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A Maximum Torque per Ampere Control Strategy 

0. Wasynczuk, S. D. Sudhoff, 
K. A. Corzine, Jerry L. Tichenor, P. C. Krause 

P. C. Krause and Associates, Inc. 
West Lafayette, Indiana 47906 

Abstract-In this paper, a new control strategy is proposed 
which is simple in structure and has the straightforward goal of 
minimizing the stator current amplitude for a given load torque. It 
is shown that the resulting induction motor efficiency is reasonably 
close to optimal and that the approach is insensitive to variations in 
rotor resistance. Although the torque response is not as fast as in 
field-oriented control strategies, the response is reasonably fast. In 
fact, if the mechanical time constant is large relative to the rotor 
time constant, which is frequently the case, the sacrifice in dynamic 
performance is insignificant relative to FO strategies. 

I. INTRODUCTION 
Field-oriented (FO) induction motor drive systems provide 

an ability to rapidly and accurately control the electromagnetic 
torque [l-21. A disadvantage is that in order to maintain a fast 
speed-of-response, it is necessary to operate at rated flux even at 
low values of torque. Thus, the efficiency and power factor can 
be quite poor at low torques, regardless of rotor speed. Addition- 
ally, accurate knowledge of the rotor resistance is necessary 
requiring on-line sensing and adaption approaches [2]. 

An extensive amount of research has also been conducted in 
the areas of optimum efficiency control of induction motor drive 
systems [3-83. It has long been recognized that for a given torque 
and speed, it is possible to adjust the slip frequency so as to min- 
imize resistive and core losses thus maximizing the efficiency of 
the induction motor. Due to the complexity of the loss models, 
optimization was either performed numerically with the calcu- 
lated optimum slip stored in a look-up table E3-51 or using on- 
line search techniques [6-81. A disadvantage of the table-look-up 
approach is the necessity of accurate machine parameters which 
vary from one machine to another. Disadvantages of on-line 
search approaches include their complexity and their potential to 
exhibit hunting. 

In this paper, a new control strategy is proposed which is 
simple in structure and has the straightforward goal of minimiz- 
ing the stator current amplitude for a given load torque. It is 
shown that the resulting induction motor efficiency is reasonably 
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close to optimal and that the approach is insensitive to variations 
in rotor resistance. Although the torque response is not as fast as 
in FO control strategies, lhe response is reasonably fast making 
the proposed controller well suited to applications where both 
dynamic response and high efficiency are important. 

11. BACKGROUND 
The dynamic equatilons of the induction machine can be 

'is = 's'qs + p v q s  + Gvds 

expressed in the synchronous reference frame as [9] 

( 1 )  
.e e ("e e 

( 3 )  

(4) 

vis = x s S i i s  + xfi& ; v& = x S s i &  + XMi:r ( 5 )  

Vir = Xrri ir  +Xfif i is  ; vir = X S s & .  + X i M i i s  (6) 
It is assumed that all rotor variables are referred to the stator. 
With stator currents as inputs and rotor windings short circuited, 
the state equations may be expressed 

(7) 

where 0, = we - 0, is The slip frequency. The stator flux link- 
ages may be expressed in terms of the state variables as 

where 

is the subtransient reactance. The electromagnetic torque can be 
expressed, 

(1 1 )  
Te = K ( v : r i i s  - \ICqrzds) e .e 

3P 1 If the variables are expressed in SI units, K = . If the 2 2 0 ,  

variables are expressed in per unit, K = 1 .  In the indirect 

0885-8969/98/$10.00 0 1997 IEEE 
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method of (FO) control [l], ee(0)  is selected such that yf;, is 
identically zero [l]. Thus, (7) and (8) become 

If i:, is controlled so that it remains constant, (13) implies that 

p&, = 0 and 

v:r = xlwi;, (14) 

Substituting into (12) and solving for 0, 

The electromagnetic torque (1 1) can be expressed 

(16) 
X L e  e T e = K - i  i x,, qs  ds 

A block diagram of the (FO) controller is shown in Fig. 1. 

Therein, id ,  is the commanded magnetization current which is 

normally constant and i,, is used to control the torque. The cur- 

rent command signals i;,, i : , ,  and i:, are supplied to the 

inverter control system. 

e* 

e* 

“as 
”s 

ig, 

‘ds i z s  

-e 

.e* 

Fig. 1 Block diagram of indirect method field-oriented controller. 

111. DEFINITION OF ALTERNATIVE OPERATING STRATEGIES 
The following definitions are useful in subsequent analyses. The 
stator current amplitude is defined as the peak ac current. In terms 
of qd variables, 

(17) 
The stator flux amplitude is similarly defined as 

(18) 
The efficiency is defined as the output power divided by the elecl 
tric power supplied to the stator (converter losses are not 
included). In per unit, 

where 
e e  e e  
4 s  4 s  

Pe = U i + u d s i d s  

The conventional power factor is defined as the input power 
divided by the apparent power. 

P f  = p e / ( c J p x )  (21) 
where 

e .e e .e 
Qe = U q s L d s - U d s l q s  

In the following analysis, it is convenient to select Te , U,, and 

0, as independent variables. All other variables such as stator or 
rotor flux amplitude, efficiency, or power factor, can be 
expressed in terms of the selected independent variables. When 
defining the alternative operating strategies, it is assumed that the 
torque and speed are given whereupon the slip frequency is 
adjusted so as to achieve certain characteristics such as maximi- 
zation of power factor, minimization of stator current, maximiza- 
tion of efficiency, etc. 

It must be emphasized that the model presented in Section I1 
does not include the stator or rotor core (hysteresis and eddy cur- 
rent) losses. This does not mean that these losses are negligible; 
however, it is convenient to postpone consideration of these 
losses until a later section. 
Maximum torque per stator ampere 

Operation at maximum torque per ampere is achieved when, 
at a given torque and speed, the slip frequency is adjusted so that 
the stator current amplitude is minimized. This mode of operation 
is subsequently referred to as the maximum torque per ampere 
(MTA) strategy. An expression for the slip frequency which min- 
imizes the stator current amplitude is easily established by noting 

that to maximize the product of i:s and i:, subject to the con- 

straint that (17) is constant, i:s should be set equal to &. Thus 

where z, is the rotor time constant. This suggests that to main- 
tain minimum stator current, the induction machine should oper- 
ate at a constant slip equal to the inverse rotor time constant. 
Maximum effuiency 

In this mode of operation, the slip frequency is adjusted so 
that the efficiency (19) is maximized. An expression for the slip 
which maximizes efficiency may be derived by substituting (16) 
and (20) into (19), and expressing all variables in terms of slip 
frequency. After considerable algebraic manipulation 

Differentiating with respect to a,, setting the resulting expres- 

sion to zero, and solving for 0, yields 

To maintain maximum efficiency (ME) the machine should oper- 
ate at a constant slip equal to that calculated in (25). It is interest- 
ing to note that the efficiency is independent of torque and the 
mnuimivinn 0 1 4 -  4 0  inAnnnnAont nf tho tnmm>o nr ~ n o o d  n o  nrpwi- 
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ous expression for efficiency is optimistic since it does not 
include the effect of core losses. Also, the optimizing slip may 
differ somewhat from the value calculated using (25). 
Maximum power factor 

In this mode of operation, the slip frequency is adjusted so as 
to maximize the power factor (20). An expression for the slip fre- 
quency which maximizes power factor may be derived by substi- 
tuting (19) and (21) into (20), expressing all variables in terms of 
slip frequency, differentiating with respect to os,  setting the 

resulting expression to zero, and solving for 0,. Although this is 

possible, the resulting expression is too lengthy to be of practical 
value. Alternatively, the maximization of power factor can be 
achieved by developing a numerical procedure or function which 
calculates the power factor as a function of the selected indepen- 
dent variables and, for a given torque and speed, calculating the 
maximizing slip using well-established algorithms. It can be 
shown that the power factor and the slip frequency at maximum 
power factor (MPF) are independent of torque. 
Field Oriented Control 

In this mode of operation, the d-axis current is set to a con- 
stant value which yields rated torque at rated stator flux. The cor- 
responding slip is calculated in accordance with (15). The value 
of the d-axis current which yields rated torque at rated stator flux 
may be calculated by substituting the flux linkages in (9) into 

(18) and expressing all variables in terms of iis . After extensive 
manipulation, 

I 

where 

IV. OPERATING CONSTRAINTS 
Operation at maximum efficiency, maximum power factor, 

or minimum stator current may not be achievable for the entire 
speed and torque range due to operating constraints. Herein, it is 
assumed that three constraints exist: (1) the amplitude of the sta- 
tor current cannot exceed a specified maximum, (2) the amplitude 
of the stator flux cannot exceed a specified maximum, and (3) the 
stator voltage cannot exceed rated. If condition (2) is satisfied, 
then condition (3) is automatically satisfied for rotor speeds less 
than rated. Conditions (1) and (2) place limits on the slip fre- 
quency which may prevent operation in any of the modes 
described in the previous section. To establish these limits, it is 
useful to express the stator current and flux in terms of the 
selected independent variables. After extensive algebraic manip- 
ulation. 

(28) 

where 

Equations (28) and (31) establish limits on the slip frequency that 
can be set. 

V. NUMERICAL EXAMPLE 
It is instructive to illustrate the previous relationships for a 

specific machine. The machine selected is a 5-Hp cage rotor 
machine. The pertinent parameters are rs = 0.028, r, = 0.014, 

X, = 1.6271, X,, = 0.1755, X, ,  = 0.0879. All data are in 

per unit with 2, = 14.182 Q ,  P ,  = 3730 W ,  V, = 132.8 V ,  

and Ib  = 9.363 A .  
Although it was assumed that there are three independent 

variables (torque, speed and slip frequency), it is seen in (24) that 
the efficiency is independlent of torque. Thus, it is possible to plot 
the efficiency versus the remaining independent variables as 
shown in Fig. 2. Maximum efficiency occurs at a slip frequency 
of 2.55 radhec as calculated using (25) while MTA operation 
occurs at a slip frequency of 3.07 rad/sec as determined by (23). 
As shown in Fig. 2, there is little difference in the efficiency for 
these two operating modes 

In the FO control strategy, the slip frequency is a function of 
the commanded torque. The efficiency may be plotted versus 
torque and speed as shown in Fig. 3. As shown, the efficiency 
decreases substantially when either the torque or speed is small 
and is equal to zero when the torque and/or speed is zero. 

The power factor is plotted as a function of slip frequency 

efficiency 

4.44 1 

Fig. 2 Efficiency versus slip frequency and speed. 

1 

0.8 

0.6 

0 4  

0.2 

0 
1 

400 

Fig. 3 Efficiency versus torque and speed for FO control strategy. 
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1 power factor 

300 

speed 

Fig. 4 Power factor versus slip frequency and speed. 

1 

0.8 

0.6 

0.4 
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1 

400 

v 100 speed 
0 0  

Fig. 5 Power factor versus torque and speed for FO control strategy. 

and speed in Fig. 4. In either ME or MTA modes, the power fac- 
tor is significantly less than the maximum power factor which 
occufs at a slip of approximately 7 rad/sec. From Fig. 2, the effi- 
ciency at maximum power factor is somewhat less than either 
MTA or ME modes. Thus, it appears that if efficiency is the pri- 
mary concern, operation at maximum power factor is not desir- 
able. The power factor in the FO strategy is plotted in Fig. 5. 
Therein, it is seen that, for rotor speeds greater than about 50 rad/ 
sec, the power factor approaches zero as the torque approaches 
zero and is independent of rotor speed. 

Although it is not apparent from the information depicted in 
Fig. 2, operation in the MTA or ME modes is not achievable if 
the desired electromagnetic torque becomes too large. This can 
be seen by plotting the stator flux and current amplitudes versus 
torque and speed as defined by (28) and (31). These relationships 
are plotted in Figs. 6 and 7, respectively. At rated torque, the min- 
imum slip frequency that can be set is approximately 7.5 radsec. 
For smaller value$ of slip frequency, the flux amplitude will 
exceed rated. The minimum allowable slip is a function of the 
desired torque. For example, if the desired torque is reduced to 
0.5 pu, the minimum slip frequency becomes 4 rad/sec. Although 
operation at a slip frequency higher than the minimum is possi- 
ble, it is not desirable since, from Fig. 7, the stator current ampli- 
tude increases as the slip frequency is increased. This suggests 
that for large torques, the slip frequency should be set to the 
smallest value possible which does not violate the flux constraint. 
On the other hand, for smaller values of torque, the slip frequency 
should be set to the value given by (23). The global maximum 
torque per ampere controller which accomplishes these functions 
is described in the following section 

1 

0 5  

0 
1 

0 

'' slip frequency O '20 

Fig. 6 Stator flux amplitude versus torque and slip frequency. 

Fig. 7 Stator current amplitude versus torque and slip frequency. 

VI. GLOBAL MAXIMUM TORQUE PER AMPERE CONTROLLER 
As long as the flux amplitude is less than rated, the optimum 

slip frequency is equal to the inverse rotor time constant. For 
larger values of torque, the slip frequency must be set to the 
smallest value possible which does not violate the flux constraint. 
An expression for the slip frequency in the flux-limited mode of 
operation may be established by setting ltqsl to 1 in (28) and 

solving for 0,. This gives 

1 - , / x d  
2Tec 0, = 

where 
" 2 cX")"x; + (X  ) x;r + 2X2,X"Xr,I 

(33 )  4 d =  
m X I  

and c is given by (30). The breakpoint between the constant slip 
and flux-limited regions of operation may be established by set- 
ting w, in (32) to the optimal slip defined by (23) and solving for 

T, . This sequence of operations yields 

(34) 

A plot of w, versus T, for the given machine is shown in Fig. 8. 

If the desired torque is less than T,, bp = 0.465 pu , the slip fre- 
quency is set to the inverse rotor time constant. If the desired 
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torque is greater than the breakpoint value, the slip frequency is 
increased so as to maintain constant flux. As shown, the slip fre- 
quency is essentially a linear function of the desired torque in the 
flux-limited region. In this region, the stator current is minimized 
subject to the flux constraint. 

2 t  I 
1 

I 

I 
00 0.2 0.4 0.6 0.8 1 

Fig. 8 Slip frequency versus torque for maximum torque per ampere sub- 
ject to 1-pu flux constraint. 

An expression for the stator current amplitude can be estab- 
lished from (31). For T, e T,, bp, the desired slip is given by (23) 

whereupon T,", = 1 . If T, > T,, bp, the desired slip is given by 
(32) whereupon 

T r O s  = 
2 T, (X")*Xrr 

(35) 

In either case, list is not a function of the rotor resistance since 

rr cancels in the product ~ p , .  
An overall block diagram of the global maximum torque per 

ampere controller is shown in Fig. 9. Therein, T,  is the desired or 

commanded torque 1i:l is the commanded current amplitude. 
The subscript "0" is used to distinguish the estimated machine 
parameters from the actual parameters which do not include this 
subscript. If the parameter estimates are equal to the actual 
machine parameters, this controller will result in operation at 
minimum stator current and close to maximum motor efficiency 
for all torques and speeds subject to the 1-pu flux constraint. The 
sensitivity of the controller to uncertainties in parameters is 
addressed in a later section. In any case, the proposed controller 
is designed so as to avoid operation under saturated conditions 
for all speeds and torques less than the corresponding rated val- 
ues. 

* 

The efficiency and power factor of the selected machine are 
plotted in Figs. 10 and Ill, respectively, using the global maxi- 
mum torque per ampere (GMTA) controller. Comparing with 
Figs. 3 and 5 shows that, at a given speed, the efficiency remains 
essentially constant even for small values of torque. Moreover, 
the power factor is significantly higher at small values of torque. 
The latter characteristic is desirable since the converter losses are 
also likely to be reduced using the GMTA controller. 

VIL SENSITIVITY TO PARAMETER VARIATIONS 
It is well known that uncertainties in machine parameters, in 

particular the rotor resistance, can have adverse effects upon the 
performance of field-oriented drives [2]. It is useful, therefore to 
examine the effects of uncertainties in the rotor resistance on the 
MTA control set forth in the previous section. It is assumed here 
that all parameters are known exactly with the exception of rotor 
resistance. The rotor resistance given in Section V is assumed to 
be the estimated resistance which is held constant while the 
actual rotor resistance is varied. The resulting efficiency and flux 
amplitude are compared with the ideal controller in Figs. 12 and 
13. As shown in Fig. 12, if the torque is less than approximately 
0.5 pu, the efficiency is insensitive to rotor resistance variations. 
In the flux-limited region, if the actual resistance is somewhat 
smaller than the estimated resistance, the resulting flux amplitude 
will be somewhat smaller than rated and the efficiency will be 
reduced. On the other hand, if the actual resistance is larger than 
the estimated resistance, the efficiency is somewhat larger in the 
flux-limited region; however, the flux exceeds rated. If the mag- 
netic circuit permits opexation at this higher flux, this mode of 
operation may be desirable since the efficiency is higher; how- 
ever, if saturation occurs, the efficiency plotted in Fig. 13 would 
likely be optimistic. A more thorough examination of the effects 
of magnetic saturation is currently underway. 

VIIL CORE LOSS EFFECTS 
Although core loss effects have been neglected in preceding 

analyses, they may have a significant effect on the overall effi- 
ciency [5] .  During normal operating conditions, the rotor slip fre- 
quency is small; therefore, it is reasonable to assume that the 
rotor core losses will be negligible relative to the stator core 
losses [8]. Also, the stiltor core losses will be monotonically 
increasing functions of flux amplitude and stator frequency. For 
normal operation, the stator frequency will be close to the speed 
of the machine which is assumed to be given. Thus, it appears 
that core losses may be ireduced by reducing the stator flux and, 
correspondingly, increasing the slip to maintain torque. However, 

. . .  
la, lb? z ,  

Fig. 9 Global maximum torque per ampere (GMTA) controller. 
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400 

. -- 
0-0 speed 

Fig. 10 Efficiency versus torque and speed using GMTA controller. 

774m Torque 0.5 sped 

0 0  

Fig. 1 1  Power factor versus torque and speed using GMTA controller. 

this causes the stator current amplitude to increase causing the 
resistive (and inverter) losses to increase. If the reduction in core 
losses exceeds the increase in resistive losses, the motor effi- 
ciency will increase. Clearly, the optimum slip may be found 
using on-line search techniques. However, the hunting phenome- 
non observed in [8] suggests the improvement in overall effi- 
ciency may be insignificant relative to the simple GMTA strategy 
presented herein. Nonetheless, a more detailed evaluation of the 
overall system efficiency, which includes the effects of magnetic 
nonlinearities, core losses, and inverter losses, is presently under- 
way. It is important to note that the flux level in the proposed 
controller is less than or, for torques greater than the breakpoint 
defined by (34), essentially equal to the peak flux that would exist 
in FO or the well-known constant-volts-per-hertz strategies. Thus 
the core losses in the proposed controller will be less than or, at 
most, equal to the core losses in these existing strategies, regard- 
less of rotor speed. 

M. DYNAMIC RESPONSE 
In order to illustrate the dynamic characteristics of the 

GMTA controller, the drive system was simulated using ACSL 
[lo]. The simulation was in detail with the switching characteris- 
tics of the inverter represented. It is assumed that the motor is ini- 
tially deenergized and (U, = 0 .  The load torque is assumed to be 
proportional to the square of the rotor speed with rated torque 
produced at rated speed. The inertial time constant is 
H = 0.5 sec. It is assumed that the commanded torque is 
stepped to rated at t = 0 .  The resulting response is shown in 

r,  = l . l rro 

0.88- - = 0.4 

0.86 - 

0.84 - ro 

r ,  = l . l rro 

0.88- - = 0.4 
0.86 - 

0.841 rr = 0.9r ' r o  ' 1 
0.82 

0.8 
Torque (pu) 

0.2 0.4 0.6 0.8 

Fig. 12 Efficiency versus torque as rotor resistance is varied. 

Stator Flux Amplitude (pu) 

I 

08 

06 

0.4 

02 

0 
0 02 0.4 0.6 08 1 

Fig. 13 Stator flux versus torque as rotor resistance is varied. 

Fig. 14. For comparison purposes, the rotor speed response for a 
conventional FO controller is also plotted. When calculating the 
FO response, it is assumed that the initial rotor flux is equal to 
rated which gives rise to a near instantaneous step change in elec- 
tromagnetic torque from zero to rated at t = 0 .  In the GMTA 
controller, the torque response is somewhat underdamped. It can 
be shown that the corresponding time constant is equal to the 
electrical time constant of the rotor. Although the FO response is 
somewhat faster, the overall time to reach rated speed is not sig- 
nificantly different. 

400 

200 

0 

0 0.4 0.8 1.2 1.6 2 

Fig. 14 Star-up response. 
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XI. CONCLUSIONS 
A new control strategy for induction motor drives is pre- 

sented which has the straightforward goal of minimizing the sta- 
tor current amplitude for a given torque and speed. The controller 
is simple in structure and is relatively insensitive to rotor resis- 
tance variations. Although the torque response is not as fast as in 
field-oriented strategies, if the mechanical time constant is large 
relative to the rotor electrical time constant, the sacrifice in 
dynamic performance is insignificant. The performance of this 
controller has been illustrated for a 5-Hp squirrel cage motor. The 
proposed controller was also investigated for a high-speed 40-Hp 
motor being developed for aerospace applications and for a con- 
ventional 4-Pole 50-Hp 60-Hz motor. In each case, similar results 
were obtained. 
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