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Evaluation of Microwave Reflection Properties of
Cyclically Soaked Mortar Based on a Semiempirical

Electromagnetic Model
Shanup Peer, Kimberly E. Kurtis, and Reza Zoughi, Senior Member, IEEE

Abstract—Detection of chloride ingress and evaluation of its
distribution and temporal movement in reinforced concrete
structures is an important practical issue. Steel reinforcing bars
embedded in good quality concrete are normally protected from
corrosion. However, the presence of a sufficient concentration
of free chloride ions in the region of the reinforcing steel can
initiate the process of corrosion. Therefore, it is important to
be able to detect ingress of chloride ions and their distribution
in cement-based materials. Moreover, it is important to obtain
this information nondestructively. In recent years, near-field
microwave nondestructive evaluation methods, using open-ended
rectangular waveguide probes, have proven effective for eval-
uating many important properties of cement-based materials,
including the detection of salt, added to the mixing water and
when entering these materials through exposure to salt solution.
Additionally, successful electromagnetic modeling of the inter-
action of microwave signals with moist cement-based materials
has provided the necessary insight for evaluating the distribution
and movement of moisture within these materials, leading to the
current study involving ingress of sodium chloride solution. To
this end, a mortar cube was subjected to cycles of wetting in a
sodium chloride bath with a salinity of 2.8%, followed by episodes
of drying. Subsequently, the microwave reflection properties of the
cube were measured at 3 and 10 GHz using open-ended rectan-
gular waveguides for several cycles, each lasting about 35 days. A
semiempirical electromagnetic model, representing the cube as a
stratified structure with a nonuniform dielectric property profile,
was then developed to simulate the measured reflection properties.
The simulated and the measured results at both frequencies and
for all cycles were in good agreement. Subsequently, the effect of
ingress of salt solution in terms of the temporal distribution of
moisture along with the dissolved salt (i.e., pore solution) within
the cube for every cycle was also estimated. This paper presents
a brief description of the measurement approach and a detailed
description of the model and its results.

Index Terms—Chloride, concrete, corrosion, microwaves, non-
destructive testing.

I. INTRODUCTION

CHLORIDE ingress is an important cause of steel corrosion
in reinforced concrete structures in North America. Corro-

sion of the reinforcing steel is implicated as a cause of damage
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to the majority of the 226 000 reinforced concrete bridges de-
scribed by the Federal Highway Administration (FHWA) as de-
ficient [1], [2]. In 1991, the U.S. Department of Transporta-
tion estimated rehabilitation costs for these damaged bridges at
$90.9 billion [2]. In Canada, an estimated CAD$200 million (or
USD$140 million) is spent annually to repair some 600 parking
structures experiencing corrosion [3]. Designing concrete struc-
tures based upon strength criteria rather than durability criteria,
the growing use of chloride-containing deicing salts, and exten-
sion of construction activity to increasingly aggressive environ-
ments are some of the factors that have led to the increase in
concrete structures experiencing reinforcement corrosion in re-
cent decades.

Due to its inherent alkalinity and impermeability, good
quality concrete adequately protects reinforcing steel from
corrosion. When steel is encased in concrete, a protective
passive film forms on the steel surface due to the high pH of
the concrete. This film largely protects the steel from corrosion.
However, the presence of a sufficient concentration of chloride
ions near the steel in reinforced concrete can compromise
the passivation of the steel. Subsequently, when moisture and
oxygen are present in the concrete, corrosion of reinforcing
steel bars can occur [4], [5]. Chloride ions can be introduced
into the concrete during its manufacture when seawater or
water with a high chloride concentration is used, when chlo-
ride-contaminated coarse or fine aggregates are used, or when
chloride-containing admixtures are used. However, usually the
corrosion of reinforcing steel is caused by the ingress of chlo-
ride ions present in the surrounding environment of a concrete
structure. Deicing salts, seawater, and chloride-contaminated
soils are the primary sources of external chloride.

Limits on the amount of chloride in reinforced concrete are
set in two ways: the amount of water-soluble chloride ions, and
the total chloride-ion content. The two values are substantially
different from one another because the water-soluble chloride is
only a part of the total chloride content. The “free” chloride ions,
those dissolved in the pore solution, participate in the corrosion
process [4]. On drying, free chlorides form products that can be
dissolved upon rewetting.

Standard test procedures for the water-soluble chloride-ion
content of hardened concrete are described in [6] and [7]. These
tests are destructive in nature and are performed in a laboratory
on concrete that has hardened for 28 to 42 days. Another mea-
sure of chloride content in concrete, the total amount of chlo-
ride, can be found through procedures outlined in the Amer-
ican Society for Testing and Materials (ASTM) and the Amer-
ican Association of State Highway and Transportation Officials
(AASHTO) [8], [9]. Both of these standards require that a core
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of concrete be ground into a powder and be tested in a labora-
tory. Once the sample is obtained, it is crushed and tested by the
procedures outlined in [8]–[14].

Development of a reliable test method for in-situ measure-
ment of the chloride ion penetration in in-service concrete
would be invaluable to the concrete and construction industries.
From an economic standpoint, accurate measurements of the
concentration of chlorides and penetration depth in concrete
structures would allow agencies to more effectively allocate
funding for repair of those structures with the most critical
needs and to identify those concrete mixtures with superior field
performance. The broader goal of this work, then, is to assess
the potential application of a microwave method for in-situ
monitoring of chloride ingress in cement-based materials.

II. BACKGROUND

Near-field microwave nondestructive testing and evalu-
ation (NDT&E) techniques, using open-ended rectangular
waveguide probes and monopole antennas, have been used
to interrogate a wide variety of cement-based materials for
their important physical and structural properties. They include
the following: evaluation of water-to-cement ratio (w/c) and
compressive strength of hardened cement paste [15], [16],
evaluation of fresh concrete w/c [17], evaluation of porosity
and sand-to-cement ratio (s/c) in mortar [18], [19], evaluation
of mortar permittivity using a combined microwave near-field
and modulated scattering technique [20], evaluation of coarse
aggregate-to-cement ratio (ca/c), monitoring of cure-state and
material properties of concrete [21]–[24], detection of grout
in masonry bricks [25], and detection of de-bonding between
hardened cement paste and fiber reinforced polymer (FRP)
composites [26], [27].

In recent years near-field microwave NDT techniques have
also been extensively used in evaluating chloride contamination
in cement-based materials. It has been shown that the addition
of salt to the mixing water of mortar can be easily evaluated
using these techniques [28]. It has also been shown that the in-
fluence of cyclical chloride ingress in mortar exposed to sodium
chloride solution can also be evaluated using these techniques
[29]–[33]. This paper briefly presents the results of an extensive
investigation in which a mortar cube is cyclically exposed to
sodium chloride solution. The focus of this investigation is the
development of a semiempirical electromagnetic model simu-
lating the reflection properties of the soaked mortar cube, based
on the temporal dielectric properties of the cube as a function of
the cube depth. The outcome of such a model would then pro-
vide useful information regarding the volumetric distribution of
dissolved salt (i.e., in the pore solution) as influenced by the
ingress of salt solution.

III. EXPERIMENTAL APPROACH

Two mortar cubes of dimension 200 200 200 mm
(8 8 8 in), having a w/c of 0.50 and a s/c of 2.5, were
produced using tap water and commercially available portland
cement Type I/II [34]. The cubes were then placed in a hydra-
tion room for 24 h and subsequently left at room temperature
and low humidity for another ten months. One of the mortar
cubes was then submerged to within 6 mm 1/4 in of its
top surface in sodium chloride solution having 2.8% salinity,

Fig. 1. Experimental apparatus.

while soaking for 24 h. The cube was then removed from the
bath and left in ambient conditions for 24 h, in order for the
excess solution on the surface of the cube to evaporate. The
other cube was not soaked and left in ambient conditions to
serve as the reference cube.

Subsequently, using open-ended rectangular waveguide
probes, in conjunction with an HP8510 vector network an-
alyzer, the daily reflection properties of the soaked and the
reference cubes were measured at two different frequency
bands, namely S-band (2.6–3.95 GHz) and X-band (8.2–12.4
GHz), as shown in Fig. 1. To obtain an average value of the
reflection properties, 16 measurements were performed on the
cube sides (four per side) at S-band, while 36 measurements
(nine per side) were made at X-band. This procedure was
followed for three such soaking and drying cycles, each of
which lasting approximately 35 days. Concurrently, the masses
of the cubes were also monitored on a daily basis, and this
information was subsequently incorporated into the electro-
magnetic model as the only physical data. The measured results
are shown, and the modeling analyses are performed for two
specific frequencies of 3 GHz (S-band) and 10 GHz (X-band),
representing each frequency band.

IV. EXPERIMENTAL RESULTS

A. Influence of Soaking and Drying

Prior to soaking in salt solution, the mortar cube is pri-
marily composed of cement hydration products, sand, residual
unhydrated cement, intrinsic pore solution, and air (pores
and cracks). However, once the cube is soaked, salt solution
ingresses into the cube, filling the pores and cracks and mixing
with the preexisting pore solution. Thus, the pore solution
existing within the cube after exposure to the salt solution can
be considered as a combination of the intrinsic pore solution
and the salt solution that has ingressed into the cube during
the soaking period. Further references to pore solution, un-
less explicitly stated, will refer to the mixing of external salt
solution with intrinsic pore solution, rather than the intrinsic
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pore solution prior to exposure. The composition of the pore
solution, however, may vary with location within the cube and
time of exposure to salt solution.

Once removed from the bath and exposed to the ambient con-
ditions, the moisture in the cube begins to evaporate from its
near surface regions, while some of the pore solution is drawn
toward the cube core through the process of capillary draw, and
possibly by diffusion. As the moisture evaporates, the pore so-
lution reaches saturation concentrations for various compounds,
and products likely including salt crystals precipitate out in the
preexisting pores and cracks. In addition, some of the intruding
chloride ions interact with calcium aluminate phases and other
phases, thus becoming bound. In the context of this investiga-
tion, the products that precipitate from the pore solution and the
newly formed bound chloride products are collectively referred
to as “solid products.”

Thus, the mortar cube while in solution can be represented as a
multiphase dielectric mixture, where the host material comprises
of hardened cement paste (containing both hydration products
and a relatively small amount of residual unhydrated cement) and
sand while the pore solution and air (pores and cracks) consti-
tute the inclusions. However, once removed from the solution and
exposed to ambient conditions, the gradual appearance of newly
formed solid products within the cube can then be considered in
the multiphase mixture as an additional inclusion phase. In ad-
dition, the distribution and composition of the pore solution will
change. All of the above-mentioned factors contribute to varia-
tions in the temporal distribution as well as volumetric content
of the various inclusions present within the cube during a given
cycle. Consequently, the temporal microwave reflection proper-
ties of the cube vary during a given cycle as well.

B. Discussion of Experimental Results

This paper describes a model based upon experiments per-
formed on a mortar cube subjected to wet/dry cycling in salt
solution. The detailed results of this experiment have been pub-
lished elsewhere and will not be repeated here [34]. However, it
is important to mention some of the more important aspects of
the results since they become the foundation for modeling the
temporal reflection properties of the cube, and the determination
of the temporal distribution of pore solution (due to cyclical ex-
posure to salt solution) within it.

Fig. 2 shows the daily measured magnitude and phase of re-
flection coefficient (calibrated and measured at the aperture of
the waveguide probe) for the soaked and the reference cubes at
3 GHz, respectively, for three soaking and drying cycles. It is ob-
served that for the soaked cube and for each cycle, increases
significantly from its presoaked value (i.e., day zero in cycle 1)
to the value measured at the first day of the measurement cycle
(i.e., day two in cycle 1), indicating the ingress of salt solution
into the cube, as expected. During the subsequent days, grad-
ually decreases, primarily indicating the evaporation of water
from the cube. The gradual increase in the measured phase of
reflection coefficient is also indicative of the same phenomena
[34], [35]. However, one important aspect regarding the reflec-
tion properties is that a distinct dip occurs in the phase of re-
flection coefficient during the first few days of the cycle after
which it gradually increases as a function of days beyond this
point. The gradual increase (after the first few days) could be pri-
marily attributed to the evaporation of water. However, the dip

Fig. 2. (a) Magnitude and (b) phase of reflection coefficient for the three cycles
at 3 GHz for the soaked and the reference cube.

is believed to be indicative of an important phenomenon that is
occurring within the cube. It is believed that this dip is caused by
the temporal variations in the pore solution distribution within
the cube, as will be described in Section V. The reflection prop-
erties of the reference cube remain fairly constant throughout
the entire period, as expected.

In addition to the reflection property measurements, the mass
of the cubes were also measured on a daily basis. Fig. 3 shows
the mass relative to the presoaked mass (i.e., additional mass)
of the cubes as a function of days, indicating the total mass gain
(i.e., due to soaking) and loss (i.e., due to evaporation) with time.
It is important to note that the mass of the soaked cube at the end
of a cycle is greater than its mass at the end of each previous
cycle, indicating that some additional pore solution and some
additional solids remain in the cube at the end of each cycle.
These are important observations that must be considered when
developing the electromagnetic model simulating the reflection
properties of the cube. As a result of the variation in the temporal
moisture content within the cube, the signal penetration into the
cube also varies (i.e., more signal penetration in the latter days
of the cycle since the cube is relatively drier at this time). There-
fore, to obtain more comprehensive information about the tem-
poral nature of the pore solution distribution within the cube,
measurements were conducted at two frequency bands, namely;
S-band (2.6–3.95 GHz) and X-band (8.2–12.4 GHz). Frequen-
cies at the latter band provide information about the near-surface
properties of the cube while the former band provides informa-
tion about the deeper regions of the cube.

The variation in the reflection properties of the soaked cube
as a function of days is a clear indication of the fact that the
dielectric properties of the cube are varying as a function of
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Fig. 3. Additional mass for the soaked and the reference cube.

days, and as will be shown later, also as a function of depth into
the cube. Thus, the objective of this investigation is to develop a
semiempirical electromagnetic model simulating the measured
temporal reflection properties of the soaked cube for each cycle
and for the two distinct frequencies. The outcome of this model
would then yield useful information regarding the temporal pore
solution distribution within the cube. The first prerequisite for
the development of such a model is the conceptualization of the
various phenomena that might be occurring within the cube and
how they influence the dielectric properties as a function of time
and depth into the cube.

V. MODELING APPROACH AND CONSIDERATIONS

The macroscopic behavior of dielectric materials is described
by a parameter known as the dielectric constant (dielectric prop-
erties). In general, this is a complex parameter whose real part
(absolute permittivity) indicates the ability of the material to be
polarized or store microwave energy, while its imaginary part
(absolute loss factor) indicates the ability of the material to ab-
sorb microwave energy. When referenced to the permittivity of
free-space, these parameters are referred to as the relative per-
mittivity and loss factor, respectively. The calibrated effective
reflection coefficient of the cube, measured at the waveguide
aperture is a function of the effective dielectric properties of the
cube. The effective dielectric properties of the cube are corre-
spondingly dependent on the following:

1) the dielectric properties of the host material (mortar in this
case);

2) the dielectric properties of the various inclusions present
within the cube at any given day, which varies as a func-
tion of depth into the cube;

3) the volume fractions of the host material and the various
inclusions in the cube at any given day (the latter is also a
function of depth into the cube) [36], [37].

As mentioned earlier, the average reflection properties of the
soaked cube (hereafter referred to as the cube) were measured at
two different frequency bands. Consequently, the resulting av-
erage values for and phase, the spatial reflection properties,
and hence the material properties, of the cube across its sides is
now considered to be uniform with the variations in the properties
only existing along the distance into the cube [35]. Although this
variation in the dielectric properties is continuous as a function
of distance from the surface, for modeling purposes, the mortar
cube can be analyzed as a collection of many discrete layers. In
this way, the mortar cube can be modeled as a collection of dis-

Fig. 4. Schematic of an open-ended rectangular waveguide probes interacting
with a multilayered structure used in the modeling process.

crete layers (into the cube) each with a thickness and effective di-
electricproperties.Subsequently, amultilayeredformulation that
gives the magnitude and phase of reflection coefficient, measured
byanopen-ended rectangularwaveguideprobe, fora stratifieddi-
electric material at a specified frequency; number of layers n and
thickness ,andthedielectricpropertiesofeachlayer wasuti-
lized for obtaining the temporal reflection properties of the cube
[38], as shown in Fig. 4.

In a previous investigation, the microwave reflection proper-
ties of a similar mortar cube that was soaked in distilled water
was successfully modeled [35]. The outcome of the modeling
process resulted in evaluating and obtaining the temporal water
distribution in the cube for the same three soaking and drying
cycles. This extensive modeling effort provided the necessary
insight into the dynamics of temporal mass transport within
the water-soaked cube as it relates to properly simulating the
microwave reflection properties of the cube at 3 and 10 GHz.
Therefore, the electromagnetic modeling of the reflection prop-
erties of the cube soaked in salt solution, which is of interest
here, is based on this previous modeling effort. However, im-
portant influences caused by the presence of salt, in its ionic
(dissolved in the pore solution) and solid forms, must be prop-
erly accounted for so that the microwave reflection properties of
the cube are closely simulated.

The modeling process for the water-soaked cube revealed cer-
tain important features about the temporal water distribution
within the cube. One of the primary outcomes of the investiga-
tion was the general behavior of the water distribution function.
The resulting water distribution within the cube (i.e., as a func-
tion of depth into the cube) showed the following:

1) minimal water content near the surface (due to evapora-
tion);

2) gradual increase in water content until a maximum value
is reached at a certain thickness;

3) decrease in water content from this point on [35].
This was represented by a Rayleigh-like distribution possessing
the aforementioned characteristics. Consequently, the general
equation for the water distribution was obtained which is used
in the present study for the pore solution distribution, denoted
by PSD and expressed by

PSD gm mm (1)
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Fig. 5. Rayleigh-like distribution function simulating the pore solution
distribution in the cube.

where is the thickness, which varies from the surface of the
cube to its center (i.e., 0 to 100 mm), are empirical
parameters and is proportional to the maximum value (ampli-
tude) of the distribution function for each day. Fig. 5 shows the
general shape of this distribution function as a function of thick-
ness into the cube. One additional and important piece of infor-
mation was also obtained from modeling of the water-soaked
cube. It was determined that to properly simulate the shape of
the phase of reflection coefficient during the first few days of
drying (i.e., where it exhibits a flattened shape) the distance at
which the peak of water distribution functions occurred could
not remain fixed, and varied as a function of days, indicating
the movement of water between the layers. To simulate this ef-
fect, the values of the empirical parameters , and
also changed as a function of days [35]. However, it should be
noted that these empirical values would be different for the salt
solution-soaked cube compared to the water-soaked cube as a
result of the following:

1) presence of salt;
2) any additional phenomena due to the presence of salt;
3) the total mass of pore solution present in the cube (which

would be different from that of the water-soaked cube) on
any given day.

The daily mass of the soaked cube is used as the only physical
input data to the model and serves as the starting point to this
modeling process. This mass is first divided by five to obtain an
adjusted mass, which represents the change in mass of pore so-
lution (i.e., due to the ingress of salt solution) that influences the
microwave signal, and hence the reflection properties for each
day [35]. This is done to account for the nonuniform contribu-
tion, from each side of the cube, to the additional mass of pore
solution present in the cube [35]. The integral of the distribution
function, characterized by a combination of specific values for

, and for any given day, must then match this ad-
justed mass for each day.

As water evaporates from the layers, it results in 1) an increase
in the ionic concentration of the remaining pore solution and 2)
the precipitation of salt crystals and the formation of bound salt
in each of the layers, which causes a corresponding decrease
in the dissolved salt and, hence, the ionic concentration of the
pore solution. To account for both these effects, it would there-
fore be useful to know when (or at what concentration) salt crys-
tals and other solid products would begin to precipitate out of
the pore solution. For example, a salinity of around 35% can be
achieved for NaCl in pure water. However, in pore solution, the

presence of other ions (e.g., OH , Ca , K , Na , and Mg ,
among others) decreases the solubility of the NaCl. Therefore, it
is likely that the concentration of Na and Cl in solution, prior
to crystallization, may not reach the concentration predicted by
its solubility product. In addition, the presence of these other
ionic species in the pore solution makes it likely that solid prod-
ucts other than NaCl will be formed. Each of these will precip-
itate out then when their own solubility limit in this complex
pore solution has been reached. Consequently, the pore solution
composition can vary considerably, and it is difficult to predict
the maximum concentration of Na and Cl in the pore solu-
tion when the precipitation of chloride-containing solid phases
occurs. In the absence of such experimentally derived data, it
is useful to also extract this information from this semiempir-
ical electromagnetic model which describes the change in the
measured microwave reflection properties of the mortar cube
exposed to salt solution. It was observed that the results of the
model and the measured reflection properties (magnitude and
phase and for both frequencies) matched quite well when the
ionic concentration was fixed to a certain level which in terms
of equivalent salinity (ratio of mass of dissolved salts to mass
of solution) corresponded to a value of around 5%. A detailed
discussion of the choice of this limit, henceforth referred to as
“threshold value,” is provided in Section VII.

For the purpose of modeling, the initial condition for the pore
solution distribution (due to the ingress of salt solution) is con-
sidered to exist within the cube immediately after it is taken out
of the salt solution bath, and once left in the ambient conditions,
this initial condition changes. In order to be able to simulate the
reflection properties accurately, it then becomes imperative to
consider the effect of the formation of solid products as well as
the total ionic concentration (of each layer) while calculating
the dielectric properties of each layer. To account for both these
factors, the nominal “maximum pore solution content” (volu-
metric) in each layer has to be estimated. It is obvious that the
maximum pore solution content in any layer would have existed
when it was initially taken out of the saltwater bath (i.e., day
one). For this purpose, the day one pore solution distribution (the
day when the cube was left in the ambient conditions, and no mi-
crowave reflection measurements were conducted) was extrap-
olated from the day two (first day of microwave measurements)
distribution.

The formation of solid products causes a reduction in the
ionic concentration of the remaining pore solution. Conversely,
if the nominal ionic concentration of the pore solution in any
layer is not allowed to increase beyond a certain threshold value,
the effect of solid product formation is then implicitly built into
the model. In the present model, the ionic concentration of the
pore solution in each layer for every day was first compared
to the threshold value. If the ionic concentration of any of the
layers for any day increases beyond this threshold value, then
the ionic concentration of that particular layer for that partic-
ular day was set to the threshold value.

Finally and subsequent to accounting for all of the above-
mentioned issues, the modeling process was initiated. The fol-
lowing is the step-by-step modeling procedure.

1) The daily mass of the cube is subtracted from its pre-
soaked value to obtain the uptake of salt solution. This
value is then divided by five, as mentioned earlier to ob-
tain the adjusted mass and is denoted by m [35].
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2) Setting 1, the integral of the pore solution dis-
tribution (i.e., total pore solution due to ingress of salt
solution) is calculated over a cube thickness of 100 mm
(i.e., halfway through the cube), namely

TPS PSD gm (2)

The signal penetration into the cube is expected not to
exceed more than halfway in the cube, and the moisture
uptake is also not expected to exceed this point. This
fact has been experimentally verified [34]. It is impor-
tant to mention here that by subtracting the daily mass
of the cube from the presoaked mass, the contribution
of intrinsic pore solution no longer needs to be explic-
itly considered in the model, since this contribution is al-
ready included in the dielectric properties of presoaked
mortar cube. Consequently, PSD represents the pore
solution distribution due to salt solution ingress.

3) is now set to the ratio of and TPS (i.e., TPS).
4) The cube is then discretized into 100 layers, each having

a thickness of 1 mm. It is important to note that this
model provides for any arbitrary layer thickness, and
hence it is able to provide fine pore solution distribution
resolution.

5) With the updated value of , the integral of the total
pore solution is found for every 1 mm layer of the cube,
namely

TPS PSD gm (3)

6) The mass of salt uptake in each layer is obtained from
the extrapolated pore solution distribution at day zero,
and the mass of solution is obtained from step 5). The
ionic concentration of the pore solution present in each
layer was then found from its “equivalent salinity” (i.e.,
ratio of mass of the salt to the mass of the solution).

7) A formulation that was developed for determining the
dielectric properties of brine having varying salinity
based on its conductivity was then utilized to determine
the dielectric properties of the pore solution in each
layer for each day [36]. As the ionic concentration of
the pore solution increases (as a function of days), it
causes a significant increase in the conductivity of the
mortar cube. Thus, any over-estimation of the pore
solution content in any of the layers results in incorrect
incorporation of the dielectric properties of the indi-
vidual layers in the model, and hence the simulated
microwave reflection properties will not match its mea-
sured counterparts. It is for this purpose that the effects
of solid product formation (resulting from salt solution
ingress), which would subsequently cause a decrease
in the overall ionic concentration of the pore solution
within the cube, has been considered in the model. To
illustrate the effect of setting the equivalent salinity of
the pore solution to a maximum of 5%, the dielectric
properties of the pore solution for a particular thickness
(layer 2) of the cube for several days of the cycle were
calculated, as shown in Table I.

TABLE I
COMPARISON OF THE DIELECTRIC PROPERTIES OF A LAYER AS A

FUNCTION OF DAYS WITH AND WITHOUT THE CONSIDERATION OF A

MAXIMUM SALINITY LEVEL

8) If the ionic concentration of the pore solution [from Step
6)] in any of the layers is greater than the threshold value,
corresponding to an equivalent salinity of 5%, then the
ionic concentration of the pore solution in that partic-
ular layer is set to the threshold value. The remaining
mass of salt that would have contributed to a higher
ionic concentration than the threshold value is then cal-
culated. This remaining mass of salt in the layer then ex-
ists as solid products. Furthermore, the dielectric prop-
erties of the newly formed solid products (i.e., chloroa-
luminates or other products, including salt crystals) are
similar since they are expected to be in the family of
low-loss, low-permittivity materials. In that case, it is
believed that treating all solid products as salt crystals
in the model would have negligible effect on the simu-
lated reflection properties. The dielectric properties and
volume fraction of the excess salt is then approximated
as salt crystals and represented by and and is in-
cluded in the dielectric mixing formula to determine the
dielectric properties of each layer. The dielectric proper-
ties of various salts including NaCl (used in this investi-
gation) had also been measured extensively in previous
investigations [30], [31].

9) A dielectric mixing formula was then used to determine
the effective dielectric properties of each layer. Although
there are numerous dielectric mixing formulae available
that could be used to evaluate the effective dielectric
properties of a multiphase mixture, most of these render
similar results when the inclusion volume fractions are
relatively small (i.e., air, pore solution, salt) [36], [37],
[39]. The following dielectric mixing formula was then
used to calculate the effective dielectric properties
of every 1-mm-thick layer of the mortar cube

(4)

where
• complex relative dielectric property of

pore solution. This quantity varies as a
function of ionic concentration of the
pore solution,

• complex relative dielectric property of
mortar,

• complex relative dielectric property of
solid inclusion. This quantity represents
the formation of solid products resulting
from the salt solution ingress,

• , and are the volume fractions of pore solu-
tion, mortar, solid inclusion, and air re-
spectively, in each 1-mm-thick layer (i.e.,
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Fig. 6. Pore solution distribution in the cube for cycle 1.

). The dielectric
properties of mortar has been measured
previously [18], [19], [34]. It is important
to note that all of the quantities in (4), ex-
cept , and vary as function of
days and depth into the cube (i.e., the lo-
cation of the respective layer in the dis-
cretized cube).

10) Once the dielectric properties of each of the 100 layers
were obtained, the multilayered formulation was evoked
to simulate the reflection properties of the cube at the
waveguide aperture [38].

11) The values of , and were subsequently and rig-
orously adjusted based on a comparison between the
measured and the corresponding simulation results for

and phase at 3 and 10 GHz.
12) The above-mentioned procedure was carried out for

each day of each cycle. The final values of and
for each day were then used to determine the pore so-
lution distribution in the cube. It is important to note
that this “distribution” will capture changes in ionic
concentration as well as volume of the pore solution,
resulting from salt solution ingress.

VI. RESULTS

A. Cycle 1

Fig. 6 shows the pore solution distribution, for several days of
cycle 1, obtained from this modeling process. The results show
several important phenomena. The first measurement corre-
sponds to day two (i.e., 24 h after removing the cube from the salt
solution bath). At this time, it is expected that any moisture im-
mediately at the surface has evaporated. The curves representing
the pore solution distributions clearly indicate this phenomenon.
Additionally, they also show that the pore solution distribution
rapidly increases as a function of distance into the cube. A com-
parison of the distribution curves shows that as the days progress
there is a change in 1) the general shape of the distributions and
2) the position at which the peak of pore solution distribution
occurs. It is also observed that as the days progress, the rate at
which the peak of the pore solution content moves toward the
core of the cube decreases, and the change in the shape of the
distributions becomes less pronounced. This may be attributed to
a state of equilibrium being reached between the evaporation of
moisture from each layer and the movement of pore solution (due
to variation in concentration) between the layers.

Fig. 7. Comparison of the measured and simulated reflection coefficient of the
cube at 3 GHz and for cycle 1 (a) magnitude and (b) phase.

Once the empirical factors and were determined,
the effective dielectric properties of each of the layers were cal-
culated and then fed into the multilayered formulation to sim-
ulate the microwave reflection properties, as described in the
modeling section [38]. Figs. 7 and 8 show the simulated and
phase of reflection coefficient at S-band (3 GHz) and X-band
(10 GHz), respectively. Clearly, good agreement is obtained be-
tween the simulated and measured results for both frequencies.
Fig. 7(b) shows the comparison between the simulated and mea-
sured phase of reflection coefficient at 3 GHz. One important
behavior of the phase of reflection coefficient is that it exhibits
a distinct and relatively wide dip during the first few drying
days. The simulation results, based on the obtained pore solu-
tion distributions as shown in Fig. 6, also replicate this distinct
shape. During the simulation of the reflection properties of the
water-soaked cube, it became evident that to properly simulate
this distinct dip, the peak of the water distribution had to be care-
fully moved into the cube as a function of days [35]. This be-
havior was also incorporated in this model, and as expected, the
distinct dip in the phase was correctly simulated. A closer in-
spection of the pore solution distributions shown in Fig. 6 indi-
cates this phenomenon.

B. Cycle 2

After obtaining satisfactory results for cycle 1, the model was
applied to simulate the reflection properties for cycles 2 and
3. The step-by step modeling process adopted for cycle 1 was
again followed for these two cycles with a notable exception.
When the cube is soaked again, it absorbs the salt solution with
a salinity of 2.8% (salinity of the soaking solution). However,
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Fig. 8. Comparison of the measured and simulated reflection coefficient of the
cube at 10 GHz and for cycle 1 (a) magnitude and (b) phase.

when this salt solution permeates into the cube, its ionic con-
centration immediately increases due to the influence of soluble
solid products and the ions present in the pore solution resulting
from the previous cycle. Subsequent to accounting for this be-
havior, the total mass of salt (i.e., the residual salt from cycle 1
and the newly ingressed salt from cycle 2) was then calculated
and used to find the nominal ionic concentration of the pore so-
lution in each layer as mentioned in the modeling process.

Subsequent to following the same modeling procedure as
in cycle 1, the reflection properties at both frequency bands,
especially the distinct dip in the phase of reflection coefficient
at 3 GHz could not be accurately simulated. To understand the
reason for this, a comparison between the measured reflection
properties for each cycle at X-band was carried out. Fig. 9 shows
the measured reflection properties for all three cycles at 10 GHz.
As is evident from Fig. 9(a), for the first day of each cycle (i.e.,
day two in Fig. 9), gradually decreases while the phase of
reflection coefficient [Fig. 9(b)] progressively increases as a
function of cycles. Based on the effective depth of penetration of
the microwave signal at this frequency, this behavior could be as a
result of a decrease in the pore solution content in the near surface
layers as a function of cycles. Subsequently, it became necessary
to look into the material properties of the cube in more detail.

When the cube is soaked, the salt solution permeates into it
through several processes such as diffusion, capillary draw, etc.
[40]. These processes are primarily governed by the initial con-
ditions prevailing within the cube at the time of soaking. In the
case of cycle 1, the initial condition is a relatively dry mortar
cube, whereas in the case of cycle 2, the initial condition is a
mortar cube that has some residual pore solution as well as solid

Fig. 9. Measured reflection coefficient of the cube at 10 GHz for all cycles (a)
magnitude and (b) phase.

products left behind from cycle 1. Another factor that could
contribute to variations in the conditions from cycle 1 to cycle
2 is the hygroscopic property of salt which causes it to retain
water when other mineral phases in mortar may be experiencing
drying. This property of salt may become more pronounced in
cycle 2 due to the increasing amount of salt that is now present
in the cubes (especially toward the surface) as a result of two
factors:1) the residual salt left behind in the cube from cycle 1
and 2) the additional salt solution that has permeated into the
cube during the second cycle. All of the above mentioned fac-
tors, therefore, contribute to the permeation and, hence, the dis-
tribution and variation of pore solution during the second cycle
to be different from that of cycle 1.

With this in mind, to be able to match the simulation results to
the measured reflection properties for cycle 2, it thus became nec-
essary to move the peak of the pore solution distribution (for day
two) further toward the core in comparison to that of day two of
cycle 1, thereby reducing the pore solution content in the layers
near the surface. Although this resulted in a better match between
the simulated and measured results for X-band, it did not improve
the S-band results significantly. To improve the S-band results,
however,requiredthatthepeaksmovedslightlytowardthesurface
for the next few days after day two. Hence, to satisfy the require-
ments at both frequencies, the peak of the distribution curve for
day two of cycle 2 was moved further toward the core with respect
to that of day two of cycle 1. However, in contrast to the move-
ment of the peak toward the core for subsequent days in cycle 1,
thepeakmovedtoward thesurfacefor thenext fewdaysofcycle2.
Fig. 10 shows the resulting pore solution distribution for cycle 2.
The resulting simulated reflection properties for cycle 2 at 3 GHz
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Fig. 10. Pore solution distribution in the cube for cycle 2.

areshowninFig.11.Asexpected,theresultsnowshowgoodagree-
ment between the simulated and measured reflection properties.
The results at 10 GHz for cycle 2 and at 3 and 10 GHz for cycle
3 also showed good agreement between the simulated and mea-
sured reflection properties [41]. These results have been omitted
in the interest of brevity.

VII. DISCUSSION

The simulation of the reflection properties of the salt solu-
tion-soaked cube was based on the choice of several parame-
ters, which requires further discussion. When salt solution in-
gresses into the mortar cube, additional byproducts (such as
Friedel’s salt) may form by chemical interaction with existing
hydration products and residual unhydrated cement. As stated
previously, these products may be considered as additional in-
clusion phases. However, these additional inclusion phases can
only be determined from a thorough investigation of the various
chemical reactions that occur within the cube. Furthermore, it
becomes necessary to determine how these additional products
could be represented from an electromagnetic point of view (i.e.,
their effective dielectric properties). It would also be prudent
to evaluate the sensitivity of the model to these parameters to
justify their incorporation into and influence on the overall re-
flection properties. Although these additional inclusion phases
have not been explicitly considered here, the model is versatile
enough to account for them once their volume fraction is accu-
rately determined.

As water evaporates from the cube, the ionic concentration
of the remaining pore solution increases. The ionic concentra-
tion of the pore solution for every layer was calculated based on
modeling the amount of dissolved salt and pore solution present
in these layers for each day of each cycle [i.e., . in (4)].
The effect of solid product formation (including products re-
sulting in chloride binding) is considered by setting a threshold
or maximum value that the ionic concentration of the pore solu-
tion in any of the layers can reach. The difference between the
total salt ingress and the amount of Na and Cl in the pore
solution is then the amount of sodium and chloride that have
formed solid products. The ionic concentration level is depen-
dent on several factors such as the binding properties of mortar,
moisture content, pore size, and cement composition, among
others. It is important to note that these factors can also change
as a function of time. The model was initially developed keeping
this threshold value as the unknown parameter. Several itera-
tions of the model were then carried out using different threshold

Fig. 11. Comparison of the measured and simulated reflection coefficient of
the cube at 3 GHz and for cycle 2 (a) magnitude and (b) phase.

values. It is important to point out that the important issue re-
garding this investigation is the ability to simulate the reflection
properties accurately by iteratively varying the temporal state
of the cubes in terms of its dielectric properties. Considerable
similarity (in both trend and value) between the measured and
simulated reflection properties, if achieved, would then indicate
that the temporal state of the cubes as represented in the model
closely match those of the actual conditions.

Fig. 12(a), and (b) shows the simulation results of the mi-
crowave reflection properties at 3 GHz for different cases of
threshold value in terms of maximum equivalent salinity level,
for cycle 1. The results indicate that, while there is consider-
able similarity between the measured and all three simulated
cases for the magnitude of reflection properties, only the 5%
case shows similarity in both trend and value for the phase of
reflection properties throughout the cycle. Consequently, the
threshold of around 5%–6% was used for all the three cycles
in the model. An interesting aspect however, is that, for the first
few days of the cycle, all of the three cases in Fig. 12 results
in the phase of reflection properties to be similar to that of the
measured case. This is believed to be due to significant amounts
of water remaining in the layers during these days, so that the
ionic concentration does not reach the threshold value. With the
passage of days, and after significant amount of water has evap-
orated from the layers, the ionic concentration in these layers
tends to increase beyond the threshold value. In such a sce-
nario, the threshold value tends to play a crucial role and sig-
nificantly influences the calculated dielectric properties of each
layer. Consequently, the dissimilarity in the phase of reflection
properties between the 5% and 10%, 14% begins to increase for
the final days of the cycle, as seen in Fig. 12(a), and (b). This
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Fig. 12. Comparison of the measured and simulated reflection coefficient of
the cube at 3 GHz and for cycle 1 (a) magnitude and (b) phase for three different
threshold values.

threshold value, however, needs to be further investigated and
could be represented in the model as a function rather than a
constant with respect to cycles. Additionally, the relationship
between the free, bound, and total amount of chloride can be
incorporated in the model to represent the bound chlorides ex-
plicitly in the model. If this can be achieved, then the model
would be able to assess the free salt profile as well as a profile
of the bound chlorides as a function of days and cycles.

Finally, there is an issue regarding whether or not the pore
solution distributions that were obtained from this model are
unique. The model presented here was capable of simulating
the magnitude and phase of reflection coefficient reasonably
well for three successive cycles and at two frequencies. The dis-
tribution curves were obtained from a rigorous iterative process
by matching the simulated and measured reflection properties.
It is important to point out that the pore solution distribution
curves shown here resulted in good agreement between the
simulated and measured reflection properties (magnitude and
phase) at both frequencies. An earlier investigation conducted
on a distilled water-soaked cube revealed that the temporal
movement of the pore solution content peak and its widening
(representing redistribution of pore solution) was crucial for the
accurate simulation of the reflection properties. The resulting
pore solution distribution curves also satisfy physical require-
ments such as diffusion and mass transport (i.e., evaporation,
capillary draw, etc.) in cement-based materials. Also, there is
no multiple scattering involved in the measurement process.
Therefore, it is expected that the pore solution distribution
obtained from this model very closely describe the actual pore
solution distribution and its temporal variation in the cube.

Finally, it is of utmost importance to note that the resulting
pore solution distribution curves were capable of simulating
the dip in the early days of the phase behavior at 3 GHz for all
three cycles. Moreover, the argument that these curves might
be unique is significantly strengthened by the fact that the
same distribution functions also properly predicted the phase
behavior at 10 GHz, which does not possess such a dip.

VIII. CONCLUSION

The results of a semiempirical model, simulating the mi-
crowave reflection properties of mortar exposed to cyclical
soaking in salt solution and drying, at two distinct frequencies
were presented. The model was initially developed to simulate
the reflection properties of mortar exposed to water. The ad-
ditional influences caused by salt solution ingress, including
changes in pore solution concentration, volume, and distri-
bution, as well as the formation of solid products due to salt
solution ingress, were incorporated into the model.

The results showed good agreement between the measured
and simulated reflection properties of the cube at both 3 GHz
and 10 GHz. An important outcome of the model is the tem-
poral pore solution distribution inside the mortar cube for the
three successive soaking and drying cycles. The distribution
functions that were employed followed a well-known behavior
(Rayleigh-like). However, its specific parameters that determine
the shape of the distribution for any day were determined empir-
ically. The resulting pore solution distribution functions can be
used to evaluate pore solution content at any depth in the mortar
for any day of any cycle. Moreover, these distribution functions
account for evaporation, increasing ionic concentration, and for-
mation of solid products as well as movement of pore solution
both toward the core and toward the surface of the cube. It is
this fact that enabled the model to correctly simulate the dip in
the phase of reflection coefficient at 3 GHz during the first few
days of all three cycles.

The pore solution distributions for cycle 1 show that for the
first few days of the cycle, the peak of the pore solution con-
tent decreases rapidly, indicating that most of the water that
evaporates is from the near-surface layers of the cube. How-
ever, somewhat of a different behavior is observed for cycles
2 and 3. For these cycles, it is observed that during the first few
days of the cycle, the peak does not drop as quickly. On the con-
trary, there is actually a slight increase in the peak pore solution
content from day 2 to day 3 for cycle 2. However, there is a
noticeable decrease in the pore solution content in the deeper
layers (toward the core) for both the cycles, likely indicating
that the pore solution is drawn from the core toward the sur-
face after which it evaporates. Although this might seem like an
anomaly, only a thorough investigation into this aspect would
confirm which of the two processes i.e., whether the water that
evaporates is mainly from the layers near the surface (as in the
case of cycle 1) or if the water is drawn from the core to the
surface after which it evaporates (as in the case of cycles 2 and
3) is the actual phenomena that occurs within the mortar cube.
The results of such an investigation would then provide us with
an overall insight into the mechanism of moisture movement/re-
distribution within the cubes and whether it is possible to have
contrasting phenomena for different cycles. It is, however, be-
lieved that these contrasting phenomena, if true, could be as a
result of the hygroscopic properties of the solid products (i.e.,
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salt that has precipitated out of the pore solution) which become
more pronounced as a function of cycles. This particular issue
is currently the focus of an ongoing investigation. The differ-
ence between moisture distribution for the cases of water and
saltwater, for cycle 2, also indicated the influence of salt as de-
scribed above [42].

Finally, this model is very versatile so that it can take into
account other phenomenon that may be occurring in the cube as
well as easily accommodating any changes in the assumptions
made here in addition to incorporating geometrical factors, etc.
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