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Hamilton—Jacobi—Bellman Equations and
Approximate Dynamic Programming on Time Scales

John Seiffertt, Student Member, IEEE, Suman Sanyal, and Donald C. Wunsch, II, Fellow, IEEE

Abstract—The time scales calculus is a key emerging area of
mathematics due to its potential use in a wide variety of multi-
disciplinary applications. We extend this calculus to approximate
dynamic programming (ADP). The core backward induction algo-
rithm of dynamic programming is extended from its traditional
discrete case to all isolated time scales. Hamilton—Jacobi-Bellman
equations, the solution of which is the fundamental problem in
the field of dynamic programming, are motivated and proven on
time scales. By drawing together the calculus of time scales and
the applied area of stochastic control via ADP, we have connected
two major fields of research.

Index Terms—Approximate dynamic programming (ADP),
dynamic equations, Hamilton-Jacobi-Bellman (HJB) equation,
reinforcement learning, time scales.

I. INTRODUCTION

HE MATHEMATICS of time scales bridges the divide be-

tween the discrete and the continuous [31]. This calculus
provides a unified framework for the analysis of difference and
differential equations. Such dynamic equations on time scales
[17], [18] have been applied in population biology [12], quan-
tum calculus [13], geometric analysis [30], real-time communi-
cation networks [26], intelligent robotic control [27], adaptive
sampling [28], approximation theory [45], financial engineering
[44], and switched linear circuits [37] among others. These
fields are ideal for approximate dynamic programming (ADP)
[40]. ADP seeks the solutions of the Hamilton—Jacobi—Bellman
(HJB) equation [7]. In discrete time, backward induction is
often used. We extend this method to all isolated time scales
and then prove versions of the HIB equation on general time
scales.

The organization of this paper is as follows. Section II
presents the core definitions and concepts of the time-scale cal-
culus. Section III focuses on the Bellman’s optimality principle
and the dynamic programming backward induction algorithm.
The HJB equations on time scales are proven in Section IV,
and Section V concludes this paper with perspectives on future
directions.
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II. TIME SCALES PRELIMINARIES
A. Fundamental Definitions

A time scale T is any nonempty closed subset of the real
line R. Examples include the integers Z, the scaled integers
hZ (where h > 0 is a scaling factor), the quantum calculus
time scale T = ¢™o (with ¢ > 1) [41], as well as more exotic
constructs such as the Cantor set. The quantum time scale is
of particular importance as it yields the continuous case in the
limit as ¢ — 1. It is often used as an initial time scale in the
analysis of a particular equation or modeling framework.

Two characteristic functions are defined on a time scale T.
The forward jump operator o is defined as o(t) = inf{x € T :
2 > t}. This function returns the “next” element of the time
scale in the sense given by its definition. When T=R, o (¢t) =t;
if T=7, o(t)=t+1; and on the g-time scale T = ¢,
o(t) = qt. The backward jump operator p is defined as p(t) =
sup{z € T : z < t}. A point t € T is said to be right scattered
if o(t) > t and said to be left scattered if p(t) < t. If a point
is right and left scattered, then it is said to be isolated. Discrete
points are isolated. If ¢t < sup T and o(t) = ¢, then ¢ is right
dense. If ¢ > inf T and p(t) = ¢, then ¢ is left dense. If ¢ is both
right and left dense, then ¢ is said to be dense. Finally, it is
necessary to define T* as follows: If T has a left-scattered max-
imum point m, then T* = T — {m}; otherwise, T* = T. This
set is used in the definition of the delta derivative on time scales.

A time scale T has an associated graininess function p
given by u(t) = o(t) —t. Note that when T = Z, p(t) = 1;
if T =R, u(t) =0; for T = ¢"°, u(t) = (¢ — 1)t; and when
T = hZ, u(t) = h. Many formulas of the time-scale calculus
will involve the graininess function .

B. Time Scales Calculus of a Single Variable

Let f: T — R be a function. Then, the delta derivative
fA(t) of f at a point t € T* is defined to be the number such
that given € > 0, there is a neighborhood U of ¢ such that

|[f (0(t) = ()] = fA(W) [o(t) = 5] < elo(t) — 5]

for all s € U, where neighborhood is defined such that U =
(t — 0,t + ) for some 6 > 0. Note that this follows the clas-
sical definition of the derivative, with the traditional = + h
increment replaced by the forward jump operator o (t). This
sort of translation is a common theme in the calculus of time
scales. The delta derivative 2 (t) becomes f'(t) when T = R
and becomes the standard difference operator on T = Z. Other
derivatives, such as the alpha, nabla, and diamond-c, can also
be defined on time scales [2], [17], [42]. Whereas the role of
these other derivatives is still emerging in computational opti-
mization theory, our results will focus on the delta derivative.

1083-4419/$25.00 © 2008 IEEE
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Many of the classic rules for differentiation obtain for the
delta derivative [17]. However, the traditional chain rule fails
to extend to general time scales. Instead, this calculus admits a
suite of chain rules. The most general and applicable chain rule
for time scales is due to Potzsche [18], [39]. Let fR — R be
continuously differentiable and let g : T — R be delta differ-
entiable. Then, f(g(t)) is delta differentiable, with (f o )2 (t)
given by the following:

/f

When T = R, then x(¢) = 0 and the equation reduces to the
chain rule of traditional calculus. The fundamental theorem
of calculus is valid on time scales and takes a familiar form.
Provided a function f satisfies certain conditions (regulated and
rd continuous), then

t) + hu(t)g™ (t)) dh. ()

b
/fHﬂAT:ﬂw—fm» @

For a thorough overview of integration theory on time scales,
including definitions of regulated and rd continuity, the
interested reader is directed to [15], [17], and [29].

C. Time-Scale Calculus of Multiple Variables

We use a definition of partial derivatives on time scales
given by Jackson [34]. Let Ty, To,..., T, be time scales, set
T=Ty xTyx---xT,, and let f: T — R be a function.
Define the operators on T as o(t) = (o(t1),0(t2),...,0(tn))

and p(t) = (p(t1), p(ta), ..., p(tn)). Also, define T = T x
Ts x -+ x Tk, fai(t) = f(tl, ooy tio, O'i(ti),ti+1, ce ,tn),
and st = f(t1, ‘e 7ti—1787ti+17 SN ,tn).

The partial delta derivative of f at ¢ with respect to ¢; is the
number 2, provided that it exists, such that given any ¢ > 0,
there exists a neighborhood U of ¢; for § > 0 such that

7 (t) = 2] = 2 () o) —

for all s € U, where neighborhood is defined such that U =

Necessary for our proof of the HIB equation on time scales
will be the chain rule for partial derivatives given by Bohner and
Guseinov [16]. Lett € T,z : T - R, y: T — R, 2(T) = T,,
y(T) =T,, and F(x(t),y(t)). Assume that z(o(t))=
ox(2(t)) and y(o(t)) =oy(t). If F = f(z(t),y(t)) is
o-completely differentiable and x and y are differentiable, then

FA(t) = f2 (x(t),y(t) z2(t)
+ A (

S” < €loi(t) — s|

oz (x(1)),y(1)) y> (). 3)

For more details on partial derivatives on time scales, including
a definition of o,-complete differentiability, the reader is
directed to [3] and [16].

D. Principle of Induction on Time Scales

A form of backward induction exists on time scales [18]. Let
to € T and S(t) be a statement for each ¢ € [—o00, tg) such that
the following four conditions hold.

1) S(to) is true.

2) S(t), being true at a left-scattered ¢, forces S(p(t)) to be
true.
3) S(t), being true at a left-dense ¢, forces S(t') to be true
for all ¢’ in a left neighborhood of .
4) S(t'), being true for all ¢’ € (¢, t] when ¢ is right-dense,
forces S(t) to be true.
Then, it can be concluded that S(t) is true for all ¢ € [tg, 00).
There is also a forward version involving right-scattered and
left-dense intervals and the forward jump operator o (t), but it
is this backward form which we use in the next section.

III. DYNAMIC PROGRAMMING ALGORITHM

We extend the backward induction algorithm of dynamic
programming to time scales. We define the problem, discuss
the principle of optimality, and then prove our result.

A. System Definitions

The elements of our dynamic programming problem are as
follows: a time scale T housing our decision points, controls
c(z(t),t), a stochastic disturbance w(t), states xz(t) which
evolve according to a rule f(z(t),c(x(t),t),w(t),t), and a
cost/reward r(z(t), c(x(¢),t), w(t),t) where the cost at a ter-
minal decision point 7" is piecewise defined as rr(z(T)). A
policy 7 is a set of state-control pairs for each point in T such
that each control is valid for both the state and time. We denote
by 7t the tail of the policy 7 beginning with time step t. We
also require a cost-to-go function given by the following:

T

Jr (z(tg)) =E /r (x(1),c(x(1),7),w(r),7), AT p (4)

to

which measures the expected cost of a policy 7w. We assume that
the expected values are finite and well defined.

We limit w(t) to take on values in a countable set. Whereas
this constraint prohibits disturbances such as Gaussian noise
or Brownian motion, it does permit useful application of this
model. For example, the representation of state-space systems
in Markov decision processes [41] gives the w(t) the form of
transition probabilities P(4, j, ¢), which indicate the probability
that the system evolves from state x; to state x; in response to
control signal c. Such w(t)’s are countable.

We consider the following dynamical system defined on a
time scale T:

e (t) = f (2(t), e (2(t), 1), w(t), 1) (5)

where ¢t € T. Our task is to calculate a policy 7* that minimizes
the cost-to-go function J,. We call such a 7" an optimal
policy and denote the optimal cost to go as J*(z(t),tp) =
min, J;(z(to), to), where the minimum is considered over all
policies.

B. Principle of Optimality

Bellman’s principle of optimality [7], [8] aids in the solution
to the aforementioned optimization problem. This principle can
be stated in the following way. Let 7 be an optimal policy. Then,
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the optimal policy for the tail problem starting at time ¢,,, which
is to minimize

E / r (@(r) e (2(r),7) w(r),7), Ar ®)

is equal to the portion of 7* which overlaps 7t~. To justify this
principle, note that if it were not true, then the tail of 7* could
be replaced by a more optimal 7i», thus contradicting the claim
of optimality of 7*.

C. Backward Induction

The dynamic programming algorithm, which is a form of
backward induction, involves the stochastic optimization of
control selection starting from the terminal time point 7". Be-
ginning with setting J(z(T), T'), the algorithm proceeds via the
following update rule:

J (z(t),t) = minE{r (x(t), c(x(t),t),t,w(t),t)

LT (@) e (t), 1), w(t). 1), 0 (1)) }

for ¢t € T. This rule says that the cost to go of the current state
2(t) under a control ¢(x(t),t) equals the expected value of
the immediate cost r(z(t), c(x(t),t),t,w(t),t) plus the future
costs J(f(x(t), c(x(t),t),w(t),t),o(t)). Recall that o (¢) is the
“next” point in our time scale T.

It is standard to discuss the optimality of this algorithm in
terms which assume convergence [9], [10]. Our proof, follow-
ing [9], declares controls that are optimal if they minimize the
update rule. Convergence issues occupy a vast literature and are
thoroughly explored in the classic text [41].

The classical version of this update rule is true for the discrete
time scale T ={1,2,...,T}. We extend this result to any
isolated time scale T in advance of our derivation of the HIB
equation on more general time scales.

Theorem I (Dynamic Programming Algorithm): If ¢*(x(t),t)
minimizes the update expression given previously for each state
and for all ¢ € T, then the policy ¢*(z(t), t) is optimal.

Proof: We set J*(z(T),T) = rp(x(T)) and proceed via
time-scale induction to show that the application of the dynamic
programming algorithm’s recursive update equations yields the
optimal policy at each stage, i.e., that J*(z(t),t) = J(x(¢),t)
forallt € T. Letting ¢t = T yields, by definition

J (@(T),T) = rp (x(T)) = J (2(T),T). ©)

Now, assume J*(x(t), t) = J(x(t), t) for some time point ¢t € T
and all states 2(t). To apply the backward induction algorithm,
recall that in a time scale, p(t) is the point that comes just
“before” point ¢. Therefore, the quantity p(¢) plays a central
role in our discussion. To wit, (8) gives the immediate one-step
application of our update rule

" (@ (p(t)), p(t)) = min]E{?“ (@(t), e (x(t), 1), w(t), p(t))

c,m

“l‘/T(LL‘(T),C(.’L’(T),T)7’w(7‘)77-)7A7-}. )

t

The integral represents the value of the cost-to-go function J
at the “next” time step after p(t), which is . Also, note that
the minimization is taken term by term over all controls and
policies. We now use the principle of optimality to distribute
the min through the expectation, as the tail problem is indeed
an optimal policy for the problem contained within the tail. This
yields the second equation

J" (@ (p(t), p(t)) = minE

C

r(z(t), e (z(t), 1), w(t), p(t))
T
+m73nE /7’ (z(7),c(x(1),7),w(r), ), AT

t

Using the definition of J*(z(t),t), which subsumes the term
minimized over the policy, we can reduce this expression to the
following:

J" (@ (p(t)), p(t)) = min ]E{T (@(t), ¢ (2(t), 1), w(t), p(t))

C

T (2(t), ) } )

By the induction hypothesis, we know that the optimal cost
to go J*(x(t),t) is equivalent to the approximation J(x(t),t)
due to the dynamic programming algorithm. Thus, we write
J*(x(p(t)), p(t)) as follows:

min B {r (z(t), ¢ (x(t),1), w(t), p(t)) + J (x(t),1)} ~ (10)
which, by definition, is simply
I (p(t)), p(1)) = J ( (p(t)), (1)) - (11)

We have now satisfied conditions 1 and 2 of the principle of
backward induction on time scales given in Section II. Because
we assume T to be isolated, conditions 3 and 4 do not apply,
and we conclude that, by backward induction on time scales,
we have proven our claim. |

Thus, the dynamic programming algorithm is extended to
time scales. The computational requirements for implementing
this algorithm, particularly for industrial-scale optimization
problems common in operations research, are great [40]. It
is the task of ADP to calculate suboptimal policies in an
efficient manner while simultaneously satisfying the needs
of a given application. Within a time-scale framework, this
approach is also valid as the optimal update rule underlying the
approximations holds.

IV. HJB EQUATIONS

We prove the HIB equation on time scales and discuss
other forms that this equation may take. Note that whereas
our proof of the dynamic programming algorithm holds on
isolated time scales, no such restriction is required for the HIB
equation proper. Instead, we may consider decision problems
on arbitrary time scales using the results of this section.

Authorized licensed use limited to: University of Missouri. Downloaded on January 14, 2009 at 15:54 from IEEE Xplore. Restrictions apply.
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A. HIJB Equation on Time Scales

Consider the dynamical system given by the following:
12)

where x represents states and c is the control. Let t € T,
z:T — R, and z(T) = T,. The cost-to-go function J : T, X
T — R is given by the following:

T

T (2(to), o) = /r(x(T),c(T)) Ar

to

13)

where ¢y is the initial decision point and r(z(t),c(t)) is
the cost.

Assume that J is delta differentiable and x is o,-completely
delta differentiable. Furthermore, require = to satisfy the
following condition of forward compositional commutativity:

z(a(t)) = 0w (x(t)) -

Then, the HJB equation on time scales is given by the
following:

(14)

0 = min {r (2(t), ¢ (x(t), 1) + T2 (w(t), )
+ I8 (@(t).0(t) £ (2(8).1) | (15)

This is an equation that any optimal policy of our minimiza-
tion problem must satisfy. Because precious few industrial-
scale applications admit an analytic solution of this equation,
ADP is employed to develop approximation techniques for this
purpose. The proof of this equation is our next theorem. For the
classical proofs, see a reference such as [5], [9], and [24].

The Hamilton—Jacobi equation is a result of the calculus of
variations [25], [43], and work extending this calculus to time
scales is only just beginning [4], [11], [14], [23], [32]. These
problems typically take the general form of minimizing the cost
functional given by the following integral [11]:

(16)

From this, the usual Euler and Legendre conditions can be
derived on time scales. Our next result takes this a step fur-
ther and proves the Hamilton—Jacobi equation for an alter-
nate version, which is given by (13), of the aforementioned
integral (16). Because (13) is the common cost functional of
dynamic programming, the resulting equation is given the name
Hamilton—Jacobi—Bellman. In this way, the following theorem
is a contribution to the development of the calculus of variations
on time scales as well as to ADP. However, as we prove the
HIJB equation for a form other than that given by (16), there is
still work to be done on Hamilton—Jacobi equations for more
generalized cost functionals.

Such variational problems are central to control theory, as
are the issues of controllability and observability. The interested
reader is directed to [6], [19]-[22], [33], [36], and [38] for more

details on these important topics both in the real case and for a
general time scale T.

Theorem 2 (HJB Equation): Let V (x(t),t) be a solution to
(15) such that

0 = min {7“ (z(t), e (2(t), 1)) + VA (x(t), t)

+ VA (@(t).0(t) £ (t).0) f. (D)

Assume that the boundary condition V (z(T),T) = rr(z(T))
and Z(tg) = x(to), and suppose c*(x(t), t) attains the minimum
called for in (15) for all states and time. Let a*(¢) be the
state trajectory, subject to the condition x*(¢g) = x(¢o), which
corresponds to applying the controls ¢*(xz(t), t) at each decision
point ¢. Then, the function V' (x(¢),t) is the optimal cost-to-go
function J*(x(¢),t), and the control ¢*(z(t), t) is optimal.

Proof: Let ¢(x(t),t) be a control policy with correspond-
ing state trajectory & (¢). We will show that the policy ¢*(x(¢), t)
achieves a cost that is no greater than this arbitrary é(z(t), t),
thus forcing ¢*(z(t), t) to be our optimal control. We begin by
invoking (17) to give us

0 <7 (&(t), & (&(t), 1) + VA (&(t), 1)
+ VB (&), 0(t) f (E(t),1).

) (18)
)

Noting that, via (12), we have a:A(t
rewrite (18) as follows:

= f(z(t),c(t)), we can

0 <7 (&(t),&(&(t), 1) + VA (&(t), 1)
+ VA& (&(t),0(t)) 22 (t)  (19)

and by reversing the chain rule implicit in this formulation, we
arrive at the following:

0 < r(@(t), ¢ (2(t),1)) + V(b). (20)
Integrating over our time horizon yields
T T
0< /T (z(7),¢(2(1), 7)) AT + / VA(T)AT. (21)
t() tO

Using the fundamental theorem (2), we arrive at the following:

0< /7‘ (Z(1),e(@(1), 7)) AT+V (& (T),T)=V (&(to), to) -

to

Substituting in our boundary conditions V(xz(T),T) =
ry(x(T)) and & (to) = x(to) gives us

T
0< /r (&(r),e(&(r), 7)) AT + 17 (2(T)) — V (2(to), to)
to
which is equal to the following:

T
V (2(to), o) < /T(f(T),é(i(T),T))ATJrTT (@(T)) -

to
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From our hypothesis, we assume that the controls ¢*(x(¢),t)
and their corresponding state trajectory x*(¢) minimize the
value function V' (x(t), t). Using this information and the initial
condition z*(ty) = x(t9), we can replace the inequality with
equality in the case of these quantities

T

V (z(to), to) = /T (x*(7), ¢ (" (1), 7)) AT + rr (2" (T)) .

to

Combining with the previous equation, we have

[r@ e @@ ar e @ @)

T

< /r (&(1), & (#(), 7)) AT + 77 (2(T)) .

to

This equation tells us that the cost of the policy ¢*(z(t),t)
is less than or equal to the cost of any admissible policy
é(x(t),t). We conclude that the policy ¢*(x(t),t) is optimal
and that, because ¢(z(t),t) is arbitrary, we have V(z(t),t) =
J*(z(t),t). Therefore, any optimal policy must satisfy the HIB
equation given by (15). |

B. Other Forms of the HIB Equation on Time Scales

The calculus of time scales admits many different chain rules
depending on various conditions on the functions of interest.
The key step in our proof of the HIB equation was in the
reversal of the chain rule. In principle, given any chain rule we
can derive a different form of the HIB equation and the proof
from (20) onward will remain unchanged. For example, we
assume the o-complete differentiability of x(t). If we instead
assume that x(t) is o,-completely differentiable, we obtain,
by a different chain rule of Bohner and Guseinov [16], the
following form of the HIB equation:

0 = min [r (z(t), ¢ (z(t), 1)) + T2 (o, (x(t), 1)

+ J% (x(t),t) f (z(t),1)] . (22)

V. CONCLUSION AND FUTURE DIRECTIONS

The time scales calculus is an increasingly relevant and
developed area of mathematics with wide-ranging opportunities
for application. We have established that the dynamic program-
ming algorithm, which is derived from Bellman’s principle of
optimality, obtains on time scales. We have also derived the
HJB equation on time scales and demonstrated that a family
of such equations exists. The solution of such an equation is
the fundamental goal in ADP. We identify three significant
directions that the investigation of ADP on time scales can take.
First, as the derivation of the HIB equation was dependent on
the mathematics of the time-scale calculus of multiple variables
in general, and the chain rule in particular, further variations
and extensions in this area will prove critical. The generalized
Stokes theorem, principles of the variational calculus, and more
complete chain rules are three areas where new contributions
are of exceptional need.

Second, numerical approximation work in time scales re-
mains a promising endeavor. With the availability of compu-
tational resources such as the Time Scales MatLab Toolbox
from the Baylor University Time Scales Group, both applied
and theoretical investigations into the numerics of time-scale
calculus can be pursued. Numerical differentiation and integra-
tion techniques on time scales would provide significant value,
as would time-scale extensions of optimization algorithms, be
they population-based models from the computational intelli-
gence literature or provably convergent methods from applied
mathematics [1]. Also, of need are demonstrations of ADP-
based controllers operating in a time-scale framework. This
brings us to our third direction for growth: applications.

In addition to the electric circuit and population biology
models to which time scales have been applied [18], the field
of time-scale control needs to show significant capability to
upgrade to larger scale problems. Analysis of technical trading
rules, macroeconomic dynamical learning models, and mone-
tary policy are areas in economics and finance where controllers
operating on time scales would be of great interest. Financial
portfolio management may be a particularly natural fit, as con-
trol is applied during intervals broken up by overnight periods
during which the system evolves but the controller has no direct
influence.

It is our position that while the study of time scales can
provide a concise theoretical unification of control theory in the
discrete and continuous cases, it can also provide utility gains
in certain problem domains. We believe that there are important
application areas where dealing simultaneously with discrete
and continuous variables is critical [46], [47] and that the
time-scale calculus provides a natural and powerful framework
for such exploration.
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