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Abstract— Neural networks are used in a wide number of 
fields including signal and image processing, modeling and 
control and pattern recognition.  Some of the most common 
type of neural networks is the multilayer perceptrons and the 
recurrent neural networks. Most of these networks consist of 
large number of neurons and hidden layers, which results in a 
longer training time. A Generalized Neuron (GN) has a 
compact structure and overcomes the problem of long training 
time. Due to its simple structure and lesser memory 
requirements, the GN is attractive for hardware 
implementations. This paper presents the online training of a 
GN with the Particle Swarm Optimization (PSO) algorithm. A 
comparative study of the GN and the MLP online trained with 
PSO is presented for function approximations. The GN based 
identification of the Static VAR Compensator (SVC) dynamics 
in a 12 bus FACTS benchmark power system trained online 
with the PSO is also presented.  

I. INTRODUCTION 
HE role of the neural networks in the present world 
applications is gradually increasing and as a result faster 

networks and faster training algorithms are being developed. 
The conventional neural network that is used generally 
consists of three layers - input, hidden and output layers. The 
basic problem faced during the application of neural 
networks to highly complex problems is large training time 
due to the number of neurons and the number of layers in the 
network.  

A Generalized Neuron (GN) trained with the 
Backpropagation (BP) learning algorithm has been shown to 
overcome some of these drawbacks [1]. Some of the 
advantages of the GN are that it requires few neurons, i.e. 
fewer weights. The training time for the network is reduced. 
This structure requires lesser memory and hardware 
requirements, thus making it attractive for practical cheap 
and fast applications. 

Particle Swarm Optimization (PSO) technique, which is 
based on the behavior of a flock of birds or school of fish, is 
a type of evolutionary computing technique [2], [3]. It has 
been shown that the PSO training algorithm takes fewer 
computations and is faster than the BP algorithm for neural 
networks to achieve the same performance [4].  

Since PSO is a population based algorithm, it requires a 
number of input/output pairs to determine the weights of a 
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neural network. This paper presents the application of the 
PSO algorithm for online training of the GN. The use of a 
sliding window with a minimum number of input/output 
pairs is proposed for online training. The GN is applied for 
nonlinear static and time varying function approximations, 
and nonlinear system identification in a power system.  

The paper is organized as follows: In section II, the 
architecture of the GN considered in this paper is explained. 
In section III, a brief overview of the particle swarm 
optimization technique is given. Section IV deals with the 
application of the PSO algorithm for online training of the 
GN. Simulation results obtained for various nonlinear 
functions are compared with the results obtained with 
multilayer perceptron (MLP), both trained with the PSO, in 
this section. The online identification of the dynamics of a 
Static Var Compensator (SVC) in a power system with a GN 
is presented in section V.  Finally, the conclusion is given in 
section VI.  

II. GENERALIZED NEURON 
The general structure of the common neuron model is an 

aggregation function and a thresholding function. The 
general neural network model consists of three distinct 
layers namely the input layer, the hidden layer and the 
output layer. Each of these layers consists of a number of 
simple neurons that are interconnected. There may be more 
than one hidden layer in cases involving more complex 
problems. Also the number of neurons in each layer depends 
on the type of application it is being used for. Thus, it can be 
seen that as the complexity of the problem increases, the 
number of neurons and the number of weights to be found 
also tends to increase. Although the aggregation operators 
are generally crisp, they overlook the fact that most of the 
processing in the neural networks is done with incomplete 
information at hand. The GN model uses partly sum and 
partly product to take into account the vagueness involved, 
thus over coming such drawbacks. 

The use of a sigmoidal thresholding function and an 
ordinary product or summation aggregation in the simple 
neuron model does not always give satisfactory results. This 
is because real life problems generally involve some amount 
of nonlinearity. Hence the GN, which has both sigmoidal 
and the Gaussian functions with weight sharing, can be used 
to overcome such problems. Due to this the GN has more 
flexibility and the ability to cope better with the nonlinearity 
involved in any application. Unlike the thresholding 
functions like the sigmoidal and the Gaussian functions used 
here, other functions like sine, cosine, hyperbolic tangent, 
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linear functions, etc can also be used [1]. 
Unlike the common neuron model which has either ∏ 

(product) or ∑ (summation) aggregation function, the GN 
model has both ∑ and ∏ aggregation functions. But other 
fuzzy operators such as the max, min and the compensatory 
operators can also be used. 

 

  
Fig. 1.  Generalized neuron model. 

 
The sigmoidal characteristic function (f1) is used with the 

∑1 summation aggregation function while the Gaussian 
characteristic function (f2) is used with the ∏ product 
aggregation function. The output of the ∑1 part with the 
sigmoidal activation function for f1 of the GN is as shown 
below [1]. 
 

1 1
( _ )1

( _ )
s s nete

O f s net∑ −λ ×+
= =      (1) 

where, 
_ i i os net W X X∑ ∑= +∑        (2) 

 
and λs and oX ∑  are the gain and bias of ∑1 part respectively. 
 

The output of the ∏ part with the Gaussian activation 
function for f2 of the GN is as shown below: 

 
2

2
)( _( _ ) =  = p pi netO f pi net eπ

−λ ×     (3) 
where, 

_pi net W iXi Xoπ= π ×∏         (4) 
 

and λp and Xoπ are the gain and bias of ∏ part respectively. 
 

The final output Opk of the neuron is a function of the two 
outputs O∑ and Oπ with the weights W and (1-W), 
respectively, and can be written in the mathematical form [1] 
as, 

(1 )pkO O W O Wπ ∑= × − + ×       (5) 
 
For multiple output problems, multiple GN models in 

parallel are required. The number of weights in case of the 
GN is equal to twice the number of inputs plus one. This is 
very much lower when compared to the number of weights 
in a multilayer feedforward neural network. By reducing the 

number of unknown weights, the training time can be 
reduced. 

III. PARTICLE SWARM OPTIMIZATION 
Particle swarm optimization is a type of evolutionary 

computing technique. The PSO algorithm is a population-
based search algorithm, based on the simulation of the social 
behavior of birds within a flock. A swarm consists of a set of 
particles, where each particle represents a potential solution. 
The changes to the position of a particle and its operation in 
a swarm are influenced by the experience and the knowledge 
of its neighbors. 

Initially a set of random solutions or a set of particles are 
considered. A random velocity is given to each particle and 
they are flown through the problem space. Each particle has 
memory which is used to keep track of the previous best 
position and corresponding fitness. The best value of the 
position of each individual is stored as ‘pid’. In other words, 
‘pid’ is the best position acquired by an individual particle 
during the course of its movement within the swarm. It has 
another value called the ‘pgd’, which is the best value of all 
the particles ‘pid’ in the swarm. The basic concept of the 
PSO technique lies in accelerating each particle towards its 
‘pid’ and ‘pgd’ locations at each time step. 

• Fig. 2 briefly illustrates the concept of PSO where, 
• xid (k) is the current position of thi particle with d 

dimensions at instant k. 
• xid (k+1) is the position of thi particle with d 

dimensions at instant k+1.  
• vid (k) is the initial velocity of thi particle with d 

dimensions at instant k. 
• vid (k+1) is the velocity of thi particle with d 

dimensions at instant k+1. 
• w - Inertia weight. 
• Vmax is the maximum velocity for the particles. 
• c1 is the cognition acceleration constant. 
• c2 is the social acceleration constant. 
 

Fig. 2.  PSO particle update process illustrated for a two dimensional. case. 
 

i. Initialize a population of particles with random 
positions and velocities in the problem space. 

ii. For each particle, evaluate the desired optimization 
fitness function. 

iii. Compare the particles fitness evaluation with the 
particles pid If current value is better than the pid 

∏

   

2f  

1f
2∑

1∑

s_bias 

Inputs, 
X 

p_bias 

Output, 
Opk 

 
 

c1 x rand1 x (pid (k) – xid (k)) 

vid (k+1) 

w x vid (k) 

X 

Y c2 x rand2 x 
 (pgd (k) – xid (k)) 

5089



 
 

then set pid value equal to the current location. 
iv. Compare the best fitness evaluation with the 

population’s overall previous best. If the current 
value is better than the pgd, then set pgd to the 
particle’s array and index value. 

v. Update the particle’s velocity and position according 
to the equations shown below: 

The velocity of the ith particle of d dimension is given 
by: 

 
1 1

2 2

( 1) ( ) ( ( ) ( ))

                 ( ( ) ( ))

id id id id

gd id

v k w v k c rand p k x k

c rand p k x k

+ = × + × × −

+ × × −
 (6) 

 
The position vector of the ith particle of d dimension is 
updated as follows: 
 

( 1) ( ) ( 1)id id idx k x k v k+ = + +           (7) 
 

vi. Repeat the step (ii) until a criterion is met, usually a 
sufficiently good fitness or a maximum number of 
iterations or epochs. 

In case the velocity of the particle exceeds Vmax then it is 
reduced to Vmax. Thus, the resolution and fitness of search 
depends on the Vmax. If Vmax is too high, then particles will 
move in larger steps and so the solution reached may not be 
the as good as expected. If Vmax is too low, then particles will 
take a long time to reach the desired solution. 

IV. NONLINEAR FUNCTION APPROXIMATIONS 
Selection of the PSO parameters plays an important role 

in the optimization of any problem. The selection of the 
parameters of the GN also plays an important role is getting 
satisfactory results. The PSO parameters and the parameters 
of the GN are determined by trail and error. The value of the 
maximum velocity and the search space limitation depends 
on the type of problem it is being applied to. The number of 
particles is also varied. But it is observed that a higher 
number of particles lead to an increase in the computational 
time. Hence, a compromise between the computational time 
and the performance needs to be taken. 

The following sets of parameters are used for the 
nonlinear function approximations [4]. 
• Maximum velocity, Vmax      2 
• Maximum search space range    (-100,100) 
• Inertia weight, w         0.8 
• Acceleration constants, c1 c2      2, 2 
• Size of swarm          25 

The parameters of the GN (λs, λp) are also varied over a 
wide range and it is found that the values of the parameters 
are problem dependent. Thus, they are determined by trial 
and error for each problem. 

A.  Nonlinear Static Function 
The GN is online trained with PSO to approximate a 

nonlinear quadratic function, y = 2x2+1 for values of x in the 

range of (-1, 1) in increments of 0.01. The values of λs and λp 
are taken to be 10 and 1 respectively. Both the biases are 
taken as 1. Fig. 3 shows the GN output when online trained 
with a window size of 50 input/output pairs. The window 
slides in steps of 1. A Mean Square Error (MSE) of 0.006 is 
obtained.  Fig. 4 shows the GN output when online trained 
with a window size of 50 input/output pairs but the window 
slides in steps of 50. A MSE of 0.045 is obtained.  
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Fig. 3.  Output for y = 2x2+1 with GN online trained with PSO with a 
window sliding in steps of 1. 
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Fig. 4.  Output for y = 2x2+1 with GN online trained with PSO with a 
window sliding in steps of 50. 
 

The following results are obtained with MLP network of 
size 2 × 5 × 1 with bias 1 online trained with PSO. Fig. 5 
shows the MLP output when online trained with a window 
size of 50 input/output pairs. The window slides in steps of 
1. A MSE of 0.067 is obtained.  Fig. 6 shows the MLP 
output when online trained with a window size of 50 
input/output pairs but the window slides in steps of 50. A 
MSE of 1.001 is obtained here. The comparison of the 
performances of the GN and the MLP both online trained 
with PSO is shown in Table I. 
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Fig. 5.  Output for y = 2x2+1 with MLP online trained with PSO with a 
window sliding in steps of 1. 
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Fig. 6.  Output for y = 2x2+1 with MLP online trained with PSO with a 
window sliding in steps of 50. 
 

TABLE I 
COMPARISION OF A MLP NETWORK AND A GN FOR A 

NONLINEAR STATIC FUNCTION APPROXIMATION 
Parameters MLP GN 

Number of weights 15 4 
Sliding step size 1 50 1 50 
 
MSE  

 
0.067 

 
1.001 

 
0.006 

 
0.045 

*Training time (in 
sec) 

 
10.359  

 
0.297 

 
0.109 

 
0.016 

 * performed on the same PC. 
 
 Table II shows the variation in the MSE and the training 
time for y = 2x2 + 1, for a window size of 50 and a step size 
of 1, while Table III shows the variation in the MSE and the 
training time for a window size of 50 and a step size of 50. 
The Fig. 7 and Fig. 8. show the variation in the MSE for the 
GN with the variation in the swarm size. Fig 9. shows the 
variation in the training time of the GN with the variation of 
the swarm size. 
 
 

TABLE II 

COMPARISION OF THE MSE AND TRAINING TIME OF THE GN FOR 
A NONLINEAR STATIC FUNCTION WITH A STEP SIZE OF 1 

Particles 
size 

 
5 

 
10 

 
15 

 
20 

 
25 

 
30 

MSE 0.0921 0.0498 0.029 0.024 0.0063 0.0068 
*Training 
time (in 

sec) 

 
0.031 

 
0.046 

 
0.062 

 
0.094 

 
0.109 

 
0.125 

 * performed on the same PC. 
 

TABLE III 
COMPARISION OF THE MSE AND TRAINING TIME OF THE GN FOR 

A NONLINEAR STATIC FUNCTION WITH A STEP SIZE OF 50 
Particles 
size 

 
5 

 
10 

 
15 

 
20 

 
25 

 
30 

MSE 0.1172 0.1152 0.0591 0.0246 0.0452 0.0497 
*Training 
time (in 

sec) 

 
0.016 

 
0.016 

 
0.016 

 
0.016 

 
0.016 

 
0.016 

 * performed on the same PC. 
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Fig. 7. Number of Particles Vs MSE, for y = 2x2+1 with GN online trained 
with PSO with a window sliding in steps of 1. 
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Fig. 8. Number of Particles Vs MSE, for y = 2x2+1 with GN online trained 
with PSO with a window sliding in steps of 50. 
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Fig. 9. Number of Particles Vs Training Time, for y = 2x2+1 with GN 
online trained with PSO with a window sliding in steps of 1. 
 

It is seen from Fig. 7 and Fig. 9 that, as the swarm size 
tends to increase, the training time needed for the GN also 
increases and also the MSE decreases. The relationship 
between the MSE and the training time seems to be linear to 
the number of particles in the swarm.  

B.  Time Varying Function 
The GN is online trained to approximate a sinusoidal 

function, y = 2x2 + 1, where x = sin (2πft) and ‘t’ is varied in 
the range of (-2, 2) with an increment in steps of 0.02. The 
values of λs and λp are taken to be 1 and 10 respectively. 
Both the biases are taken as 1. The result in Fig. 10 is 
obtained from a GN for a window size of 50, sliding in steps 
of 1. The MSE is found to be 2.559 × 10-4. Fig. 11 shows the 
results of a GN with a window of size 50, sliding in steps of 
50. The MSE is found to be 0.041.  
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Fig. 10.  Output for a sine signal with GN online trained with PSO with a 
window sliding in steps of 1. 
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Fig. 11. Output for a sine signal with GN online trained with PSO with a 
window sliding in steps of 50. 
 

The following results are obtained with the MLP network 
of size 2 × 5 × 1 with a bias of 1 online trained with PSO. 
The result in Fig. 12 is obtained from a MLP for a window 
size of 50, sliding in steps of 1. The MSE is found to be 
3.312 × 10-4. Fig. 13 shows the results of a MLP with a 
window of size 50, sliding in steps of 50. The MSE is found 
to be 0.210. The comparison of the performances of the GN 
and the MLP both online trained with PSO is shown in  
Table II. 
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Fig. 12.  Output for a sine signal with MLP online trained with PSO with a 
window sliding in steps of 1. 
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Fig. 13.  Output for a sine signal with MLP online trained with PSO with a 
window sliding in steps of 50. 
 

TABLE IV 
COMPARISION OF MLP NETWORK AND GN FOR TIME VARYING 

FUNCTION APPROXIMATION 
Parameters MLP GN 

Number of weights 15 4 
Sliding step size 1 50 1 50 
MSE   3.312x 10-

4 
0.210 2.559x 

10-4 
0.041 

*Training time (in 
seconds) 

 
11.078  

 
0.328 

 
0.188 

 
0.016 

*performed on the same PC. 
 

It can be seen from the Table IV that the MSE in case of 
the PSO trained GN is lesser than the MSE in case of the 
PSO trained MLP. It is also observed that the training time 
of the MLP is much higher than the training time of the GN. 
When the step size equals the entire length of the data 
points, it is nothing but offline training. Thus the GN has 
better performance than the MLP.  

Table V shows the variation in the MSE and the training 
time for y = 2x2 + 1, where x = sin (2πft) and ‘t’ is varied in 
the range of (-2, 2), for a window size of 50 and a step size 
of 1, while Table VI shows the variation in the MSE and the 
training time for a window size of 50 and a step size of 50. 
The Fig. 14 and Fig. 15. show the variation in the MSE for 
the GN with the variation in the swarm size. Fig 16. shows 
the variation in the training time. 

 
TABLE V 

COMPARISION OF THE MSE AND TRAINING TIME OF THE GN FOR 
A TIME VARYING FUNCTION WITH A STEP SIZE OF 1 

Particles 
size 

 
5 

 
10 

 
15 

 
20 

 
25 

 
30 

MSE 0.0034 0.0018 0.0014 6.076 × 
10-4 

2.559 × 
10-4 

3.736 × 
10-4 

*Training 
time (in 

sec) 

 
0.047 

 
0.094 

 
0.125 

 
0.156 

 
0.188 

 
0.235 

 * performed on the same PC. 
 
 
 
 

 
TABLE VI 

COMPARISION OF THE MSE AND TRAINING TIME OF THE GN FOR 
A TIME VARYING FUNCTION WITH A STEP SIZE OF 50 

Particles 
size 

 
5 

 
10 

 
15 

 
20 

 
25 

 
30 

MSE 0.0859 0.0775 0.0637 0.028 0.0347 0.0495 
*Training 
time (in 

sec) 

 
0.015 

 
0.016 

 
0.016 

 
0.016 

 
0.016 

 
0.016 

 * performed on the same PC. 
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Fig. 14. Number of Particles Vs MSE, for sine signal with GN online 
trained with PSO with a window sliding in steps of 1. 
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Fig. 15. Number of Particles Vs MSE, for sine signal with GN online 
trained with PSO with a window sliding in steps of 50. 
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Fig. 16. Number of Particles Vs Training Time, for sine signal with GN 
online trained with PSO with a window sliding in steps of 1. 
 

It can be seen from Fig. 14 and Fig. 16 that, as the swarm 
size tends to increase, the training time needed for the GN 
also increases and the MSE decreases. The relationship 
between the MSE and the training time is found to be linear 
to the number of particles in the swarm. 

V. IDENTIFICATION OF SVC DYNAMICS IN A POWER 
SYSTEM 

A Static VAR Compensator (SVC) is a shunt Flexible AC 
Transmission Systems (FACTS) employed for regulation of 
system voltage and for improving the power system stability 
[5]. The correct identification of SVC dynamics and the 
power network is necessary for the design of an adaptive 
controller. Fig. 17 shows a SVC connected at bus 4 in the 12 
bus FACTS benchmark system [6]. 
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Fig. 17.  12 Bus FACTS benchmark power system with a SVC at bus 4. 

 
The remote signals from the power network and local 

signals from the SVC are fed to a generalized neuron in 
order to predict the voltage deviations at bus 4 at time instant 
k+1. The remote signals are the speed deviations (∆ω3 and 
∆ω4) of the generators G3 and G4 at time instants k, k-1 and 
k-2. The advantage of using remote/wide area signals to 
improve the power system stability is shown in [7]. The 

local signals are the voltage deviations (∆V4) at bus 4 and 
control signal, susceptance value (∆B), to the SVC at time 
instants k, k-1 and k-2. The inputs and output of the GN are 
shown in Fig. 18. 
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Fig. 18. Inputs and output of the GN. 
 

In order to train the GN, Pseudorandom Binary Signals 
(PRBS) are applied to the SVC control signal and excitations 
of generators G3 and G4. These PRBS signals excite the full 
range of the dynamics of the power network [8]. PRBS 
signals applied to the generators are of frequencies 5, 3 and 
2 Hz and those applied to the SVC are of frequencies 2, 1.5 
and 0.5 Hz. The values of the parameters λs and λp in (1) 
and (3) for this problem are taken to be 0.025 and 10 
respectively. Number of particles of PSO to train the GN are 
25. The GN is online trained for 10 seconds using a window 
size of 2.5 seconds, sliding every 5 ms. Since PSO is a 
population based algorithm, it requires a set of data points in 
order to update the weights of the neural network. Hence, 
here a window size of 2.5 seconds which is equivalent to 
500 samples of data is used for updating the weights of the 
GN. 

Fig. 19 shows the PRBS signal applied to the SVC, while 
Fig. 20 shows the estimated and actual bus 4 voltage 
deviations by the GN and the power network respectively. 
The MSE for t = 2.5 seconds to 10 seconds is 0.109%.  
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Fig. 19.  PRBS signal applied to SVC during training. 
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Fig. 20.  Estimated and actual bus 4 voltage deviations during training. 

 
After training, the weights of the GN are fixed and its 

predictions are tested for the next 10 seconds with the PRBS 
signals is still applied. Figs. 21 and 22 show the PRBS signal 
applied to the SVC and corresponding responses 
respectively. The MSE for t = 10 seconds to 20 seconds is 
0.3991%.   
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Fig. 21.  PRBS signal applied to SVC during testing 
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Fig. 22.  Estimated and actual bus 4 voltage deviations during testing. 

VI. CONCLUSIONS 
This paper presents the successful online training of the 

generalized neuron and MLP with particle swarm 
optimization. The GN has been shown to approximate non-
linear static and time varying functions accurately with fast 
convergence. Further, the GN online trained with PSO has 
been demonstrated to identify the nonlinear dynamics of a 
static VAR compensator in a 12 bus FACTS benchmark 
power system accurately. The training time taken for the GN 
to learn the nonlinear functions and the power system 
dynamics is much lesser and with fewer weights. The GN 
structure is simple making it attractive for hardware 
implementations with less computational and memory 
requirements.  
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