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Abstract

Scalability refers to the extent of configuration modifi-
cations over which a system continues to be economically
deployable. Until now, scalability of resource management
systems (RMSs) has been examined implicitly by studying
different performance measures of the RMS designs for dif-
ferent parameters. However, a framework is yet to be de-
veloped for quantitatively evaluating scalability to unam-
biguously examine the trade-offs among the different RMS
designs. In this paper, we present a methodology to study
scalability of RMSs based on overhead cost estimation.
First, we present a performance model for a managed dis-
tributed system (e.g., Grid computing system) that separates
the manager and managee. Second, based on the perfor-
mance model we present a metric used to quantify the scal-
ability of a RMS. Third, simulations are used to apply the
proposed scalability metric to selected RMSs from the liter-
ature. The results show that the proposed metric is useful in
quantifying the scalabilities of the RMSs.

1. Introduction

The essence of modern distributed computing systems
(like Grids) lie in the maximal utilization of virtual re-
sources within a large federated system [4, 8]. A key com-
ponent required in this respect is the resource management
system (RMS), that orchestrates the resource allocation ac-
tivities in the federated system so that appropriate resources
are assigned to a given application task [11]. Consequently,
efficient performance of the distributed system largely de-
pends on the scalability of its RMS.

In distributed computing, until recently [14], scalability
was only investigated qualitatively. In this approach, a dis-
tributed system is considered scalable if no performance
bottlenecks exist in the system (i.e., the operational over-
head is evenly distributed across the system). In contrast, in

the framework proposed by [14], scalability of a distributed
system is quantitatively studied using a formal process that
provides a scalability metric. Their scalability metric tracks
the variation of throughput per unit overhead for increasing
system sizes. Because the framework presented in [14] is
targeted towards measuring the overall scalability of a com-
plete distributed system, it is less suitable for measuring the
scalability of a portion of a distributed system. For instance,
the overall “productivity” can decrease if a particular com-
ponent is unscalable, even when all the remaining ones are
scalable. In such situations, it becomes harder to determine
the extent of performance degradation due to a given com-
ponent, e.g., the RMS. Instead, a component by component
analysis of a distributed system will be better, as it will al-
low the “scalability bottleneck” to be isolated.

As a first cut at this problem, we consider two logical
components for distributed systems: a manager (RMS) and
a managee (set of resources), and examine the scalability
of the manager with respect to the managee. We consider a
given RMS configuration as scalable, if it can be tuned with
minimal cost to handle larger managee configurations while
maintaining a certain level of overall efficiency. The RMS
tuning is performed by adjusting a predefined set of “scal-
ing enablers” that is specific to the particular RMS.

A scalability measurement framework such as ours can
be used in several different ways such as: (a) the ability to
design RMSs that can handle “scaled up” configurations of
the deployment time managee without any decrease in over-
all efficiency and (b) the ability to analyze the re-usability
of an existing RMS design as the overall system is reorga-
nized.

Section 2 presents the scalability model and a metric for
evaluating the scalability of a managed distributed system.
Section 3 applies the scalability metric to example systems
using simulations. The results indicate that the proposed
metric is able to estimate the scalability of the target sys-
tems. In Section 4, we examine the related works.
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2. Scalability Model and Metric

2.1. The Distributed System Model

Here, we discuss the distributed system model used in
this paper. In this model, distributed systems are catego-
rized as managed and unmanaged systems. In managed dis-
tributed systems, the operations are explicitly coordinated
to maximize some measure of an overall performance mea-
sure of the system. A managed system can dedicate part of
its components as coordinators that orchestrate the activities
or distribute the coordination among all its components. Ex-
amples of practical systems that fall into this class include
Grid computing systems [4, 8], application hosting centers
[10], and cluster-based servers [21, 19]. In unmanaged sys-
tems, the operations of a system are not explicitly coordi-
nated to maximize a performance measure of the system. In-
stead, unmanaged systems perform local operations which
if properly designed, can maximize some measure of deliv-
ered performance. An example of an unmanaged distributed
system is the peer-to-peer (P2P) system [13]. In P2P sys-
tems, an emergent behavior can result from the searches that
are performed with localized information.

With the manager/managee division, the manager needs
to maintain status information about the managee to coor-
dinate the activities within the managee. Maintaining state
about the managee incurs cost due to a variety of factors
such as dissemination of status updates and processing of
status updates. In addition to maintaining state, the man-
ager also needs to perform computations to make optimized
scheduling decisions.

It should be noted that useful work (work delivered to
the clients) is performed by the managee. Therefore, the
work consumed by the manager is essentially overhead. Ide-
ally, we want to incur zero overhead for maximum possible
useful work out of a particular configuration of the system.
In real systems, the output of the managee is dependent on
the manager because it orchestrates the activities within the
managee.

2.2. Scalability Model

A key component of a scaling model of a distributed sys-
tem is the scaling strategy that determines how the system
can be scaled up or down from a base configuration [14].
The scaling strategy achieves this by defining the scaling
variables x(k) for each scale factor k that dictate the growth
and shrinkage of the system. As an example consider a com-
pute cluster that scales up from k = 1 to k = 2. Let the
scaling strategy x(k) be a vector of two variables, where
x1(k) is the number of servers and x2(k) is interconnec-
tion network bandwidth. At scale factor k = 1, x1(k) = 10

and x2(k) = 10Mbps and at k = 2, x2(k) = 100 and
x2(k) = 100Mbps.

Once the configuration of the distributed system is
changed by the scaling variables, the new configura-
tion should be fine tuned by adjusting a set of scaling en-
ablers y(k) to operate in the most optimal manner. For a
given system, the set of scaling enablers y(k) may be de-
pendent on the choice of scaling variables x(k). In the ex-
ample compute cluster, y(k) may be parameters such as
routing algorithms and TCP window sizes. Different con-
figurations of the distributed system can be obtained by
changing the scale factor values. In the space defined by the
scaling variables, we can represent these changes as a scal-
ing path that defines the evolution of the distributed sys-
tem.

The above scaling process is valid for unmanaged dis-
tributed systems. For managed distributed systems,
the above process is modified so that only the man-
agee (or the manager) is explicitly scaled by the scal-
ing variables. The manager is then tuned by adjusting
its set of scaling enablers so that it can adequately han-
dle the scaled up system components. Tuning the RMS may
increase the overhead caused by the RMS although it im-
proves its capability. An RMS is considered scalable if the
rate of increase of the overhead function with the scale fac-
tor is low. Based on the above discussion, we present the
following definition for the scalability of an RMS.

Definition: Consider a managed distributed system, where
an RMS is managing a resource pool (RP). Assume
that the function G(k) gives the minimum cost of
maintaining RMS to manage the resource pool at scale
k. Then, the scalability of the RMS at scale k is mea-
sured by the slope of G(k).

2.3. An Isoefficiency Scalability Metric

Here, the definition of scalability is used to derive a scal-
ability metric. We refer to this scalability metric as the iso-
effiency scalability metric because it keeps the overall effi-
ciency constant at a predefined value as in parallel systems
[1].

For a given managed distributed system at scale factor k,
let the useful work done by the system be F (k), the over-
head caused by the RMS be G(k), the overhead caused by
the RP be H(k). The overall efficiency of the system is de-
fined as useful work divided by total work. Hence, the effi-
ciency of the managed system at scale k is given by:

E(k) =
F (k)

F (k) + G(k) + H(k)

Various factors such as processing and communica-
tion overheads associated with state estimation and pro-
cessing overhead associated with decision making con-
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tribute towards the RMS overhead term G(k). For the
most part, the RP overhead term H(k) is determined by
the job control overheads and data management over-
heads.

Suppose k0 denotes the scale of the base configuration,
W denotes the useful work done by the system at scale
k0 (i.e., W = F (k0)), ORMS denotes the RMS over-
head at scale k0 (i.e., ORMS = G(k0)) and, ORP de-
notes the RP overhead at base scale (i.e., ORP = H(k0)).
Let f(k) denote the the value of F (k) normalized with re-
spect to F (k0), or W. Let g(k) and h(k) be similarly nor-
malized values of G(k) and H(k) respectively, such that:
f(k) = F (k)

F (k0) , g(k) = G(k)
G(k0)

, and h(k) = H(k)
H(k0) . Then, for

the base system, the efficiency is given by:

E(k0) =
F (k0)

F (k0) + G(k0) + H(k0)

=
W

W + ORMS + ORP

and for the scaled system (at scale factor k), using the above
expressions, the efficiency E(k) is given by:

E(k) =
f(k)W

f(k)W + g(k)ORMS + h(k)ORP

From the isoefficiency requirement, the efficiency for the
scaled configuration should be maintained at a desired value
such that 0 < E(k0) < 1 and E(k) = E(k0). Letting
E(k0) = 1

α we get:

1
α

=
f(k)W

f(k)W + g(k)ORMS + h(k)ORP

αf(k)W = f(k)W + g(k)ORMS + h(k)ORP

(α − 1)f(k)W = g(k)ORMS + h(k)ORP

f(k) = c · g(k) + c′ · h(k) (1)

where, c and c′ are constants. One of the underlying as-
sumptions in scaling up a base configuration of the man-
aged distributed system is that the RP is scalable (i.e., the
RP does not become a bottleneck). But the RP will always
incur some non-zero cost. Then from Equation (1) we can
say that:

f(k) > c · g(k) (2)

Equation (2) implies that the useful work performed by the
system should grow at least at the same rate as RMS over-
head to keep efficiency constant. Section 3 provide exam-
ples of applying the scalability metric and associated condi-
tions to example RMSs.

3. Scalability Analysis of Example Systems

3.1. Simulation Setup

The simulator is written using Parsec [15]. The network
topologies used by the simulator are extractions from the

Mercator topology generator [16]. To these topologies, we
map elements such as routers, schedulers, and resources to
obtain Grid topologies. We assume homogeneous resources
and schedulers with finite processing and storage capacity.
Similarly, network links have finite bandwidth and non-zero
latencies. The simulator uses an OSPF [9] like algorithm for
routing messages between resources. The set of resources
are separated into non-overlapping clusters and each cluster
is coordinated by a scheduler. The scheduler receives sta-
tus updates from resources either periodically or on a need
basis.

We use synthetic workloads based on parallel moldable
workloads of supercomputing environments [22, 23]. A job
in these workloads is characterized by arrival instant, parti-
tion size (number of processors used by the job), execution
time, requested time as an upper bound to a job’s execu-
tion time, and job cancellation possibility. In this paper, we
assume a partition size of 1 and zero job cancellation possi-
bility.

Arriving jobs are classified as: (a) LOCAL: jobs that
need to execute locally or closer to the point of submission
and (b) REMOTE: jobs that are suitable for remote execu-
tion. Because we do not model data transfers among jobs,
the only constraint dictating local execution is job size, i.e.,
jobs with execution time lower than TCPU are LOCAL.
A job execution will be considered successful if it com-
pletes within its expected completion time specified by a
user “benefit” function Ub. Table 1 shows the values used
by TCPU and Ub.

3.2. Procedure for Scalability Analysis

Figure 1 shows a flowchart for the scalability measure-
ment process. Two important parts of the process are deter-
mining the best scaling path for the RP or the RMS and
determining the minimal modification costs of the RMS.
Because this paper does not examine data transfers be-
tween jobs, determining a feasible scaling path for the RP
is straightforward and is not considered here. Selecting the
set of scaling enablers such that efficiency remains constant
for minimum cost is an optimization problem for which we
use a simulated annealing [2, 12, 5] procedure.

The following are the major steps in measuring the scal-
ability of an RMS:

Step 1: Choose a feasible value for the efficiency E0 that
should be kept constant as the system scales.

Step 2: Scale the RMS or the RP by selecting the best scal-
ing path. When scaling the RP, a simulated annealing
type of search can be used for this search. If a scal-
able RP cannot be found, then the base system is con-
sidered unscalable.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



no

yes

no

noyes

yes

no

no

start

is E(k)  = E0 and
G(k)  minimal ?

compute the efficiency E0 of the
system at base scale

for scaling factor k, choose the set
of scaling enablers y(k)   for RMS

adjust the values of scaling enablers
y(k) and re-compute E(k)

terminate
search?

fail

stop

select a scaling path and
a scale factor k for the RP, adjust
values of scaling enablers for RP

record value of G(k)

determine the RMS overhead
costG(k)

compute scalability based
on recorded G(k)

is RP
scalable ?

is it
possible

to provide anymore
scaling
paths?

is
RMS being

scaled ?

select a scaling path and
a scale factor k for the RMS

yes

yes

Figure 1. Flowchart for the scalability mea-
surement process.

Step 3: Tune the RMS using the scaling enablers to keep
the overall efficiency at the selected value. A simulated
annealing search is used to determine the set of scaling
enablers such that overhead G(k) is minimum at scale
factor k.

Step 4: Compute the the scalability of the RMS based on
G(k).

3.3. Example Systems

We use seven RMS models from [6, 17, 24] to illustrate
the applicability of our scalability measurement procedure.
We implement all RMS models on our Grid model, which
does not completely match the “native” models used in the
above papers. This explains the differences between the re-
sults obtained in the original papers and the ones reported
here. Besides CENTRAL other systems are based on the
above papers.

CENTRAL: Here a centralized scheduler makes deci-
sions for all the resources in the system. The resources
update the scheduler every τ seconds with their load-
ing conditions. If loading conditions at the resource did
not change significantly from the previous update, an
update might be suppressed. This update optimization
is used by all periodic updating schemes.

LOWEST: The RMS consists of multiple schedulers with
each receiving periodic updates from non-overlapping
clusters of resources [17]. On a LOCAL job arrival, a
scheduler will schedule it on the least loaded resource
it its cluster. On a REMOTE job arrival, a scheduler
will poll a set of randomly selected Lp remote sched-
ulers. The job is transferred for execution to a remote
scheduler with the least loaded resources.

RESERVE: PULL type RMS. Here the schedulers are ar-
ranged as in LOWEST [17]. When average cluster load
for a local cluster for a scheduler Sa falls below thresh-
old Tl, then Sa advertises to register reservations at Lp

remote schedulers. On a REMOTE job arrival, a sched-
uler will examine the average load of its local cluster. If
it is above Tl, it probes the remote scheduler that made
the most recent reservation. The job is sent to the re-
mote scheduler if the loading there is below a given
threshold. Otherwise, the reservations are cancelled.

AUCTION: When a new job arrives, a scheduler follows
the same process as in LOWEST for initial schedul-
ing [24]. When a scheduler Sa finds a resource in its
cluster is idle or has load below threshold Tl, it sends
out auction invitations to Lp neighboring schedulers.
A scheduler Sb receiving the invitation finds a resource
in its local cluster with load above Tl , it replies back
with a bid to Sa. The auctioning scheduler Sa accumu-
lates bids over a small interval and selects the bid from
the bidder with the highest load.

S-I: PUSH type RMS. This sender-initiated strategy is
somewhat similar to LOWEST [6]. Here, a set of
autonomous local scheduler communicate with each
other through a Grid middleware. We restrict each
cluster to have single scheduler and model the Grid
middleware using a simple queue with infinite capac-
ity and finite but small service time. The scheduling
strategies R-I and Sy-I also share this model.

On a REMOTE job arrival, a scheduler polls Lp re-
mote schedulers. The remote schedulers respond with
approximate waiting time (AWT), expected run time
(ERT) for the particular job and resource utilization
status (RUS) for the resources in their cluster. Based on
the collected information, the polling scheduler calcu-
lates the potential turnaround cost (TC) at local cluster
and each remote cluster. To compute the optimal TC,
first the minimum approximate turnaround time ATT
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is calculated as sum of the AWT and ERT. If the min-
imum ATT is within a small tolerance ψ for multiple
schedulers, the scheduler with smallest RUS is chosen
to accept the job.

R-I: Periodically, a scheduler Sx checks RUS for the re-
sources in its cluster [6]. If the RUS for a resource in its
cluster is below threshold δ, Sx decides to execute re-
mote jobs and informs at most Lp remote schedulers.
A remote scheduler Sy , receiving Sx’s intention will
send Sx the resource demands for the first job in its
wait queue. When Sx replies back with its ATT and
RUS, Sy uses this information to compute TC at lo-
cal and remote sites and schedule the job accordingly.

Sy-I: This combines S-I and R-I [6]. As in R-I, each sched-
uler will advertise its own underutilized resources pe-
riodically. Based on this information a scheduler with
a new job will schedule the job locally or send to to the
advertising scheduler. However, if a new job arrives at
a scheduler which has received no advertisements, it
will use the S-I approach to schedule the job.

3.4. Simulation Results and Discussion

Here we present the results of the scalability experiments
on the example systems. The efficiency E(k0) was kept
in [0.38, 0.42]. To determine the minimum RMS overhead
G(k) for each configuration, we used a simulated annealing
procedure to tune the scalability enablers of the RMS. Ta-
bles 2 - 5 show the combinations of scaling variables and
scaling enablers used for the different experimental cases.
For all experiments the workload was scaled in the same
proportion as the scaling variable. The G(k) values in this
paper are defined as the overall time spent by the sched-
ulers for scheduling, receiving, and processing updates. Ta-
ble 1 shows the values for the common variables used for
all the cases.

The slope in Figure 2 shows the rate of increase in RMS
overhead as a system is scaled up as per the details in Ta-
ble 2. A decreasing slope means that the RMS needs to do
less work to sustain the system efficiently at the new scale
k, compared to the last scale k − 1. At base scale, k = 1,
the distributed models all incur substantially large overhead
than the CENTRAL model. But as the systems are scaled
up, the slope values for distributed models indicates that
their RMS overhead is decreasing and therefore are scal-
ing well. In contrast, the increasing slope for the CENTRAL
model indicates rapid increase in RMS overhead. So clearly,
the distributed models are more scalable for 1 < k ≤ 6,
than the centralized model when scaling by network size.
This agrees with intuition. Furthermore, the LOWEST is the
most scalable distributed RMS while Sy-I is least scalable.

In Figure 3, the scaling factor is the rate of job comple-
tion by the RP, as per Table 3. The network size is fixed.
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Figure 3. Variation in G(k) on scaling the RP
by service rate. Network size is 1000 nodes.

In this case, the CENTRAL model proves to be more scal-
able than majority of the distributed models at scaling fac-
tor k ∈ [1, 3]. However, at higher scales CENTRAL’s over-
head keeps on increasing and at k = 6 it is the least scalable
RMS. Once again, LOWEST proves to be the most scalable
among all models.

In Figure 4 and 5, only the RMS is scaled. The RP is un-
altered. This is done to find a suitable RMS configuration
to yield the best results for a given RP. Figure 4 is from ex-
periment detailed in Table 4. It shows that as the number of
estimators are scaled up, slope for models like AUCTION
and Sy-I are no longer scalable after k > 3. These mod-
els use both PUSH and PULL technique for status estima-
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Figure 4. Variation of G(k) on scaling the
RMS by number of estimators. Estimators are
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dates from RP resources and distribute to the
scheduling decision makers. Network size is
1000 nodes.

tion and scheduling. The result shows that these RMSs are
scalable only within a small range of scale factors. The re-
sults are further corroborated by their throughput and job
response times as in Figure 6 and 7 respectively. Figure 6
shows that at higher scales throughput (number of jobs com-
pleted per unit time) for AUCTION starts falling after k = 5
and throughput Sy-I shows no improvement at k > 4. Simi-
lar results can be seen for job response times for these RMS
models in 7.

In Figure 5, the scale factor is the number of neighbors
each scheduler probes for scheduling REMOTE jobs, as per
Tables 5. In this case, the PULL RMS models (LOWEST
and S-I) shows slight improvement in scalability at k = 2.
But at higher scales, k > 2, they incur high overhead and
are no longer scalable. The PUSH RMS models (RESERVE
and R-I), shows no consistent performances. However, RE-
SERVE is clearly unscalable at k > 3. The RMSs using
both PUSH and PULL techniques are scalable after k > 2.

4. Related Work

We classify the existing scalability measurement ap-
proaches into two classes: qualitative and quantitative.
The qualitative approach fosters scalability by institut-
ing a “rule of thumbs” for the design process, without
presenting a formal methodology for scalability evalua-
tion. Conversely, quantitative approaches provide metrics
and formal methodologies for measuring the scalabil-
ity of a target system. These approaches can be further
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Figure 5. Variation in G(k) on scaling the
RMS by Lp (the number of neighbors be-
ing probed or polled). Network size is 1000
nodes.

divided as indirect and direct. In indirect approaches, scal-
ability is examined by measurements based on traditional
performance metrics such as throughput and response time.
As these are widely studied in various contexts of dis-
tributed systems, we do not discuss them in this paper.
In direct approaches, specially devised scalability met-
rics are used in the measurements.

One example of the qualitative approach is [3]. Here, the
topology aggregation strategy is used to make quality of ser-
vice (QoS) based routing more scalable. The topology ag-
gregation is a popular strategy to reduce the overhead of
status dissemination in routing problems. It improves the
scalability by reducing the overhead while maintaining high
performance levels.

Quantitative approaches are widely studied in the area of
parallel computing systems [1, 18, 20, 7]. In [18], three dif-
ferent models for measuring speedup metrics are presented
for homogeneous distributed memory multiprocessor sys-
tems. The models presented include: fixed-size speedup,
fixed-time speedup and memory-bounded speedup. This
work highlights the differences among the different scala-
bility metrics. An isoefficiency function for a parallel sys-
tem is defined in [1]. The isoefficiency function is based on
growth in workload that is needed to keep the overall sys-
tem efficiency constant as the number of processors grow.
A survey of a number of scalability metrics is presented in
[20]. Here the authors summarize the different situations for
which different scalability measuring strategies are suitable.

Our work belongs to the quantitative-direct category.
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Though our approach draws heavily on the substantial work
already done in parallel computing, among existing re-
search that is applicable to generalized distributed systems,
only [14] falls into this category. As mentioned before, our
work differs from [14] because, in general, our approach al-
lows measuring the scalability of the RMS in a distributed
system. The scaling metric used by [14] is a function of the
throughput obtained from the system, whereas our proposed
metric is a function of the overhead obtained from the sys-
tem while keeping the system efficiency constant. The scal-
ing strategy used in our model is similar to that used in [14].

However, our framework is much more flexible and capable
of incorporating a much wider range of scaling variables
and also investigate the relevance of such variables in dif-
ferent situations (e.g., as in Case 3 and 4).

5. Conclusions and Future Work

This paper proposes a scalability measurement frame-
work for RMSs. As part of this work, we presented a def-
inition of scalability in the context of RMSs for managed
distributed systems. From the definition we derived a met-
ric for measuring the scalability of a given RMS. In addi-
tion, we derived certain conditions and a scalability mea-
surement process for RMSs. We applied the proposed scal-
ability metric and scalability measurement process to seven
example RMSs. This helped to illustrate the operation of
our proposed framework as well as its utility.

From the simulation results, we can observe that the pro-
posed framework helps the scalability analysis in two dif-
ferent ways: (a) it determines whether a candidate scaling
variable is indeed a feasible scaling variable, (b) what is the
relative scalability of the different schemes along a given
scaling strategy and (c) identify the scaling path (combi-
nation of scaling variables and scaling enablers) over which
the system functions profitably. Once we select a definite set
of scaling variables, we can perform the analysis to identify
the relative scalability of different RMS schemes. Identify-
ing the feasible scaling dimensions can be useful in a prac-
tical setting because we can confine the “tuning knobs” in
a practical environment to these scaling variables to obtain
the best performance from the RMS.

There are several topics that need further investigation
including: (a) developing strategies to apply this frame-
work to complex RMS architectures, (b) evaluating scenar-
ios where jobs have data dependencies and precedence con-
straints among them and use the framework to measure the
scalability based on the RP overhead H(k), in this paper we
have assumed H(k) to be negligible.
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Variables Values Description
TCPU 700 time units Jobs with execution time ≤ TCPU are LOCAL jobs.

(constant) Jobs with execution time > TCPU are REMOTE jobs.
Tl 0.5 (constant) Measurement for threshold load at a scheduler.
Ub(jobid) variable User benefit function. Measured as k × job run time, where

k = [2, 5]

Table 1. List of common variables and corresponding values used for all experiments.

Case 1: Scaling the RP by network size
Scaling variables - Network size in terms of number of nodes = sizeof[RMS] + sizeof[RP ]

- Workload (number of jobs arriving per unit time)
Scaling enablers - Status update interval

- Neighborhood set size
- Network link delay

Table 2. Scaling by number of nodes. RMS increases proportionately with RP.

Case 2: Scaling the RP by resource service rate
Scaling variables - Resource service rate (number of jobs executed per unit time)

- Workload (number of jobs arriving per unit time)
Scaling enablers - Status update interval

- Neighborhood set size
- Network link delay

Table 3. Scaling by service rates.

Case 3: Scaling the RMS by number of status estimators
Scaling variables - Number of Status Estimators

- Workload (number of jobs arriving per unit time)
Scaling enablers - Status update interval

- Neighborhood set size
- Network link delay

Table 4. Scaling by number of estimators in the RMS. Estimators receive updates from RP.

Case 4: Scaling the RMS by Lp

Scaling variables - Lp: Number of neighbor schedulers being contacted for load balancing
- Workload (number of jobs arriving per unit time)

Scaling enablers - Status update interval
- Interval for resource volunteering
- Network link delay

Table 5. Scaling by number schedulers being probed or polled during scheduling.
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