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o  

Abstract— in this paper, a fault detection scheme is developed 
for nonlinear discrete time systems. The changes in the system 
dynamics due to incipient failures are modeled as a nonlinear 
function of state and input variables while the time profile of 
the failures is assumed to be exponentially developing.  The 
fault is detected by monitoring the system and is approximated 
by using online approximators. A stable adaptation law in 
discrete-time is developed in order to characterize the faults. 
The robustness of the diagnosis scheme is shown by extensive 
mathematical analysis and simulation results.  

I. INTRODUCTION 

The process of fault diagnosis consists of three steps: (a) 
detection deals with determining if a malfunction has 
occurred in the system; (b) diagnosis considers the problem 
of root cause and location of the fault; and (c) 
accommodation attempts to correct a particular failure, 
through reconfiguration of the control decision. 

Some of the earlier techniques [1-3] dealt with the 
linear modeling of the nonlinear industrial systems and by 
assuming the presence of simple additive faults. Also the 
unmodeled dynamics and disturbances in the system were 
not taken into account and these terms can cause deviations 
of the process variables creating degraded performance and 
false alarms. Consequently, robust failure detection 
algorithms, which could overcome the unavoidable errors 
due to modeling [2], were attempted.  A robust diagnosis 
algorithm is expected to avoid false and missed alarms.  

With the development of advance nonlinear modeling 
techniques [4], it is now possible to model nonlinear faults, 
which occur in the dynamic system. This helps to 
understand the type of fault and develop a maintenance 
schedule. However, most of the available schemes [3] for 
fault detection have been for continuous-time systems. 
There has been limited previous work on fault diagnosis of 
discrete time system [5], but has mainly been on simple 
faults rather than complex faults. Due to the difficulty of 
mathematical rigor involved in showing the robustness of 
the diagnostic schemes, not many [5] have been developed 
for discrete time systems.  It is not possible to directly 
extend the fault detection schemes in continuous-time to 
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discrete-time similar to control [9]. The design and analysis 
of robust failure diagnosis based on nonlinear modeling 
techniques in discrete-time require investigation since no 
known results are reported in the literature.   

In this paper, a novel fault detection scheme is 
developed for a class of nonlinear discrete time systems 
using mild assumptions such as full state availability and a 
priori bounds on certain uncertainties.  These assumptions 
are commonly found in the fault detection and diagnosis 
literature [6-7]. The faults considered are nonlinear and 
incipient in nature rather than simple additive or abrupt 
faults. Nonlinear estimator is designed using the online 
approximation approach in discrete-time (OLAD) [4] with 
an adaptive scheme for the adjustable parameters in order to 
capture the fault characteristics.    

Finally, it is important to note that schemes developed 
in continuous-time cannot be directly converted to discrete-
time systems [8].   

The paper is organized as follows: Section II outlines 
the type of dynamic system under study and describes the 
nonlinear estimator along with the failure model. In Section 
III, the synthesis of the fault diagnosis scheme is introduced.  
The robustness of the diagnosis scheme is shown 
extensively with mathematical proofs using Lyapunov 
theory in Section IV. In Section V, the fault detection 
scheme is simulated on a simple mass damper system.  

II. PROBLEM FORMULATION 
The objective of a diagnostic scheme is to detect any 

incipient faults, and to approximate the nonlinear behavior 
of faults using online approximation models like neural 
networks.  To capture some of the characteristics of practical 
failure situations, in this section we present a nonlinear 
modeling framework in discrete-time for representing 
failures and developing estimation schemes.  The faults are 
detected by monitoring deviations in the system dynamics.  

The discrete time system under consideration is 
described by  

0( 1) ( ( ), ( )) ( ) ( ( ), ( ))x k x k u k k k f x k u kζ+ = + Π −         (1) 

where nx ∈ℜ is the state vector, mu ∈ℜ is the input vector, 
, : n m nfζ ℜ ×ℜ → ℜ are smooth vector fields, 

0 0k ≥ is the 

starting time of the failure, ( ( ), ( ))x k u kζ  represents the 
nonlinear dynamics, ( ( ), ( ))f x k u k  represents the incipient 

failure and 0( )k kΠ − , a n n×  square matrix function 
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representing the time profiles of failures.  
The time profiles of the incipient faults are modeled by 

0 0 0 01 2( ) ( ( ), ( ), ...., ( ))nk k diag k k k k k kΠ = Ω Ω Ω− − − −    
where  

i-

0
( )

0

0  if    
1 -  ,  if  i e κ τ

τ
τ

τ

<
Ω =

≥

⎧
⎨
⎩

i=1, 2… n             (2) 

and iκ > 0 is an unknown constant that represents the rate at 
which the failure in the state xi occurs.  For large values 
of iκ , the time profile function ( )i τΩ approaches a step 
function to model an abrupt failure. 
Remark 1: The failure representation described by (1) 
provides a general framework for characterizing a wide class 
of faults since the magnitude of faults in practical 
applications depends upon the system state and input [6].  
The nonlinear failure representation in (1) captures the 
interdependencies of f on the state x and the input u. 
Remark 2:  Since the failure representation given by (1) is a 
function of input u, the fault detection scheme works even 
for the case when the feedback control compensates the 
effect of small incipient faults on the system output which is 
similar to the case of continuous-time [6]. 
Remark 3: Nonlinear fault diagnosis techniques are 
required in order to approximate unknown nonlinear 
functions during modeling of large class of failures. 
 
Assumption 1: The fault detection scheme is based on the 
assumption that the state and the input vectors are bounded 
before and after the fault, which is a standard assumption 
commonly found in the literature [6]. In other words, there 
exist two compact sets , ,  n mUχ ⊂ ℜ ⊂ ℜ  

such that ( )  and ( )x t u t Uχ∈ ∈  for all 0k ≥ .   
 
Assumption 2: States are assumed to be measurable.   
 

The diagnostic algorithm developed in this paper deals 
only with detection and not fault accommodation. Past work 
on fault accommodation could be found elsewhere [7]. 
Under normal operation of the system i.e. without any faults 
present the healthy system described by (1) can be written as 

( 1) ( ( ), ( ))nl nlx k x k u kζ+ =  

= 0( ( ), ( )) : ( ( ), ( )) ( ( ), ( ))nl nl nlx k u k x k u k x k u kζ ζ ζ= + %  
where the superscript nl means that the states are under 
"normal" operation, 

0
( ( ), ( ))nlx k u kζ  represents the known 

nominal dynamics and ( ( ), ( ))nlx k u kζ% represents the 
modeling errors, which may arise due to the discrepancy 
between the nominal model and the actual nonlinear system.    

The general approach of robust fault detection is to use 
a small threshold in the residual error to account for 
modeling uncertainties, and if the system dynamics change 
above the predefined threshold, then a failure is declared.   

On the other hand, another approach attempts to decouple 
the effects of faults and modeling errors as a way of 
improving robustness.  In this paper, we consider the two 
cases where the modeling errors are assumed to be zero 
i.e. ( ( ), ( )) 0nlx k u kζ ≡%  for the first scenario whereas it is 
assumed to be bounded above for the second case such that 
(Frobenius norm [11]) 

0( ( ), ( )) ,  ( , ) ( ),nlx k u k x u Uζ ζ χ≤ ∀ ∈ ×% %  

where
0 0ζ ≥%  is a known constant.  Some of the diagnostic 

schemes for continuous time systems are already reported in 
the literature [8] whereas this paper deals with such schemes 
in discrete-time.  

In many applications, there are often more state 
variables than sensors.  Therefore the availability of full 
state feedback vector ( )x k as highlighted in Assumption 2 is 
a critical and limiting assumption.  Next, we present the 
fault diagnosis scheme in discrete-time. 

III. FAULT DETECTION SCHEME 
Consider the following nonlinear estimator  

0
ˆ ˆˆ ˆ( 1) ( ) ( ( ), ( )) ( ( ), ( ); ( )) ( )x k Ax k x k u k f x k u k k Ax kζ θ+ = + + −     (3) 

where ˆ nx ∈ ℜ is the estimated state vector, f̂ is the online 

approximation approach in discrete-time (OLAD), ˆ qθ ∈ ℜ is 
a set of adjustable parameters, and A is n n× a constant 
design matrix chosen by the user.    

The initial conditions for the estimated model (3) 

0
(0)x̂ x= and

0
ˆ ˆ(0)θ θ= , are selected so that

0
ˆ, ) 0ˆ ( ,f x u θ = for 

all x χ∈  and u U∈ . Given the initial conditions, the next 
step involves the development of an adaptive law for the 
unknown parameters ˆ( )kθ , so that the online approximator 
ˆ ˆ( ( ), ( ); ( ))f x k u k kθ  approximates the failure 

function 0( ) ( ( ), ( ))k k f x k u kΠ − . Accurate construction of 
models of the nonlinear system would enable to track any 
system changes and helps in developing a robust diagnostic 
algorithm.   

For the online approximation based models, ( , )x u is the 
input vector to the model, ˆ( )kθ  is the vector of adjustable 
parameters, and ˆ ˆ( , ; )f x u θ is the output.  In this paper, we 
consider a general class of sufficiently smooth online 
approximators; that is f̂ C∞∈ . 
Remark 4: Once an approximator achieves close 
approximation of the failure dynamics, this online 
approximator f̂ may be used not only to detect but also to 
diagnose the failures.  In some cases, the approximator can 
be used for failure accommodation. 
Remark 5: In this paper, the failure mode described by f are 
considered unknown. 

Next define the state estimation error as ˆe x x= − . 
Under the ideal conditions with no modeling errors, a fault 
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is declared active whenever the output of the online 
approximator ˆ ˆ( ( ), ( ); ( ))f x k u k kθ becomes nonzero.  An 
intuitive way of generating robustness with respect to 
modeling uncertainties is to start the adaptation whenever 
the state estimation error is above a certain threshold.  This 
can be easily implemented by using a dead-zone 
operator [.]D , which is defined for improving robustness of 
the fault diagnosis scheme as 

0,  if ( )
[ ( )]

( ), if ( )
e k

D e k
e k e k

ε
ε

⎧ ≤⎪= ⎨ >⎪⎩
 

where ( )e k is the state estimation error in the current time 

instant and 0ε > is a design constant similar to the case of 
continuous-time [6]. However, the adaptive update will be 
different between the continuous and discrete-time cases. 
The selection of the dead-zone sizeε clearly provides a 
tradeoff between reducing the possibility of false alarms 
(robustness) and improving the sensitivity of the faults.  In 
the next section, the dead-zone size ε (in terms of modeling 
uncertainty bound 0ζ% ) is derived that guarantees robustness 
in the presence of modeling uncertainties satisfying the 
given bound. 

IV. STABILITY AND PERFORMANCE ANALYSIS 
The fault diagnosis scheme described above has 

interesting stability properties, performance and robustness 
properties which are discussed in this section by using novel 
parameter update law and dead-zone operator. These results 
are obtained for the case of incipient failures which occur at 
some unknown time 0k and develop with unknown rates iκ .  
The incipient failure changes the dynamics of the system but 
it is assumed to retain the boundedness of the state and input 
variables [6] (Assumption 1). 

In an ideal case, where there is no modeling errors and 
prior to the occurrence of a fault i.e. [ )00,k k∈ , the state 
estimation error is given by 

ˆ( 1) ( ) ( ( ), ( ); ( ))ˆe k Ae k x k u k kf θ+ = −              (4) 

and the parameter estimate θ̂  can be selected as  
ˆ ˆ( 1) ( ) ( 1)Zek k kθ θ α+ = + +                 

whereα > 0 is the learning rate or adaptation gain and Z  is a 
q n× matrix defined as  

ˆ ˆ( , ; )
ˆ

T

f x u
Z

θ

θ

∂
=

∂

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

               (5) 

Since 
0

θ̂ is chosen such that
0

ˆ, ) 0ˆ ( ,f x u θ = for all x  and u , 

the vector 0 0
ˆ ˆ( , ) (0, )e θ θ=  is an equilibrium point for the 

system in (4). Therefore, ( ) 0e k =  and 
0

ˆ ˆ( )kθ θ= for 

[ )00,k k∈ .  
Similarly, in the presence of modeling errors, (4) becomes 

( ( ), ( )) ˆ( 1) ( ) ( ( ), ( ); ( ))ˆe k Ae k x k u k x k u k kfζ θ+ = + −%  (6) 
According to the robust adaptive law due to the dead-

zone operator  
ˆ ˆ( 1) ( )  [ ( 1)]Z D ek k kθ θ α+ = + +             (7) 

The output of the online approximator remains zero as 
long as ( )e k ε≤ . To determine an appropriate value forε , 

we derive an upper bound for ( )e k  in the 

case
0

ˆ, ) 0ˆ ( ,f x u θ = .  From (6), we 

have
1

( ) ( ( 1), ( 1))
k

k j

j
e k A x j u jζ−

=

= − −∑ % . Since the matrix A is 

stable, there exist two positive constants μ and λ  such that 

(Frobenius norm) 1k kA λμ≤ ≤ . Therefore 

0
(1 )( )
(1 )

k

e k μλζ
μ

−
≤

−
% .  This implies that if the size of the 

dead-zone is selected as 0

(1 )μ
λζε
−

=
%

, ( )e k  remains within the 

dead zone for all 0k k≤ and the output of the approximator 
remains zero.   Therefore, the adaptive scheme given by (7) 
is robust in the sense that it is not affected by modeling 
errors provided 

0( ( ), ( ))x k u kζ ζ≤% % . By letting 
0( ( ), ( ))x k u kζ ζ=% %  

for all time k, it is easy to verify that the selected bound for 
the dead-zone sizeε is not conservative. 

Next during the time interval 0k k≥ , after the 
occurrence of the fault, using (1) and (3), the state 
estimation error satisfies 

( 1) ( ) ( ( ), ( ))e k Ae k x k u kζ+ = + %                       

               0
ˆ( ) ( ( ), ( )) ( ( ), ( ); ( ))ˆk k f x k u k x k u k kf θ+Π − −  

( ) ( ( ), ( ))Ae k x k u kζ= + +%
0

*ˆ( ) ( ( ), ( ), )k k f x k u k θΠ −   

 ˆ ˆ( ( ), ( ); ( )) ( )f x k u k k kθ υ− +                 (8) 
where ( )kυ is the approximation error given by         

*
0( ) ( )[ ( ( ), ( )) ( ( ), ( ), )]ˆk k k f x k u k f x k u kυ θ= Π −−      (9) 

and *θ is an optimal value chosen such that it minimizes the 

2L norm distance between ˆ ˆ( , ; )f x u θ  and )( ,f x u  for all (x, 

u)∈ Uχ ×  provided *θ is constrained to a compact 

set qw ⊂ ℜ . Based on the smooth assumptions 
on ˆ)ˆ ( , ,f x u θ [5], (8) can be expressed as 

*
01) ( )) [ ( ˆ( ( ) ( ), ( ( ( ), ( ), ))]e k Ae k x k u k I k k f x k u kζ θ+ = + − − Π −%  

   * *
ˆ ˆ( , ; ) ˆ ˆ( ) ( , ; , ) ( )ˆ
f x u

x u k
θ

θ θ θ θ υ
θ

∂
+ − + Δ +

∂
       (10) 

where
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* **
ˆ ˆ( , ; )ˆ( , ) ( ;

ˆ
ˆ ˆ, , , ( )ˆ ˆ( , ; ) )

f x u
x u x ux u f f

θ
θ θ

θ
θ θ θ θ

∂
−

∂
Δ = − −   (11) 

with *; , )ˆ( ,x u θ θΔ represents the higher order terms of the 

Taylor series expansion of ˆˆ ( , ; )f x u θ  w.r.t to θ̂ .  Let 
* ˆθ θ θ= −% and * *

0( )]ˆ( ) ( , ; , ) [ ( ( ), ( ), )ˆI k kk x u f x k u kδ θ θ θΠ= Δ − − −

( )( ( ), ( ))x k u k kυζ+ +% , then error equation (10) becomes 

  1)( ( ) ( )
T

e k Ae k Z kθ δ+ = + +%                  (12) 
In a special case of linearly parameterized approximators 

the higher order term is identically equal to zero [6]. A fault 

is declared when the output )ˆ( ;,ˆ x uf θ  is non-zero.  Next the 
following result is stated regarding the performance of the 
fault detection scheme.  For the following, it is taken 
that ( )e k ε> . 

Remark 6: In the following text, improved parameter 
tuning schemes for the fault detection scheme is presented 
so that the PE condition is not required. 

Theorem 1: (PE condition not required) let the initial 
conditions for the nonlinear estimator be bounded in a 
compact set nS ⊂ ℜ . In the presence of modeling and fault 
dynamics reconstruction errors, consider the parameter 
update law given by 

ˆ ˆ ˆ( 1) ( )  D[ ( 1)] ( )TTk k Z e k I ZZ kθ θ α γ α θ+ = + + − −    (13) 

where  0 <  1 γ < is a design parameter. Then there exist two 

constants ed and dθ , denoted as the uniform ultimate bounds 

for the estimation error ( )e k and parameter 

error ( )kθ% respectively of the nonlinear estimator given by 

2

max max2

max

1
(1 )

1ed A A
A

ξ ρ σ
σ

= + −
−

⎡ ⎤
⎣ ⎦        (14) 

2 2 2

max max(1 ) (1 ) (2 )

(2 )
dθ

γ γ θ γ γ θ γ γ θ

γ γ

− + − + −
=

−

%
       (15) 

provided the following conditions hold  

 2 1Zα <                                   (16) 
                                     0 <  1 γ <                                   (17) 

                        max max
1

( )A Aλ
σ

<=                        (18) 

2 2 2 2 2

max max max2

max

1
(1 ) 2 (1 )

1
A A A

A
σ η γ α αγ α

α
= + − + −

−
⎡ ⎤⎣ ⎦       (19) 

where maxZ Z≤ ,η in (19) is given by 
2

1

1 Z
η

α
=

−
,  

ξ and ρ are given in (24) and (25). 
Proof: Consider a Lyapunov candidate as 

1
( ) ( ) [ ( ) ( )]T TV e k e k tr k kθ θ

α
= + % %  

The first difference is given by 

1 2 ( 1) ( 1) ( ) ( )T TV V V e k e k e k e kΔ =Δ +Δ + + −=  

     
1

[ ( 1) ( 1) ( ) ( )]TTtr k k k kθ
α

θ θ θ+ + + −% % % %  

Consider the first term in the first difference VΔ , 
substituting equation (12), using ( ) ( )Tk Z kθΨ = %  and 
combining terms, we get 

1 ( ) ( ) 2[ ( )] ( ) ( ) ( )T T T TV e k A Ae k Ae k k k kΔ = + Ψ + Ψ Ψ  

[ ( )] [ ( )] 2[ ( )] [ ( )]T Tk k Ae k kδ δ δ+ +  

( ) ( )2[ ( )] ( )T Tk k e k e kδ+ Ψ −       (20) 
Next consider the second term and obtaining its first 
difference 2VΔ , as 

2 ( )1
1

[ ( 1) ( ) ( )]T TV tr k k k kθ θ θ θ
α

+Δ = + −% % % %  

by using the parameter update law (13), dead-zone operator 
and defining * ˆθ θ θ= −% , one obtains 

2

1
{[ ( ) ( ) ( )T T T T TTV tr k e k A Z k ZZθ α α θ

α
Δ = + +%  

   ˆ( ) ( )]T T T Tk Z I ZZ kαδ γ α θ+ − −  

   [ ( ) ( ) ( ) ( )Tk ZAe k ZZ k Z kθ α θ α δ× + + +%  

   
~

ˆ( ) ( ) ( )}T TI ZZ k k kγ α θ θ θ− − − % %       (21) 

Combining 1VΔ  from (20) and 2VΔ  from (21), applying 

( ) TTtr xx x x= , adding and 

subtracting
21 [ ( ) ( )]T Ttr I ZZ k kα α θ θ− − % % , we get 

2[ ] ( )( )( ) ( ) ( )T T TV e k I A A e k Ae k kΨ +Δ ≤ − − +  

         2[ ] [ ] ( ) ( ) 2[ ] ( )( ) ( ) ( )T T TAe k k k k k kδ δ+ Ψ Ψ + Ψ  

    [ ] [ ] 2[1 ][ ] ( )( ) ( ) ( )T T T kk k Ae kZZδ δ α+ − − Ψ  

        [2 ] ( ) ( )T TZZ k kα− − Ψ Ψ  

2[1 ( )[ ]( ) ( ) ( )] {T T T T TZZ k k ZZ e k A Ae kα δ α− − Ψ +

[ ]2 ( ) [ ] [ ] [ ]( ) ( ) ( ) }TTAe k k k kδ δ δ+ +  
2 2

max
)( ) (

1
[ (2 ) 2 (1 )TI ZZ k kα γ γ γ γ θ

α
θ θ−− − − ×% %

2 2

max
] 2 [ ]( ) ( )T TZZ Ae kI kγ θ γ α− + − Ψ  

max( )[ )]2 ( 2T TI ZZ k k A ZZIα δγ γ α+ − +Ψ − ×  

max ( )Z e kθ
max2 ( ( ))TI ZZ k Zγ θα δ−+     (22) 

and by completing the squares for ( )kΨ  in (22), one obtains 
2

max

2
( ) ](1 [1) Te kV A Z Zσ α ×Δ ≤ − − − −  
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2

1
[ 2 [ ]] [ ( ) ( )]

1
( ) T T

T
Z Z I Ae k k

Z Z
k ZZα γ δ

α
α+ × +

−
Ψ − −  

2

max

2
( )

1
2 ( ) [ (2 )T kA e k I ZZξ ρ γ γ θ

α
α+ − × −− %  

 2 2

max max( )2 (1 ) ]k θγ γ θ γ θ− − −%                (23) 

where ξ and ρ are given as  
2
max max max(1 )N Z Zξ ηδ γ α θ= + −                     (24) 

and 
2

max max max

2 2 (1 )N NZ Zηδ δρ γ α θ= + −                     (25) 

with ( ) Nkδ δ≤  as the uniformly bound [6]. To show the 

bound of the estimation error ( )e k  and the parameter 

error ( )kθ% , completing the squares for ( )kθ%  using (23), 

we get  
2

max

2

2 2
max max

max2

(1
(1 [ ( ) ( ) ]

(1 )
)

)
A

V A e k e k
A A

ξ ρ

σ
σ

σ −
Δ ≤ − − −

−
−  

     ][1 TZ Zα ×− −  
2

1
[ 2 [ ]] [ ( ) ( )]

1
( ) TT

T
k Z Z I ZZ Ae k k

Z Z
α γ δ

α
α+ × +

−
Ψ − −  

2

max

21 2(1 )

(2 )
(2 )TI ZZ

γ
θ θ

α γ
α γ γ

−
− −

−
− − ⎡ ⎤× ⎢ ⎥⎣ ⎦

%        (26) 

where 2

max

2
max

2
21 (1 )

(2 )
TI ZZ

γ γ
ρ ρ θ

α γ
α θγ−

= +
−

−
⎡ ⎤

× +⎢ ⎥
⎣ ⎦

  

Then 0VΔ ≤ as long as the conditions in (16)-(18), 
hold and the quadratic term for ( )e k  in (26) is positive, 
which is guaranteed when  

2 2 2
max max max2

max

(( )
1 1 )

(1 )
e k A A A

A
ρξ ξ σ

σ
⎡ ⎤> × + + −⎣ ⎦−

      (27) 

Similarly, completing the squares for ( )e k using (26), 
we get 

2

max 2

max

2

max ](1 [1
(1

) ( )
)

TV A Z Z
A

Ae kσ α
σ

ξ
×−Δ ≤ − − −

−

⎡ ⎤
−⎢ ⎥

⎣ ⎦
2

1
[ 2 [ ]] [ ( ) ( )]

1
( ) TT

T
k Z Z I ZZ Ae k k

Z Z
α γ δ

α
α+ × +

−
Ψ − −

2

max

2
(2 ) 2 (1 )

1 TI ZZ γ γ θ γ γ θ θ ρα
α

− − − − −− ⎡ ⎤⎣ ⎦
% % %    (28) 

where 
2 2

max

2

max 2 2
max2

(1 )
1 T

A

A

I ZZ

ρ
σ

ξ

ρ
α

α

γ θ
−

−
= −

−

⎡ ⎤
⎢ ⎥⎣ ⎦ +%  

Then 0VΔ ≤ as long as (16)-(18) hold and the quadratic 

term for ( )kθ%  in (28) is positive, which is guaranteed when  
2 2 2

max max(1 ) (1 ) (2 )
( )

(2 )
k

γ γ θ γ γ θ γ γ ρ
θ

γ γ

− + − + −
>

−

%
%      (29) 

From (27) and (29), VΔ is negative outside a compact 
set Μ . According to a standard Lyapunov theorem extension 
[11], it can be concluded that the state estimation error ( )e k  

and the error in parameter estimate ( )kθ%  are uniformly 
ultimately bounded.  
Remark 7: The output of the online approximator 

ˆ( , ;ˆ )x uf θ  tuned with the update law in (13) remains zero as 
long as |e(k)| ε≤ (dead zone).  Hence a failure is identified 
when the bounded error ( )e k exceeds the dead zone.  

V. EXAMPLE AND DISCUSSION 
The fault detection developed is tested onto a simple 

mass damper system [6]. The discrete time states space 
model equivalent to a continuous time mass damper system 
is given as 

1 2 1( 1) ( ) ( )x k Tx k x k+ = +                 

2 1 2 1 1( 1) ( ( ) ( )
1 {x k T F c x k k x k
m

+ = − − 3
0 1 2( ) ( )} ( )k k x k x kδ−Π − +        

                           (30) 
Where 1( )x k and 2 ( )x k  are the states of the system and 
represent the displacement and velocity term of the mass 
damper system. The external force (input) applied to the 
system is defined as 5sin( )kTF = . The 
term

0 1
3( ) ( )k k kxδΠ −  is the actual failure term, and in this 

simulation, we assume a fault of incipient nature. 
Also

1

2
0k aδ = , 0

0 0

( )( ) ( )(1 )k kk k H k k e κ− −Π − = − −  and 
where H  is the unit step function. The actual system given 
in (30) is studied using the following nonlinear estimator 
scheme  

1 2 1
ˆ ˆ ˆ( 1) ( ) ( )x k Tx k x k+ = +  

2 1 2 1 1 2 22ˆ ( 1) ˆ( ( ) ( ) ( ) ( ))
1

{ (x k T F c x k k x k c x k x k
m

+ = − − + −

1 1 1 22
ˆ ˆˆ ˆ( ) ( )) ( , ))} ( )(k x k x k f x x kθ+ − − +                   (31) 

where 1ˆ ( )x k and 2ˆ ( )x k are estimated states of 1( )x k  and 

2 ( )x k . The values of the parameters for the actual system 
and the estimator are given as follows 

1m = , 1 0.5c = , 1 0.5k = , 2 5.0c = , 2 0.55k = , 0 1a = , 

0.1κ = , 1 (0) 0.5x = , 2 (0) 0.1x = , and 0.01T = . The 
failure is assumed to occur at 10k = sec, and a spring 
stiffness fault (spring hardening) is induced in the actual 
system. The online approximator (OLAD) used is a single 
layer radial basis function network with ten 
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neurons,
10

2 2

1 1
1

ˆˆ ˆ( , ) exp( / )
N

i i
i

f x x cθθ σ
=

=

= − −∑ . The centers 

ic are randomly chosen in the interval [-9, 9] and widths 
as 0.911σ = .  

Figure 1 shows the normalized norm of the state 
estimation error, prior to the time instant 10k = sec., the 
error is small. At the instant of the fault, the error increases 
to a large value.  Hence the fault is detected and the online 
approximator is triggered to learn the occurring fault in the 
system. Once the OLAD adapts to the actual failure term, 
the state estimation error attains a uniform bound. Figure 2 
shows the behavior of the system prior to and after the fault 
occurs. The term 2 1 2 1 1( 1) ( ) ( )fmx k c x k k x k F+ + + − is 

simulated in Fig. 2, where 2 ( 1)fx k + , is the value 

of 2 ( 1)x k +  i.e. 

2 2 2 2 2( 1) ((1/ ) ( 1)) ((1/ ) ( )) (( / ) ( )) ( )f f fx k x k x k T x k x kτ τ τ+ = + − − +

where, in this simulation it is taken that 0.1τ = . Hence it 
could be seen that the system behavior changes significantly 
after the failure. Hence by using Figures 1 and 2 the fault 
occurring in the system could be detected.  

0   10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Time (sec)  
Figure 1: Normalized Euclidean norm of the state 
estimation error.  
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Figure 2: Evolution of 2 1 2 1 1( 1) ( ) ( )fmx k c x k k x k F+ + + − . 

Figure 3 shows the evolution of the actual failure term 
(solid line) and the response of the online approximator 
(dashed line) scheme in discrete-time. The OLAD scheme is 
tuned using the weight update law given in (13). The values 
of the parameters used for the parameter update law are: 

0.01α =  and 0.454γ = . 
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Actual failure term
OLA response

 
Figure 3: Evolution of the actual failure term (solid line) 
and online approximator (dashed line). 
 

From Fig. 3 it is evident that the OLAD scheme learns 
the fault satisfactorily. Hence the scheme not only detects 
the fault but also learns the fault occurring in the system 
satisfactorily.  

 
The above simulation results show the implementation, 

robustness and the performance of the fault detection 
scheme. Also the boundness of the estimation error is shown 
in the result. Further based on the mathematical proofs and 
the simulation results, it was seen that the proposed scheme 
could be used as a robust fault detection tool for nonlinear 
discrete time systems. 
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