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Optimized Waveform Relaxation Solution of
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Martin J. Gander∗ and Albert E. Ruehli+,
∗Section of Mathematics, University of Geneva, Switzerland
+EMC Lab Missouri Univ. Science and Tech., Rolla, MO

Emeritus, IBM Research, Yorktown Heights, NY
albert.ruehli@gmail.com

Abstract—New algorithms are needed to solve electromagnetic
problems using today’s widely available parallel processors. In
this paper, we show that applying the optimized waveform
relaxation approach to a partial element equivalent circuit will
yield a powerful technique for solving electromagnetic problems
with the potential for a large number of parallel processor nodes.

I. INTRODUCTION

In this paper, we introduce a method for the parallel solution
of time domain combined ElectroMagetic (EM) and circuit
problems. The EM part is represented with a Partial Element
Equivalent Circuit (PEEC) model [1]. This transforms the EM
part into an equivalent circuit model. The PEEC model is
solved with the Modified Nodal Analysis (MNA) technique,
that is also used in most Spice circuit solvers. Hence, this
approach also leads to an EM solution which includes dc
solutions important for chip and package applications.
The classical Waveform Relaxation (WR) approach was

conceived in 1980/81 for circuit solver applications [2]. The
approach is based on partitioning large circuits into many
small circuits which then are solved separately on small Spice
solvers. Sophisticated partitioning algorithms must be used
for classical WR solvers as has been pointed out in [3].
The classical WR approach has a rich history of different
techniques applied to a multitude of problems as summarized
in [4]. In this paper, a new form of WR called optimized
WR (oWR) is utilized. It is based on optimized transmission
conditions which transfer the information between the subsys-
tems. Basically, oWR is a subclass of domain decomposition
techniques. The oWR approach was conceived for PDEs in [5],
see also [6], [7]. It has been converted to the circuit domain,
e.g., [8], [9].
Fundamentally, the approach divides the system matrix into

as many subsystems (SSy) as are needed for the problem at
hand. This permits the use of a large number of parallel proces-
sors. Further, the approach communicates waveforms in time
between processors rather than transmitting the information
at time points as is the case with other techniques. Also, the
compute time for each SSy solution is not minute as is the case
for some other algorithms, since we compute multiple time
points or waveforms in time. Hence, the processor to processor
communication latency is not as important for WR as it is

for other algorithms. These aspects are of importance, for the
efficient use of a large number of processors. Such algorithms
are not easy to find as has been pointed out in [10]. Recent
work for EM and circuit related works using the classical
WR approach has yielded good results. The WR algorithm
was applied to several electromagnetic problems, e.g., [11]
where it was shown that the classical WR leads to a very
efficient solution for the transverse partitioning of multiple
transmission lines. As another example, the approach was
applied to antenna arrays with a large number of elements [12].
The optimized WR approach is based on an improved

transmission condition between SSys. In the classical WR,
many different approaches have been experimented with for
the transmission condition for the circuit information exchange
between SSys. Techniques, related to non-optimized circuits
and overlap type partitioning for circuits, are referenced in
the overview paper [4] and also in [13]. We will show that
optimization is key for the performance gain. Overlapping
circuits are related to overlapping domains in domain de-
composition methods [7]. The new transmission conditions
use a combination of multiple optimized variables such that
the convergence is sped up. Importantly, we have shown that
circuits which failed to converge with classical WR converge
relatively fast with oWR. A key problem is the choice of
the optimization parameters. They are easier to deterimine
for the known topology of a PEEC circuit. Our studies in
earlier work have helped us to understand the choice of
the parameters. Fortunately, the fast convergence issue is not
sensitive to the choice of the optimization parameters. In
earlier work we viewed the parameters in terms of formulas.
Importantly, in this paper, we present a circuit interpretation
for the transmission conditions which considerably simplifies
the oWR concepts, and it enhances the understanding of the
approach.

II. SMALL MODEL CIRCUIT

We consider only a two fundamental section PEEC circuit
shown in Fig. 1 for the analytical model since it contains the
situation we need to address. In this work, we use consistent
normalized units for all experiments which are mA, V, kOhm,
pF, μH, GHz and ns. We set up the usual MNA circuit
equations to determine the best oWR model. The details for
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Fig. 1. PEEC circuit model with two basic sections

the PEEC model are given in [14]. The delay equations for
the capacitance are given by

I1 =
p12
p11

ic2(t− τ12) +
p13
p11

ic3(t− τ13),

I2 =
p21
p22

ic1(t− τ12) +
p23
p22

ic3(t− τ23), (1)

I3 =
p31
p33

ic1(t− τ13) +
p32
p33

ic2(t− τ23).

At node 1, we get the KCL equations

ic1 = −iL1 + Is, (2)

and for the intermediate node 2, solved for the capacitance
current

ic2 = iL1 − iL2. (3)

Finally, the capacitive current for node 3 is simply

ic3 = iL2. (4)
Inserting (2) and (3) into (1), we obtain

I1 =
p12

p11
[iL1(t− τ12)− iL2(t− τ12)] +

p13

p11
iL2(t− τ13),

I2 =
p21

p22
[−iL1(t− τ12) + Is(t− τ12)] +

p23

p22
iL2(t− τ23),

I3 =
p31

p33
[−iL1(t− τ13) + Is(t− τ13)] +

p32

p33
[iL1(t − τ23)− iL2(t − τ23)] .

For the impedance part of the MNA equations, we have

−Φ1 + Lp11
diL1

dt
+ Lp12

diL2(t − τL)

dt
+R1iL1 +Φ2 = 0,

−Φ2 + Lp22
diL2

dt
+ Lp21

diL1(t − τL)

dt
+R2iL1 +Φ3 = 0. (5)

Corresponding to the above formulation, the frequency
domain MNA circuit matrix M for this case is given by
⎡
⎢⎢⎢⎢⎣

s

p11
1−

p12
p11

e−sτ12 0
p12
p11

e−sτ12
−

p13
p11

e−sτ13 0

1 −sLp11 −R1 −1 −sLp12e
−sτL 0

0 −1 +
p21
p22

e−sτ12 s

p22
1−

p23
p22

e−sτ23 0

0 −sLp21e
−sτL 1 −sLp22 −R2 −1

0
p31
p33

e−sτ13
−

p32
p33

e−sτ23 0 −1 +
p32
p33

e−sτ23 s

p33

⎤
⎥⎥⎥⎥⎦

(6)
and the corresponding system is

Mx = b, (7)

with
x =

[
Φ1 iL1 Φ2 iL2 Φ3

]T (8)

and

b =
[
Is 0 p21

p22

Ise
−sτ21 0 p31

p33

Ise
−sτ13

]T
. (9)

Hence, the solution for the model in Fig. 1 in the frequency
domain is defined by the system (7).
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Fig. 2. PEEC circuit with models which includes transmission condition

III. TRANSMISSION CONDITIONS FOR WR
The partitioning step for theWR approach consists of break-

ing connections between multiple SSys such that the SSys are
independent. In our example of the PEEC circuit here, we
obtain the MNA sub-circuit matrices by partitioning (6) with
the dublication of node 2 as

M1 :=

⎡
⎣

s
p11

1− p12

p11

e−sτ12 0

1 −sLp11 −R1 −1
0 −1 + p21

p22

e−sτ12 s
p22

⎤
⎦ (10)

and

M2 :=

⎡
⎣

s
p22

1− p23

p22

e−sτ23 0

1 −sLp22 −R2 −1
0 −1 + p32

p33

e−sτ23 s
p33

⎤
⎦ , (11)

and the coupling vectors between SSy1 and SSy2 are given
by

m1 :=

⎡
⎣

p12

p11

e−sτ12 − p13

p11

e−sτ13

−sLp12e
−sτL

1− p23

p22

e−sτ23

⎤
⎦ , (12)

and

m2 :=

⎡
⎣

−1 + p21

p22

e−sτ12

−sLp21e
−sτL

p31

p33

e−sτ13 − p32

p33

e−sτ23

⎤
⎦ . (13)

One classical partitioned WR solution for the first SSy is
to set iL2 to zero until updated unknowns are available
from the WR iterations. Denoting the unknowns of the
first sub-circuit by x(s1) := (Φ1(s1), iL1(s1),Φ2(s1))

T ,
and the unknowns of the second subsystem by x(s2) :=
(Φ2(s2), iL2(s2),Φ3(s2))

T , and similarly for b, we obtain the
classical WR algorithm

M1x
k(s1) = b(s1)−m1i

k−1

L2
(s1), (14)

M2x
k+1(s2) = b(s2)−m2i

k
L1(s2), (15)

where k is the WR iteration index. The unknown currents
ikL2(s1) and ikL1(s2) on the right are relaxed to the previous
iteration, by imposing the transmission conditions

ikL2(s1) = ik−1

L2
(s2),

ik+1

L1
(s2) = ikL1(s1).

(16)

For space reasons, in Fig. 2 we give an equivalent circuit
for an SSy where each side has the additional oWR circuit
elements. For the classical case, only current or voltage is
transmitted across the interface. The added resistors inside of
the SSY are key for the oWR approach. In the oWR, we are
exchanging more than one variable for which the weight is
optimized. For the problem at hand, we subdivide the system
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into the same two SSys as before, but for reasons which will
be apparent below, we now use the following transmission
condition between SSy1 (s1) and SSy2 (s2):

ikL2(s1) +GαΦ
k
2(s1) = ik−1

L2
(s2) +GαΦ

k−1

2 (s2),(17)
ik+1

L1
(s2) +GβΦ

k
2(s2) = ikL1(s1) +GβΦ

k
2(s1). (18)

The parameters, or conductances which are optimized in the
oWR circuit are Gα for one direction and Gβ for the coupling
in the other direction. It is obvious from the equations why
we label the adjustable parameters as conductances.

IV. IMPROVED CONVERGENCE FOR OWR CIRCUIT

In this section we illustrate the improved convergence of the
oWR algorithm. The conductances Gα and Gβ are adjustable
circuit elements which we can choose such that the algorithm
converges more rapidly. We illustrate this for the model circuit
in Fig. 1. We use the circuit element values from [14] as

Lp11 = 0.022362, Lp12 = 0.006314,
Lp21 = 0.006314, Lp22 = 0.022362;

p11 = 1.19143, p12 = 0.300756, p21 = 0.300756,
p22 = 0.80392, p33 = 1.19143, p13 = 0.121378,
p31 = 0.121378, p23 = 0.300756, p32 = 0.300756;

R1 = 0.001, R2 = 0.001;

t12 = 0.167, t13 = 0.333, t23 = 0.167, tL = 0.167.

Using substantial analysis which is beyond the scope of this
short paper, we can compute contraction factors ρ(ω) for both
the classical WR and the oWR at each frequency s = jω.
This represents the number by which the error is multiplied
by WR or oWR at a given frequency for each iteration.
One can show that ρ(ω) = ρ(−ω), and it is sufficient to
consider positive frequencies. However, the direct connection
between neighboring SSy also leads to low frequency cou-
pling. However, we show that for oWR the contraction is
substantially improved. This is evident from Figs. 6 and 7
in the example, where the optimized parameters in Fig. 6 lead
to a faster low frequency, large time convergence. Also, the
transient solution is computed for a bounded solution time
interval (0, T ), in our example T = 5. This contains the low
frequency spectrum, to ωmin > 0. In Fig. 3, we compare
the contraction factor for the classical and the oWR. For the
circuit parameter given, the best conductances were found to
be Gα = −1.2412 and Gβ = 8.1169. One can clearly see
that classical WR is not convergent for the critical angular
frequencies ω around±10 since the contraction factor is larger
than one. Hence the method would diverge if sufficient energy
excites these frequencies. This is different for oWR, which has
a substantially improved contraction factor. It is now uniformly
less than one, which means all frequencies ω are convergent.
We see that the optimal choice of Gα and Gβ leads to
equioscillation of the convergence factor: it is the same for the
lowest and the difficult frequency around ω = 10. We note that
on a bounded time interval even classical WR will converge
eventually, since WR algorithms converge ultimately super-
linearly, and even modes that have a contraction factor larger

Fig. 3. Comparison of the contraction factor of the classical WR and the
oWR algorithm, for each angular frequency ω
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Fig. 4. Convergence behavior of the classical (top curve) and optimized WR
algorithm for the theoretically optimized Gα and Gβ and their numerically
optimized counterparts, which are very close (bottom curves)

than one in our analysis will eventually converge. Next, we
give a numerical experiment to illustrate that this convergence
is slow.
We discretize the MNA equations for the model circuit

in Fig. 1 using a backward Euler integration with time step
Δt = 1/768, and use as the input current Is a linear triangle
function, which grows for 0 < t < 0.05 to 1, and then
decreases for 0.05 < t < 0.1 back to zero, where it remains
for t > 0.1. The circuit is solved on the time interval (0, T )
for T = 5. We show in Fig. 4 the convergence behavior of
the classical algorithm compared to the theoretically optimized
one with Gα = −1.2412 and Gβ = 8.1169. The best possible
choice of the optimization conductances also was also by using
numerical optimization to minimize the error (||x − x

k||∞)
after 4 iterations. It led to Gα = −1.1723 and Gβ = 8.359.
This confirms that both the theoretical and the experimental
optimized admittance parameters are very close.

V. NUMERICAL EXAMPLE RESULTS
We choose the two conductor problem in Fig. 5 to illustrate

the practical partitioning of a strong dc coupled path. It is
important to include the full wave retardation between the
elements for the relatively fast rise time of the applied signal.
The structure, which is 50 mm long, is excited with a linear
ramp current source which has a 200 ps rise time. The
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Fig. 5. Example PEEC problem with two wires
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Fig. 6. Convergence with good convergence conductances

magnitude of the current is 10 mA. We represent each wire
with 10 PEEC cells as shown in Fig. 5, which is relatively
few. The flat wires are 2 mm wide and are spaced 5mm and
the two wires are connected with a termination resistance of
RT = 0.2 kOhms. For the experiments, we subdivide the
structure into two parts, where each of the parts has 5 sections.
All the far coupled partial inductances and capacitive current
sources are taken into account by using classical WR as it
was done in [12], where it was shown that the far coefficient
WR convergence is extremely fast and that we can determine
approximate convergence conditions. In Fig. 6 we show that
oWR converges to the solution in very few iterations. For
this case, the optimized conductances are Gα = −1.9 and
Gβ = 2.4. As a sensitivity experiment, we increased both
values 5 times and the results in Fig. 7 to show that, while
the convergence is less uniform, it is still quite fast. In Fig. 8,
we show that for the case where Gα = 0 and Gβ = 2.4,
the convergence is very slow, as expected. This illustrates the
effectiveness of the oWR approach presented in this paper.

VI. CONCLUSIONS
The oWR method given in this paper represents a major

improvement in the convergence rate for waveform relaxation.
A new circuit interpretation is given for the transmission con-
ditions. It is also shown that the WR approach can successfully
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Fig. 7. Convergence with five times larger convergence conductances
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Fig. 8. Convergence test with forward optimization turned off

be applied to delayed full wave PEEC models. Further, the
models which before had converged very slowly can converge
in very few iterations. This is an important step forward since
this approach is key for partitioned multiprocessor solution
methods.
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