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Abstract—This paper investigates the application of a new 
kind of recurrent neural network called Echo State Networks 
(ESNs) for the problem of measuring the actual amount of 
harmonic current injected into a power network by a nonlinear 
load. The interaction between loads connected to a point of 
common coupling (PCC) is a highly dynamic process. The 
determination of true harmonic current injection by individual 
loads is further complicated by the fact that the supply voltage 
waveform at the PCC is distorted by other loads at the PCC or 
further upstream and is therefore rarely a pure sinusoid. 
Harmonics in a power system are classified as either load 
harmonics or as supply harmonics. The principles of ESN are 
based on the use of a Recurrent Neural Network (RNN) as a 
dynamic reservoir. In order to compute the desired output 
dynamics, only the weights of connections from the reservoir to 
the output units are calculated. This is simply a linear 
regression problem. Experimental results presented in this 
paper confirm that attempting to predict the Total Harmonic 
Distortion (THD) of a load by simply measuring the load’s 
current may not be accurate. The main advantage of this new 
method is that only waveforms of voltages and currents at the 
PCC have to be measured. This method is applicable for both 
single and three phase loads. 
 

I. INTRODUCTION 
OWER system harmonics have been known to exist on 
the power system for a long time. With the widespread 

proliferation of power electronic loads and other nonlinear 
loads, significant amounts of harmonic currents are being 
injected into the network. Identification of harmonic sources 
in a power system has been a challenging task for many 
years. Harmonic distortions have become an important 
concern for all utility companies. This concern has led to the 
evolution of various instruments like harmonic analyzers, 
disturbance monitors etc. The most common approach 
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adopted to tackle this problem was the establishment of 
limits on the amount of harmonic currents and voltages 
generated by customers and utilities. The IEEE standard 
519[1, 2] and the IEC-1000-3[3] are the perfect examples. 
Customers are required to comply with the regulations and 
when any customer exceeds the limits, the only enforcement 
power the utility has is to disconnect the customer. This is 
not a desirable action. In any case before this could happen, 
an accurate measurement is needed.  

Figure 1 shows a simple network structure. When the 
nonlinear load is supplied from a sinusoidal voltage source, 
its injected harmonic current ( )si t  is referred to as 
contributions from the load. The harmonic currents cause 
harmonic volt drops in the supply network. Any other loads, 
even linear loads, connected to the point of common 
coupling (PCC), will have harmonic currents injected into 
them by the distorted PCC voltage. Such currents are 
referred to as contributions from the power system, or 
supply harmonics. 

If several loads are connected to a PCC, it is not possible 
to accurately determine the amount of harmonic current 
injected by each load, in order to tell which load(s) is 

injecting the excessively high harmonic currents. If 
individual harmonic current injections were known, then a 
utility could penalize the offending consumer in some 
appropriate way, including say a special tariff or insist on 
corrective action by the consumer. Simply measuring the 
harmonic currents at each individual load is not sufficiently 
accurate since these harmonic currents may be caused by not 
only the nonlinear load, but also by a non-sinusoidal PCC 
voltage. 

This is not a new issue and researchers have proposed 
tools based on traditional power system analysis methods to 
solve this problem. The harmonic active power method [4] 
and critical impedance measurement method [5] yield results 
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Fig. 1.  Typical power distribution network with loads connected at 
the point of common coupling (pcc). 
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to a certain degree of accuracy; however they are based on 
some fundamental assumptions like prior knowledge of the 
source impedance. The authors of [6] presented a novel 
modeling approach based on neural networks to identify the 
admittance of a nonlinear load. The rationale behind using 
neural networks was that, neural networks provide the 
flexibility of identifying dynamic systems online without the 
need to make assumptions. The most important criteria for 
the choice of a particular neural network structure for this 
problem are its ability to learn the admittance of the 
nonlinear load online and in the shortest possible time. This 
paper extends the concept proposed in [6] by using Echo 
State Networks to determine the true harmonic current of a 
nonlinear load in a three phase power system. 

 

II. ECHO STATE NETWORKS 
Artificial Neural Networks have provided an alternative 

modelling approach for power system applications [7-9]. 
The multilayer perceptron network (MLPN) is one of the 
most popular topologies in use today [10]. This network 
consists of a set of input neurons, output neurons and one or 
more hidden layers of intermediate neurons. Data flows into 
the network through the input layer, passes through the 
hidden layers and finally flows out of the network through 
the output layer. The network thus has a simple 
interpretation as a form of input-output model, with network 
weights as free parameters. The use and training of MLPNs 
is well understood.  

Recurrent neural networks (RNN) are feedback networks 
in which the present activation state is a function of the 
previous activation state as well as the present inputs. The 
recurrent connections contain memory states. Thus, RNNs 
are better suited for identifying dynamic processes and 
systems with transients. However they can be difficult to 
train. 

Echo State Networks provide a novel and easier-to-
manage approach to supervised training of RNNs. Echo 
State Networks (ESN) [11 - 14] are a special form of 
recurrent neural networks (RNNs) recently proposed for 
modelling complex dynamic systems. A large (order of 100s 
of units) RNN is used as a “reservoir” of dynamics which 
can be excited by suitably presented input and/or feedback 
output. The connection weights of the reservoir network are 
not changed by training. In order to compute the desired 
output dynamics, only the weights of connections from the 
reservoir to the output units are calculated. This is simply a 
linear regression problem. 

The ESN shown in Fig. 2 is a sparsely connected RNN 
with most of its weights fixed a priori to randomly chosen 
values. In contrast to normal RNNs, where the input and 
output weights are adapted depending on the minimization 
of the output error, ESNs only adjust the set of output 
weights leading from the hidden layer to the output layer. 
The hidden layer is known as the “Dynamic Reservoir”.  

The key to understanding ESN training is the concept of 
echo states. Having echo states (or not having them) is a 
property of the network prior to training, that is, a property 
of the weight matrices inW ,W , and fbW . Intuitively, the 
echo state property says, “if the network has been run for a 
very long time [from minus infinity time in the definition], 
the current network state is uniquely determined by the 
history of the input and the teacher forced output”. 

The echo state property is related to algebraic properties 
of the weight matrix W. Unfortunately, there is no known 
necessary and sufficient algebraic condition which allows 
one to decide, given ( inW , W , and fbW ), whether the 
network has the echo state property.  

A typical ESN consists of the following:  discrete-time 
input/output (I/O) sequence, K input neurons, i.e., 

[ (1),..... ( )]Tx x x K= , N  neurons in the hidden layer, the 

decision vector is [ (1),....., ( )]Td d d N= , M  neurons in the 

output i.e., ˆ ˆ ˆ[ (1),..... ( )]Ty y y M= , Input weight matrix inW  

of size N K× , Dynamic Reservoir weight matrix W  of size 
N N× , Output weight matrix outW  of size 

( )M K N M× + + , Feedback weight matrix fbW  of size 
N M×  and sigmoidal activation function for the dynamic 
reservoir. 

There are certain conditions for determination of the 
weights for the dynamic reservoir. 

• Generate a sparse random matrix in the range [-1,1] 
• Scale the matrix by it’s highest eigenvalue 
• Multiply the matrix by α , known as the spectral 

radius. [ ]0,1α ∈  

0

max

W
W

α
λ
⋅

=                            (1) 

inW  and fbW are drawn from a uniform distribution over 
[−1, 1]. The target is to calculate the value of outW . 

Given the ESN and the I/O sequences of the system, the 
network is trained to learn the system characteristics. The 
available I/O sequences are divided into three parts: 

• An initial part, which is not used for training but 
serves the purpose of getting rid of initial 
transients in the network’s internal states. 

• A training part, which is used in the actual learning 
procedure of adjusting the output weights.  

• A testing part, which is used to test the newly 

y

ŷ

fbW

x
Plant

Feedback
Weights

Input
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inW outW

Output
Weights

Dynamic
Re servoir
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Fig. 2.  Structure of Echo State Network 
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trained network on additional data.  
The training of the network is done as follows: First, the 

network’s internal state vector d  is initialized to random 
values. Then, the system is run on the initial part and the 
training part of the I/O sequence, i.e. input samples are 
written into the input nodes, output samples are written into 
the output nodes, and the internal states of the next time step 
are computed according to  

( 1) ( ( 1) ( ) ( ))in fbd n sig W x n Wd n W y n+ = + + +        (2) 
The output at time n 1+ is computed as; 

ˆ( 1) ( ( ( 1), ( 1), ( ))outy n lin W x n d n y n+ = + +             (3) 
Here the commas mean vector concatenation. 
It is important to remember that the output update 

equation is not used during training, since the output 
weights are not yet set to their final values. Instead, the 
output nodes are just overwritten by the output part of the 
I/O sequence.  

During the training period, the internal states are collected 
into the rows of a state-collecting matrix P  of size N K× . 
At the same time, the actual system outputs ( )y n  are 
collected into the rows of a matrix T  of size N M× .  

Once the training is completed, multiply the 
pseudoinverse of P  with T , to obtain a ( )K N M M+ + ×  

sized matrix ( )out TW whose thi column contains the output 

weights from all network units to the thi output unit. 
1( )out TW P T−=                 (4)              

Now the output ˆ( )y n  of the ESN approximates the actual 
system output ( )y n  by the equation, 

1

ˆ( ) ( ) ( )
L

out
i

i

y n y n W d n
=

≈ = ⋅∑        (5) 

More specifically, the output weights are computed such that 
the mean squared training error MSE is minimized. 
 

2 2

1 1 1

1 1ˆ( ( ) ( )) ( ( ) ( ))
r r L

out
i

n n i

MSE y n y n y n W d n
r r= = =

= − = − ⋅∑ ∑ ∑  (6) 

 
where r is the length of the I/O sequence used for testing. 

III. ESTIMATION OF HARMONIC CURRENT 
The method originally proposed in [6], predicts the true 

harmonic current distortion that can be attributed to a load. 
Figure 3 is a one-line diagram of a three-phase supply 
network having a sinusoidal voltage source sv , network 
impedance sL , sR  and several loads (one of which is 
nonlinear) connected to a PCC.  

The nonlinear load injects distorted line three-phase line 
current abci  into the network. The Identification Neural 
Network (ESN1) is trained to identify the nonlinear 
characteristics of the load. The Estimation Neural Network 
(ESN2) predicts the true harmonic current that would be 
injected by the load into the network, if it were possible to 

isolate the load and supply it from a pure sinusoidal source. 
ESN2 is an exact replica of the trained ESN1 structurally. 

The function of ESN2 can very well be carried out by 
ESN1; however that would disrupt the continual online 
training of ESN1 during the brief moments of estimating. 

A. Identification Neural Network 
The proposed method measures the instantaneous values 

of the three voltages abcv at the PCC, as well as the three line 

currents abci at the thk moment in time.  The voltages 

abcv could be line-to-line or line-to-neutral measurements. 
The neural network is designed to predict one step ahead 
line current âbci as a function of the present voltage vector 
value. 

 The length of the training samples is predetermined. 
Once all the samples are processed by the neural network, 
the output weights are computed. Now the actual 
instantaneous values of  âbci  are compared with the 

previously predicted values of âbci , and the difference (or 
error e ) is used to fine tune the ESN1 output weights.  

After several runs, the training converges and the value of 
the error e diminishes to an acceptably small value. Proof of 
this is illustrated by the fact that the waveforms for abci and 

âbci  should practically lie on top of each other.  At this point 
the ESN1 therefore represents the admittance of the 
nonlinear load. This process is called identifying the load 
admittance.  

B. Estimation Neural Network 
ESN2 is supplied with a mathematically generated sine 

wave voltage to estimate its output. The output of ESN2 
called âbc distortedi − therefore represents the current which the 
nonlinear load would have drawn had it been supplied by a 
sinusoidal voltage source. In other words, this gives the 
same information that could have been obtained by quickly 
removing the distorted PCC voltage (if this were possible) 

sinev

âbci

abciabci

âbc distortedi −

abcvsv SR SL

 
Fig. 3.  Proposed scheme ( abcv is the voltage at the PCC) 
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and connecting a pure sinusoidal voltage to supply the 
nonlinear load, except that it is not necessary to actually do 
this interruption. Any distortion present in the âbc distortedi −  
waveform can now be attributed to the nonlinearity of the 
load admittance.  

C. Data Scaling 
Due to the nature of the sigmoidal transfer function, the 

outputs of the neurons in the hidden layer are limited to 
values between 0 and1 . The inputs to the neural networks 
are therefore limited to values between 1− and1 . The 
scaling of the acquired data is done using software and 
hence that removes any limitations whatsoever on the data 
acquisition system and the transducers. 

IV. EXPERIMENTAL RESULTS 
For illustrative purposes, the scheme has been applied on 

a variable speed drive, ABB make ACS 500. The load is 
supplied from the utility source as well as a clean power 
source. The clean power source used is a California 
Instruments 5001 iX harmonic generator which is capable of 
outputting voltages with programmable distortion levels and 
zero internal impedance. Figure 4 shows the experimental 
setup. 

 
The scheme has to be applied to each phase individually. 

The method of using online trained ESNs to identify the 
load admittance and utilizing the trained neural network to 
estimate the harmonic current of the VSD, is now 
demonstrated for phase A.  

With switch S in position 1, the VSD is supplied from the 
utility source. The three phase line to neural voltages and the 
phase currents are recorded. Now with switch S in position 
2, the drive is supplied from the clean power source.  The 
measured phase A voltage and current waveforms with 
switch in position 1 are shown in Fig. 5.  

Figure 6 shows the measured phase A voltage and current 
waveforms with the switch in position 2. The total harmonic 
distortion (THD) of the utility voltage is 4.5% and the THD 

of the CI 5001 iX voltage is 0.2% (near sinusoid). 

 

In a real life application, the use of the clean power source 
is not required for the implementation of this scheme, nor 
will such a power source be available. 

 

The THD of the current with S in position 1 is 74.27% 
and the THD of the current with S in position 2 is 68.5%. 
The FFT spectrums are shown in Fig. 7 and Fig. 8 
respectively. 

ai
ai

sinev

pccv

pccv

â disti −

âi

sv S1

2

Utility Supply
Network

Clean Power
Supply

ACS500
(VSD )

Data
Acquisition

( LABVIEW )

Induction
Motor

error

Weights

 
Fig. 4.  Experimental Setup with a Variable Speed Drive 
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Fig. 5. Measured voltage and current with S in position 1 
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Fig. 6. Measured voltage and current with S in position 2 

 
Fig. 7. FFT spectrum of current with S in position 1 

1698



 
 

 

 
The data obtained with switch S in position 1 is used to 

train the neural network ESN1 until the training error 
converges to near zero, and the output of ESN1 correctly 
tracks the actual current ai . Figure 9 indicates how well the 

training of ESN1 has converged since its output âi coincides 
with the actual ai waveform. 

The convergence of the training can also be verified by 
considering the MSE of ESN1 in Fig. 10. 

The sampling rate for data acquisition is set at 128 
samples per cycle. The number of neurons used in the 
hidden layer of ESN1 is 20. Data acquisition is carried out 
by a National Instruments data acquisition system. The 
voltage transducers used are LEM LV 25-P and the current 
transducers used are LEM LAH 25-NP. The FFT of the 
acquired waveforms are computed using the powergui block 
of SIMULINK. 

Once ESN1 has learned the admittance of the phase A of 
the VSD, the weights of ESN1 are transferred to ESN2.  The 
output of ESN2 is â disti − and is obtained by using a 
mathematically generated sine wave voltage with zero 
distortion as its input. 

Fig. 11 shows what Fig.5 would have looked like if it 
were possible to isolate the VSD and supply it from a pure 
sine wave. Fig. 12 shows the frequency spectrum of Fig. 11. 
 

The true current distortion of â disti − turns out to be 67.88% 
(instead of the 74.27% of Fig. 7). This result agrees well 
with the measured value of 68.5% of Fig. 8 where the VSD 
was supplied by a 0.2% distorted voltage. 

Similar to phase A, the scheme has also been applied to 
phase B and phase C of the VSD. Figure 13 shows the 
training result for Phase B.  
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Fig. 9. ESN1 Convergence Result for Phase A current 
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Fig. 10. MSE in Phase A current training 
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Fig. 11. Output of ESN2, estimated Phase A current 

 
Fig. 12. FFT spectrum of the ESN2 output 

 
Fig. 8. FFT spectrum of current with S in position 2 
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Figure 14 shows the training result for Phase C.  

The above experiment has shown that there is a difference in 
the current distortion of a load depending on whether the 
loads are served by a clean supply or a distorted supply. Any 
load serviced by a utility is designed and optimized to 
operate at 60 Hz. For the purpose of quantification of this 
difference, a new parameter me , known as the resultant error 
in measurement, is introduced and is defined as: 

 

( )%s d
m

s

THD THD
e

THD
−

=                           (7)                                                                               

where dTHD  is THDi  from a distorted pccv ,and sTHD  is 

THDi  from a mathematical sine wave, i.e. the output of 
ESN2. me  can be ±  depending on the type of load and the 
condition of the network. The results for the three phases are 
summarised in Table I. 

 
TABLE I 

SUMMARY OF RESULTS 
 

Phase dTHD  sTHD  CITHD  me  

A 74.27% 67.88% 68.5% -9.41% 

B 59.67% 49.02% 47.72% -21.73% 

C 152% 132.27% 132.47% -14.92% 

 

CITHD  is the distortion in current with the switch S in 
position 2. This value is used for validation of the results 
obtained using the proposed scheme. In an actual 
implementation of the proposed scheme, the value of 

CITHD will not be required since it is not used in the training 
algorithm and nor will such a value be available in any real 
power system application. 

Some of the other experimental details of the neural 
network implementation are given below: 

 
• Echo state network implemented in MATLAB. 
• FFT computation : powergui block of SIMULINK 
• Number of Neurons in the hidden layer: 25 
• Sampling frequency for data acquisition: 8 kHz. 

Power quality instrumentations require approximately 
128 samples/cycle. 

• Computation time for  the MATLAB code to 
compute the output weights (with 2 sec of acquired 
data) run on a 1.8 GHz PC: 10.2 sec     

 
The above experiments show an important aspect of ESN 

training. The trained ESN closely approximates the actual 
output after the initial transient dynamics have washed out, 
which are caused by the initial untrained and random 
network starting state. Hence the training performance of the 
ESN is judged after the initial transients have passed. 
Depending on the network size and the sampling rate of the 
input data, typical range for the initial transients is about 10 
cycles of the input data.  

Sometimes with switching power electronic loads, the 
initial transients may be a problem. However with the 
present experiment, this problem did not arise.   

The well known Least-Mean-Square (LMS) algorithm is 
difficult to use with ESNs. The performance of this 
algorithm depends critically on the eigenvalue spread of the 
cross-correlation matrix R . 

[ ( ) ( ) ]TR E d n d n=                        (8) 
where ( )d n is the networks internal state. 
The eigenvalue spread s of the cross-correlation matrix 

R  is defined as; 
max

min

( )
( )
R

s
R

λ
λ

=                            (9) 

 When the eigenvalue spread is large, the LMS algorithm 
converges very slowly and becomes inefficient. The 
adaptation of the spectrum of the cross-correlation matrix 
R to permit the use of LMS algorithm, without 
compromising the training performance, is still an important 
area of research [15]. 

There are issues with ESNs which need to be resolved; 
however preliminary results do indicate that ESNs could be 
used in the proposed scheme. ESNs demonstrated fast 
convergence times compared to other neural network 
topologies in identifying nonlinear load admittance. 
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Fig. 13. ESN1 Convergence Result for phase B current 
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Fig. 14. ESN1 Convergence Result for phase C current 
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V. CONCLUSION 
This paper conceptually demonstrated the ability of Echo 

state neural networks to learn the load admittance and utilize 
the trained neural network for estimating the true harmonic 
distortion caused by that load. The proposed method has 
been successfully applied to a specific three phase load. The 
advantages of the proposed method are that it can be 
implemented online without disrupting the operation of any 
load, only voltages and currents need to be measured, it does 
not require any special instruments and it does not need to 
make any assumptions about any quantities, e.g. the 
impedance of the source.  

Standards like IEEE 519 provide guidelines for 
controlling harmonic distortion levels that divide the 
responsibility between the utility and the customer. The 
utility has to maintain voltage distortion at the PCC below 
the specified limits and the customer has to limit the amount 
of harmonic current injection onto the utility system. 
However, disputes may arise between utilities and customers 
regarding who is responsible for the harmonic distortions 
due to the lack of a reliable single index which can precisely 
point out the source of the harmonic pollution.  

Experimental results presented in this paper confirm that 
an error in the measurement is made if the calculation of 
current THD is done by simply measuring the input current 
of the nonlinear load. The information provided by the 
proposed method regarding the true current distortion of a 
load could be used to persuade an offending load to take 
steps to mitigate an unacceptably high level of distortion.  

On a practical system the neural network computations 
could be carried out on a DSP, together with a suitable A/D 
interface. Utilities stand to benefit from this work, since it 
provides a tool to model a load under distorted supply 
conditions and may help the utility to check the accuracy of 
the load model provided by a customer during 
commissioning of a new service. 
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