
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 2005

Improving the Performance of Particle Swarm Optimization Using Improving the Performance of Particle Swarm Optimization Using

Adaptive Critics Designs Adaptive Critics Designs

Ganesh K. Venayagamoorthy
Missouri University of Science and Technology

Sheetal Doctor

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
G. K. Venayagamoorthy and S. Doctor, "Improving the Performance of Particle Swarm Optimization Using
Adaptive Critics Designs," Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005,
Institute of Electrical and Electronics Engineers (IEEE), Jan 2005.
The definitive version is available at https://doi.org/10.1109/SIS.2005.1501649

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229175868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1678&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/SIS.2005.1501649
mailto:scholarsmine@mst.edu

IMPROVING THE PERFORMANCE OF PARTICLE SWARM OPTIMIZATION USING
ADAPTIVE CRITICS DESIGNS

Sheetal Doctor and Ganesh K. Venayagamoorthy

Real-Time Power and Intelligent Systems Laboratory
Department of Electrical and Computer Engineering

University of Missouri – Rolla, MO 65409, USA
gkumar@ieee.org

ABSTRACT

Swarm intelligence algorithms are based on natural
behaviors. Particle swarm optimization (PSO) is a
stochastic search and optimization tool. Changes in the
PSO parameters, namely the inertia weight and the
cognitive and social acceleration constants, affect the
performance of the search process. This paper presents a
novel method to dynamically change the values of these
parameters during the search. Adaptive critic design
(ACD) has been applied for dynamically changing the
values of the PSO parameters.

1. INTRODUCTION

Particle Swarm is a swarm intelligence based algorithm
developed by James Kennedy and Russell Eberhart in
1995 [1]. This algorithm is modeled on the behavior of a
school of fish / flock of birds. PSO has also been used in a
variety of applications including generator maintenance
scheduling, electromagnetics [2].

PSO is a powerful optimization tool. It is a stochastic
algorithm and the PSO operation itself is complicated and
difficult to understand. The performance of a PSO based
search can be changed by varying the values of the PSO
parameters, inertia weight ‘w’, cognitive and social
acceleration constants ‘c1’ and ‘c2’ respectively, thereby
giving it the flexibility to optimize its own performance.
The dynamics of many systems change with time and
therefore it may be difficult to find one set of the PSO
parameters which are optimum over the entire range of
operation.

Approximate Dynamic Programming (ADP) is a concept
that tries to find optimum solutions to problems where a
method to find the exact solutions is difficult. ADP
approximates an optimal solution to a problem based on a
utility function. Adaptive Critics Design (ACD) is an
optimization tool used to carry out ADP. It combines the
concepts of dynamic programming and reinforcement
learning [3]. ACD has been applied in this paper for
dynamically changing the value of the PSO parameters
(DPSO), w, c1 and c2. The technique has been applied to

two benchmark functions, namely the Rastrigrin and the
Rosenbrock minimization functions [4].

Sections 2 and 3 give a brief description of PSO and
ACDs respectively. Section 4 describes the Dynamic PSO
(DPSO) and section 5 presents some results for two
benchmark functions. Finally, the conclusions and future
work is given in Section 6.

2. PARTICLE SWARM OPTIMIZATION

PSO is also a population based search strategy. A problem
space is initialized with a population of random solutions
in which it searches for the optimum over a number of
generations/iterations and reproduction is based on prior
generations. The concept of PSO is that each particle
randomly searches through the problem space by updating
itself with its own memory and the social information
gathered from other particles [5].

Figure 1 gives the vector representation of the PSO search
space. In figure 1, Vpd and Vld represent the effect of ‘Pbest’
and ‘Gbest’ on the individual. The basic PSO velocity and
position update equations are given by (1) and (2)
respectively.

Pold

Vold

T

Pnew

X

Y

Vpd

Vld

Vnew

Pold

Vold

T

Pnew

X

Y

Vpd

Vld

Vnew

Figure 1. Vector representation of PSO (T is the target)

1

2

new ()
()

old best old

best old

V w V c rand P P
c rand G P

= × + × × −
+ × × −

 (1)

new old newP P V= + (2)

Where,
Vnew New velocity calculated for each particle
Vold Velocity of the particle from the previous

iteration
Pnew New position calculated for each particle
Pold Position of the particle from the previous

iteration
w Inertia weight constant
c1 & c2 Cognitive and social acceleration constants
rand Generates a random value in the range [0 1]

3. ADAPTIVE CRITICS DESIGNS

Adaptive critic designs are used to determine the
optimal control law for a dynamic process [3]. ACDs are
used to approximate the Bellman’s equation of dynamic
programming, the cost-to-go function given by (3), where
γ is a discount factor and is in the range [0,1]. The
objective of ACDs is to develop an optimal control
strategy.

()

0
(()) (())k

k
J x k U x kγ

∞

=

= ∑ (3)

U(k) is called the utility function. The utility function is
custom to the application and is chosen by the designer
and it embodies the design requirements of the system.

ACDs adapt two neural networks successively to learn the
dynamics of the process. These are namely the Action
Neural Network, which provides the control signal for the
process and the Critic Neural Network which evaluates
the performance of the action network or approximates
the Bellman’s equation. The action network dispenses a
control signal in order to optimize (minimize or
maximize) the output of the critic. The action network
may learn this control signal through a model network or
directly through the critic’s performance. Thus, the two
neural networks together learn the system dynamics and
are able to achieve an optimal control law for the process
dynamically. The initialization of the weights of the
neural networks does not affect the final results.

There are four types of adaptive critic designs [3]. This
paper uses the Action Dependent Heuristic Dynamic
Programming (ADHDP) structure.

4. DYNAMIC PARTICLE SWARM
OPTIMIZATION

The action and the critic network need to be trained for
the problem at hand before the DPSO can be applied
directly to the problem. Figure 2 shows the block diagram
for DPSO.

PSO based
application

Critic Network

Action Network

Gfit(k)

Gfit(k)

J(k)Gfit(k)

A(k)

TDL

TDL

TDL

A(k-1)
TDL

PSO based
application

Critic Network

Action Network

Gfit(k)

Gfit(k)

J(k)Gfit(k)

A(k)

TDL

TDL

TDL

A(k-1)
TDL

Figure 2. Block diagram of DPSO

As seen in figure 2, Gfit, a function of the fitness value of
the PSO process, is taken as the input to the action and
critic networks. The action network gives out the values
of the PSO parameters w, c1 and c2 which drive the
application. These values are also fed to the critic
network. The output of the action network is given by (4)

 () () () ()1 2, ,A k w k c k c k=   
 (4)

A. Training the Critic Network

Figure 3 shows the block diagram for the training of the
critic network. The critic network is initially trained
without the action network. The critic network can be
trained for different values of the w, c1 and c2. They can
be constants, linearly increasing or decreasing or
randomly generated. w is generated in the range [0.2, 1.2]
and, c1 and c2 are generated in the range [0.4, 2]. These
inputs are fed to both the PSO application as well as the
critic network. The error signal generated at the output is
backpropagated and the weights of the critic network are
updated.

Target
γ*J(k) + U(k)

∑

U(k) J(k)

J(k-1)

-

+

Ec

Gfit(k-1)

Critic
Neural Network

w(k)

Gfit(k)

c1(k)

c2(k)

1

w(k-1)

c1(k-1)

c2(k-1)

Critic
Neural Network

w(k-1)

Gfit(k-1)

c1(k-1)

c2(k-1)

1

w(k-2)

c1(k-2)

c2(k-2)

Gfit(k-2)

Target
γ*J(k) + U(k)

∑

U(k) J(k)

J(k-1)

-

+

Ec

Gfit(k-1)

Critic
Neural Network

w(k)

Gfit(k)

c1(k)

c2(k)

1

w(k-1)

c1(k-1)

c2(k-1)

Gfit(k-1)

Critic
Neural Network

w(k)

Gfit(k)

c1(k)

c2(k)

1

w(k-1)

c1(k-1)

c2(k-1)

Critic
Neural Network

w(k)

Gfit(k)

c1(k)

c2(k)

1

w(k-1)

c1(k-1)

c2(k-1)

Critic
Neural Network

w(k-1)

Gfit(k-1)

c1(k-1)

c2(k-1)

1

w(k-2)

c1(k-2)

c2(k-2)

Gfit(k-2)

×
γ

Figure 3. Block diagram for the critic training

Equation (5) gives the error value for which the critic
network is trained. Equation (6) gives the value of the
utility function. The critic network needs to be trained for
a number of runs of the PSO applications. The fitness
function of the PSO application is fed to the critic
network in order to tune the network for the application at
hand. This training is carried out till the output of the
critic follows the target as closely as possible.

 () () ()1cE J k U k J kγ= × + − − (5)

 () ()()fitU k G kf= (6)

B. Training the Action Network

The action network provides the control action for the
PSO based system. This value is given as the input to the
critic network instead of the random values of w, c1 and c2
as described above. The critic responds to this signal by
generating the output J function. The action network is
trained such that the output of the critic is minimized.
Thus, the outputs of the action network will eventually
drive the system efficiently. Figure 4 shows the block
diagram for the training of the action network.

PSO based
application

Critic
Neural

Network

Action
Neural

Network

Gfit(k)

Gfit(k)

Gfit(k)

J(k)

∂J/ ∂A

PRBS

A(k)

TDL

A(k-1)

TDL

TDL

PSO based
application

Critic
Neural

Network

Action
Neural

Network

Gfit(k)

Gfit(k)

Gfit(k)

J(k)

∂J/ ∂A

PRBS

A(k)

TDL

A(k-1)

TDL

TDL

Figure 4. Block diagram of the action network training

The action too can be trained for the different inputs.
Figure 4 shows two different sets of inputs. One set gives
random values of w, c1 and c2 and the other set is the
output of the action network itself. The action network is
trained with an error signal taken from the critic network.
This is given by J A∂ ∂ , where ‘A’ is the output of the
action network.

The methods for training described above are generic and
variations can be incorporated in them for different
applications.

5. DPSO FOR BENCHMARK FUNCTIONS

DPSO is applied to the Rastrigrin and Rosenbrock [4]
minimization functions given by (7) and (8) respectively,
where ‘N’ is the number of dimensions of the function.
The PSO population is initialized for a dimension of 10
and a population size is 20. The population is initialized
in the asymmetric initialization range of [2.56, 5.12] and
[15, 30] for the Rastrigrin and Rosenbrock functions
respectively [4]. The utility function for both the
functions is given by (7) and (8).

() ()()2

1
100cos 2 10

N

rast i i
i

f x x xπ
=

= − +∑ (7)

 () () ()()2 22
1

1
100 1

N

rosen i i i
i

f x x x x+
=

= − + −∑ (8)

() ()0.1 fitU k G k= × (9)

The Tables 1 and 2 show the drastic reduction in the
number of iterations required to find the minimum error
for both the functions. Figures 5 and 6 show the outputs
of the action network during the testing of the ADHDP
for the Rastrigrin and Rosenbrock functions. All the
results shown in the tables have been averaged over 50
trials. The results shown here have been obtained on 2.2
GHz, Pentium 4 processor.

TABLE 1. RESULTS FOR RASTRIGRIN FUNCTION

Method Error Iterations
Previously published [4] 5.5572 1000
PSO (constant w) 4.2134 819.53
PSO (linearly decreasing w) 0.5258 333.85
Dynamic PSO 0 5.98

TABLE 2. RESULTS FOR ROSENBROCK FUNCTION

Method Error Iterations
Previously published [4] 96.1715 1000
PSO (constant w) 12.7758 811
PSO (linearly decreasing w) 10.4645 371.74
Dynamic PSO 0.3726 369.08

1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5
output A of the Action Network

w

c1

c2

w

c1

c2

Figure 5. Output of the trained action network for
Rastrigrin function

0 10 20 30 40 50 60 70 80
0.5

1

1.5

2

2.5

3

3.5

4

4.5
w
c1
c2

output A of the Action Network

Figure 6. Output of the trained action network for
Rosenbrock function

6. CONCLUSION

This paper has presented the successfully application of
the concepts of approximate dynamic programming to
PSO process. The DPSO algorithm drastically improves
the performance of the PSO search compared to other
approached in literature.

Future work can involve exploring other ACD techniques
such as DHP or GDHP, for solving these problems. The
work considered here assumes that the three PSO
parameters are coupled. Future work can also involve
optimizing these parameters independently of each other.

7. ACKNOWLEDGMENT

The support from the National Science Foundation, USA
CAREER grant number: ECS # 0348221 is gratefully
acknowledged for this work by the authors.

8. REFERENCES

[1] J. Kennedy and R. Eberhart., “Swarm Intelligence”,
Morgan Kauffman Publishers, San Francisco, CA,
2001,. ISBN 1-55860-595-9.

[2] G. Ciuprina, D. Ioan, I. Munteanu, “Use Of
Intelligent-Particle Swarm Optimization In
Electromagnetics”, IEEE Transactions on
Magnetics, vol. 38, Issue: 2, pp: 1037 – 1040, March
2002.

[3] G.K. Venayagamoorthy, R.G. Harley RG, D.C.
Wunsch DC, “Applications of Approximate
Dynamic Programming in Power Systems Control”,
Handbook of Learning and Approximate Dynamic
Programming, Si J.; Barto A.; Powell W.; Wunsch
DC. (Eds.), Wiley, ISBN 0-471-66054-X, pp. 479 –
515, July 2004.

[4] Y Shi and R.C Eberhart, “Empirical Study of
Particle Swarm Optimization” Proceedings of
Congress on Evolutionary Computation. vol. 3, pp:
1950, 6-9 July 1999.

[5] A. Engelbrecht, Computational Intelligence- An
Introduction, John Wiley & Sons, Ltd, England.
ISBN 0-470-84870-7, 2002.

	Improving the Performance of Particle Swarm Optimization Using Adaptive Critics Designs
	Recommended Citation

	Title

	01: 393
	footer: 0-7803-8916-6/05/$20.00 ©2005 IEEE
	02: 394
	03: 395
	04: 396

