function. The action network is 
trained such that the output of the critic is minimized. 
Thus, the outputs of the action network will eventually 
drive the system efficiently. Figure 4 shows the block 
diagram for the training of the action network. 
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Figure 4. Block diagram of the action network training 
 
The action too can be trained for the different inputs. 
Figure 4 shows two different sets of inputs. One set gives 
random values of w, c1 and c2 and the other set is the 
output of the action network itself. The action network is 
trained with an error signal taken from the critic network. 
This is given by J A∂ ∂ , where ‘A’ is the output of the 
action network. 
 
The methods for training described above are generic and 
variations can be incorporated in them for different 
applications.  
 

5.   DPSO FOR BENCHMARK FUNCTIONS 

DPSO is applied to the Rastrigrin and Rosenbrock [4] 
minimization functions given by (7) and (8) respectively, 
where ‘N’ is the number of dimensions of the function. 
The PSO population is initialized for a dimension of 10 
and a population size is 20. The population is initialized 
in the asymmetric initialization range of [2.56, 5.12] and 
[15, 30] for the Rastrigrin and Rosenbrock functions 
respectively [4]. The utility function for both the 
functions is given by (7) and (8). 
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The Tables 1 and 2 show the drastic reduction in the 
number of iterations required to find the minimum error 
for both the functions. Figures 5 and 6 show the outputs 
of the action network during the testing of the ADHDP 
for the Rastrigrin and Rosenbrock functions. All the 
results shown in the tables have been averaged over 50 
trials. The results shown here have been obtained on 2.2 
GHz, Pentium 4 processor. 
 
 

TABLE 1. RESULTS FOR RASTRIGRIN FUNCTION  
 

Method Error Iterations 
Previously published [4] 5.5572 1000 
PSO (constant w) 4.2134 819.53 
PSO (linearly decreasing w) 0.5258 333.85 
Dynamic PSO 0 5.98 

 
TABLE 2. RESULTS FOR ROSENBROCK FUNCTION   

 
Method Error Iterations 
Previously published [4] 96.1715 1000 
PSO (constant w) 12.7758 811 
PSO (linearly decreasing w) 10.4645 371.74 
Dynamic PSO 0.3726 369.08 
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Figure 5. Output of the trained action network for 
Rastrigrin function 
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Figure 6. Output of the trained action network for 
Rosenbrock function 

 

6.   CONCLUSION 

This paper has presented the successfully application of 
the concepts of approximate dynamic programming to 
PSO process. The DPSO algorithm drastically improves 
the performance of the PSO search compared to other 
approached in literature. 
 
Future work can involve exploring other ACD techniques 
such as DHP or GDHP, for solving these problems. The 
work considered here assumes that the three PSO 
parameters are coupled. Future work can also involve 
optimizing these parameters independently of each other.  
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