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Proceedings of the 2006 IEEE FrBO7.4
International Conference on Control Applications
Munich, Germany, October 4-6, 2006

Neuro Control of Nonlinear Discrete Time Systems with Deadzone
and Input Constraints

Pingan He, Wenzhi Gao, and S. Jagannathan

Abstract- A neural network (NN) controller in discrete time
is designed to deliver a desired tracking performance for a class
of uncertain nonlinear systems with unknown deadzones and
magnitude constraints on the input. The NN controller consists
of two NNs: the first NN for compensating the unknown
deadzones; and the second NN for compensating the uncertain
nonlinear system dynamics. The magnitude constraints on the
input are modeled as saturation nonlinearities and they are
dealt with in the Lyapunov-based controller design. The
uniformly ultimate boundedness (UUB) of the closed-loop
tracking errors and the neural network weights estimation
errors is demonstrated via Lyapunov stability analysis.

I. INTRODUCTION

U NKNOWN actuator deadzone compensation in
continuous time is treated in the seminal work of [1] for

a known nonlinear system. By contrast, in [2], compensation
of non-symmetric deadzones in discrete time is considered
for linear systems whereas in [3], a fuzzy logic compensator
is proposed for constant non-symmetric input deadzones in
discrete time. On the other hand, in [4], the effect of the
deadzone nonlinearity is overcome by using a neural network
(NN) compensator in continuous time.

In the above works [1-4], the unknown deadzone is
compensated without using any constraints on the input
magnitude. In fact, physical limitations dictate that hard
limits be imposed on the input magnitude to avoid damage to
or deterioration of the system. The actuator magnitude
constraints manifest themselves as saturation nonlinearities.
In this paper, we show how to consider both an unknown
deadzone and the input constraints for an uncertain nonlinear
system via a novel NN controller. The main contributions of
the proposed work are:
1) The saturation nonlinearity is introduced in our

controller design besides compensating for the input
deadzone so that the magnitude constraints of the
actuators can be modeled. This makes the Lyapunov
analysis quite involved;

2) The general case of non-symmetric time-varying
deadzones in discrete time is treated here compared to
the case of compensating a constant deadzone
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nonlinearity in discrete time [2, 3] and in continuous
time [1, 4]. The unknown deadzone is compensated
using a NN;

In Section II, we present background information on a
class of nonlinear systems and neural network approximation
property. In Section III, an inverse NN deadzone
compensation scheme is proposed and the throughput error is
shown to approach zero when the NN reconstruction error
and weights estimation errors converge to zero. Input
saturation nonlinearity is also discussed in that section.
Section IV presents the NN controller design by considering
uncertain nonlinear system dynamics, the unknown input
deadzones, and the input saturation. Section VI provides the
conclusions.

II. BACKGROUND

A. Nonlinear System Description
Consider the following nonlinear system, to be controlled,

given in the following form
x1(k+1) x2(k),

X2 (k + 1) =X3 (k),

X, (k + 1) = f(x(k)) + u(k) + d (k),
where x(k) =[x (k), X9T(k),...,xT(k)]T eRnm with each

xi (k) E Rm, i= 1, ..., n, xi (k) is the state at time instant k,
f(x(k)) e Rm is the unknown nonlinear dynamics of the

system, u(k) E Rm is the control input and d (k) E Rm is the
unknown but bounded disturbance, whose bound is given by
d (kI < dm.

Definition 1 (Tracking Errors): Given a desired trajectory,
Xd(k) E Rm, and its past values

Xd (k + i -n) E Rm, i = 1, ..., n, the tracking errors are defined
as

ei(k)= xi(k)-Xd(k+i -n), (2)

with each error ei(k) Rm . Combining (1) and (2), the error

system is given by
e, (k + 1) = e3(k),
e, (k + 1) = e, (k),

(3)
en(k+1)= f(x(k))-Xd(k+1)+u(k)+d (k)

0-7803-9796-71061$20.00 ©2006 IEEE 2836



The control objective is to show that ei(k) e Rm, i=1,..,n, is
bounded.

B. Approximation Property
For a suitable approximation of unknown nonlinear

functions, several neural network architectures are available.
In [6], it is shown that a continuous function f(x(k)) e C(S),
within a compact subset, S of Rn, can be approximated
using a single-layer NN

f(x(k))= WT0vTx(k) + c(x(k)), (4)
where w and v are target weights of the hidden to the output
and input to the hidden layers respectively, o(5(vTx(k)) denotes
the vector of activation functions at the instant k, and
£(x(k)) is the NN functional reconstruction error vector.
The neural network output is defined as

f(x(k)) = iT (k(VTX(k)) (5)
where w2(k) is the actual weight matrix. For simplicity,

0 TX(k)) is denoted as #(x(k)).
The input to the hidden layer weights, V, are selected at

random initially and will not be tuned. The output layer
weights w2(k) are tunable. It is demonstrated in [6] that, if
the number of hidden layer nodes is sufficiently large, the
norm of reconstruction error ||E(x(k))l can be made

arbitrarily small on the compact set so that the bound

11c(x(k)JI < cm holds for all x(k) E S .

III. DEADZONE AND NONLINEARITIES

A. Deadzone Nonlinearity
The time-varying deadzone nonlinearity is displayed in

Fig. 1. If r(k) and q(k) are scalars, the time-varying
deadzone nonlinearity is given by

ff1(&(k)) r(k) > b+ (k)
q(k) = h(r(k)) = 10 - b_(k) < -c(k) < b+(k) ' (6)

Lf2&((k)) r(k) < -b_ (k)
where r(k) and q(k) are the input and output of deadzone
function, b+(k) and b (k) are positive time-varying scalars,
and f (4(k)), f2 (r(k)) are nonlinear functions.

To compensate the deadzone nonlinearity, its inverse is
required. Therefore, following assumption is needed for the
inverse to exist.
Assumption 1: Both fi(4(k)) and f2(k)) are smooth,
continuous and invertible functions.

Note: The above assumption implies that fj(4(k)) and
f2 (r(k)) are either increasing or decreasing nonlinear
functions. In other words, h(r(k)) is either non-decreasing or
non-increasing function.
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Fig. 2. Inverse of a deadzone nonlinearity.
With Assumption 1, the inverse time-varying deadzone

function, h-1 (q(k)), is now given by

Ifi (q(k)) q(k) > o
r(k) h '- (q(k)) 0 q(k) = O (7)

l2(q(k)) q(k) < 0

where f1 1() and j2 1() are the inverse functions of f1()
and f2(.) respectively. The inverse time-varying deadzone
function is shown in Fig. 2.

B. Compensation ofDeadzone Nonlinearity
To offset the deleterious effects of deadzones, a pre-

compensator displayed in Fig. 3 is proposed [3]. The desired
objective of the pre-compensator is to make the throughput
from p(k) to q(k) equal to unity. Here, p(k) E Rm,

a(k)E Rm and q(k) E Rm are vectors.
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Fig. 1. Time-varying deadzone nonlinearity.

rDWbno reompensator

Fig. 3. Deadzone pre-compensator plus deadzone nonlinearity.

The pre-compensator consists of two parts [2]: a linear
part, p(k), designed to achieve the tracking of the reference
signal, and a NN part, which is used to cancel the deadzone
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by approximating the nonlinear function h-1 (p(k))- p(k). In
other words,

h 1(p(k))- p(k)
= '01 (V'p(k))+ -cl (p(k)) ,(8WI1Vi~iPcj i~~J (8)

wI 0 (p(k)) + ci (p(k))
where w1 E R'l'm and v1 E Rm" are the target weights, and

c (k) is the NN reconstruction error, with n1 the number of
hidden layer nodes. For simplicity, hidden layer activation
function A (vf p(k)) is written as A (p(k)).
The actual NN output is defined as iT (k)i (vTp(k)). For

simplicity, it is expressed as vT(k)A (p(k)), with

w1(k)c R'nm being the actual output layer weights. A total
of two single layer NNs will be used in the neural network
controller design whereas the third one is only meant for the
analysis of throughput error in Theorem 1 and it is not used
in the NN controller design.
Definition 2: The weight estimation errors of all the NN are
defined as

ivi(k) = w (k)- wi, i=I1 2, 3(9
Moreover, for convenience, define Ji(k) E Rm as

Ji(k) = wiT(k)'A1(k) , i = 1, 2, 3 . (10)
where Xi (k), i = 1,2,3, are the hidden layer activation
functions.

The deadzone function, h(.), defined in (6), is
approximated by using a single layer NN as

h(k) = W3 03(V3 (k) + C3 (-c(k)) , (I 1)
where w3 cRe xm and v3 E Rmxn are the target weights, and

83 (r(k)) is the NN reconstruction error with n3 the number
of hidden layer nodes. For simplicity, hidden layer activation
function b3 (vbT (k)) is written as )3 (k).
To show that the effectiveness of the proposed deadzone

pre-compensator, the following assumptions are required to
proceed.
Assumption 2: The activation function )3 (k) for the third
NN is differentiable over a compact set S, and its derivative

3' (k) is bounded over the compact set S by |t3(k# < 03m,n
with 03m E R+.
Fact 1: The activation functions are bounded by known
positive values so that

IAoi(kll < iim,i = 11,2,3 (12)

where /im E R+, i =1,2,3 is the upper bound for

,i(k), i = 1,2,3.
Assumption 3 (Bounded Ideal Weights): The Frobenius
norm [5] of the target weight matrix for all the NNs is

bounded above by known positive values
wim e R,i=1,2,3sothat

||will < wim I i = 1, 2, 3 . (13)
Assumption 4 (Bounded NN Reconstruction Errors): The
NN reconstruction errors ci (k), i= 1,2,3 are bounded above

over the compact set by cim E R+, i = 11,2,3 [5].
The next theorem shows that when the NN weight

estimation and the reconstruction errors of the NN pre-
compensator become zero, the throughput error, q(k)- p(k)
approaches zero.
Theorem 1 (Throughput Error): The throughput of the
compensator plus the deadzone is given by
q(k) = p(k)+ g(k)$l k) - g(k)c (p(k))+ CA((k)- C3 (h-l(p(k))) ,

(14)
with J1(k) defined in (10), _1(p(k)), p3((k)) and

83 (h (p(k))) are the NN reconstruction errors, and the g(k)
is defined as

g(k) T JO()3((k)) , (15)
where 0(k) E Rm is a certain value between ir(k) and

h '(p(k)). Given Assumptions (2) and (3), we can see that

g(k) bounded over the compact set S by gm E R+

jjg(k)j < gm, (16)
and

gm W3m3m, (17)
where 3bm and w3m are the upper bound for f3 (k) and w3,
and they are defined in Assumption 2 and 3 respectively.
From the Theorem 1, it can be concluded that when the

NN weights estimation and the NN reconstruction error goes
to zero, the throughput error, q(k)- p(k), approaches to
zero. This makes the deadzone pre-compensator plus the
deadzone equal to unity. It also implies that the effect of
deadzone is overcome by the proposed NN pre-compensator.
Proof: Proof is similar to that of Theorem 2. Due to space
consideration, it is omitted. U

C. Saturation Nonlinearity
The actuator limit can be modeled as saturation

nonlinearity with limit defined as umax. Using Fig. 1,
actuator constraint is expressed as

with sq(k) tei(k)gf < utao
U(k)

u sgn(q(k)) ||u(k)| > uma

with sgn( ) the sign function.

(18)

IV. NN CONTROLLER DESIGN

The control objective is to make the system errors, ei(k),
i = 1, ... n, small with all the internal signals uniformly
ultimately bounded (UUB). The proposed neural network
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controller consists of two NNs: one NN for deadzone
compensating and the other for estimating unknown
nonlinear dynamics plus tracking desired trajectory. The
input constraints are considered in the Lyapunov-based
controller design.

A. NN Controller Design

Case 1: ||u(kll <Umax.
Using (18), i.e., u(k)= q(k) and combining with (3) and

(14), we obtain
en (k + 1) = f(x(k))-Xd (k + i)+ p(k)+

g(k)('Jl (k)- el (p(k)))+ 63(40)- 63 (-1Wpk )+ d(k
A single-layer NN will be used to approximate the

uncertain nonlinear dynamics, f(x(k)), as

f(x(k)) = w2 2 x(k))+ c2 (x(k)) =w 02 (k)+ 2 (x(k)) ,(20)
and

f(x(k)) = wv2T(k)02( Tx(k))= wv2T(k)0jk), (21)

where w2 E Rn2 m and v2 E Rnmnn2 are the target

weights, w2 (k) E Rn2 m is the actual weight matrix, with n2
being the number of hidden layer nodes. For convenience,
the hidden layer activation function 02 (Tx(k)) is written

as)02(k). Choose

p(k) = len(k) - wT(k)02(k) + xd(k + 1), (22)
with I E Rm"m being the gain matrix. The error en (k + 1) is
obtained using (19) - (22) as

en(k + 1) = len(k) + g(k)4l (k) - 42(k) + d1(k), (23)
where J2 (k) is defined in (10), and d1 (k) is defined as

d, (k) =6s2 (x(k)- 9Wel (p(k))+ 64 ( (0)- 64 (h 1(p(k)))+ d (k)
(24)

Note in (24), dl(k) is bounded above by dim in the
compact set S due to the fact that E2 (x(k)), g(k), 84 ((k)),
E4(h (p(k))), and d (k) are bounded. The error system (3)
for the Case I can be rewritten as

el (k + 1) e2(k)
e2(k + 1) e3(k)

(25)
en (k + 1) = le, (k)+ g(k)4l (k)- J2 (k)+ d, (k)

Case 2: ||u(k)l > Umax.
In this case, p(k) is still defined as (22). Using (18),

taking u(k)= umax sgn(q(k)) into (3) gives

en (k + 1) = f (x(k))- Xd (k + Umax sgn(q(k))+ d (k). (26)
Combining (20) and (26) gives

en (k + 1) = W2 (2 2x(k))+ 2 (x(k)) (27)
Xd(k + 1) + Umax sgn(q(k)) + d (k)

Let us denote

Equation (27) is simplified as
en (k + 1) =W, 2(v2x(k))+ d2(k). (29)

where the term d2 (k) is bounded by d2m over the compact
set S given the fact the boundedness of C2 (x(k)), Xd (k + 1),
Umax, sgn(q(k)) and d (k). Using (29), the error system (3)
becomes

e, (k + 1) = e2 (k)
e2 (k + 1) = e3 (k)

(30)
en (k + 1) =WfT(vfx(k))+ d2 (k)

The structure of the proposed NN controller is depicted in
Fig. 4 where the controller structure is naturally derived from
the analysis presented above. Note that when the two NNs
are removed from the inner loop, the outer-loop controller
becomes a proportional controller.

B. Main Result.
It is required to show that the tracking errors (25) or (30),

the NN weights w (k) and 2(k) are bounded. In the
following theorem, discrete-time weight tuning algorithms
are given, which guarantee that both the tracking error and
the NN weight estimates are bounded.

Theorem 2: Consider the system given in (1), the input
deadzones (6) and the input constraints (18), and let the
Assumptions 1 through 4 hold. Let the NN reconstruction
errors, ci (), i = 1,2,3, disturbances d (k), the desired
trajectory, xd(k), and its past values be bounded. Let the
first NN weight tuning be given by

il (k + 1) = il (k)- al%sl (k)wT (k)0l (k)+ Ale, (k) (31)

with the second NN weights tuning be provided by

1i2(k+1) =12(k) -a22(k)(i24(k)k 2(k)+Be(k))T, (32)

where a, E R+, 2 E R+ I Rmxm ,AE Rmxm and B E Rmxm
are design parameters. Consider the deadzone compensator

r(k)= p(k)+wiT(k)0j(k) with p(k) given by (22). The
tracking errors in (3), the NN weightsw (k) and 2 (k), are
UUB provided the design parameters are selected as:

( 1) 0 < ati ||0i (kJ12 <I1,i = 1,12,

(2) IImax+<IBIn<,,

(3) A12+ BI2< 1,
6

(33)

(34)

(35)

where 1 is the maximum eigenvalue of the gain matrix 1.
Proof: See the appendix. X

d2(k) = £2 (x(k)) - xd (k + 1) + Umax sgn(q(k)) + d1(k). (28)
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Fig. 4. NN controller with unknown deadzone and magnitude constraints.

V. CONCLUSION

Learning-based NN controller was developed for a class
of uncertain discrete-time nonlinear systems with unknown
deadzones with input magnitude constraints. The magnitude
constraints are manifested in the controller design as
saturation nonlinearities. The proposed neuro controller
consisting of two NNs renders a satisfactory tracking
performance. Lyapunov analysis ensures the boundedness of
all the closed-loop signals in the presence of multiple
nonlinearities.

AJT (k) < --I|en (k llel(k2+1I+-llen (kV|2+
l\Jk$ 16 "'2

(A.5)

Since jjg(k)j < gm and O°< gm <1, we have jjg(k7j < 1.

Combined with the fact that IaX is the maximum eigenvalue
of the gain matrix 1, (A.5) can be simplified as

AJ\1(k)< I

max
I lien(kf +I 4I1(k2+8 2 , (A.6)

APPENDIX

Proof of Theorem 2
Case 1: ||u(kll <Umax.
(1) ° < gm <K1.

gn is defined in Equations (17). Define the Lyal
function candidate as

J(k) = J1(k) + J2 (k) + J3 (k),

where

punov

I11J2(k)II +I2ld1(kf| _I Il|e, (kf1
(2) 1 < gm .

Define J1(k) as

i T 1 TJ,(k= Yef(k)e1(k)+k 2 (A.7)

(A 1) and the J2(k) and J3(k) the same as those of (A.3) and
(A.4).

Similar to the procedure as the above, combining with
(25), we have

J1 ei (=ef(k)ei (k) + -en (k)en (k)1I1=l 16

J2 (k) =I-tr(wT (k)w1(k)) ,
a1

(A.2)

(A.3)

AJl(k)< IK/m2ax - 8g2 11en(k f +I2 I1 (k) +

1 21 2 f

2 2 16g
2P#

J3 (k) = tr(w§V (k)w2 (k)),
a2

ace R+ and a2 e R+ are design parameters (see Th
2), ei (k), i = 11 .... n are system tracking errors, wi (k), i
are the weights estimation errors, which are defin
Equation (9), and tr(.) is the trace of a matrix.

The first difference of J(k) is given by

(A.4) For gm >1 , we have

eorem 16e(k 2 en(kl,16 16~gm
and

1 1e1(k2 < 12 e1(k 2,
16 16g 2le,(

2840

(A.8)

(A.9)

(A.10)



(I - a,x1 |0, (k)||1) J, (k) + (wIT 01 (k) + Ale, (k))Comparing (A.6) and (A.8), in both cases 0 < gm < 1 and
1 < gm, we have

AJ (k)<
I

jm3ax - 8 2 1J en(kIf +I2 ll (k 2 +

22|J2(kJ| + 2ldl(kJl 1
2g el(kl1

The next step is to get the first difference of J2 (k) and
J3 (k). Based on the definition of (A.3), we have

AJ2 (k) - tr(w (k + )w (k + 1) - wf (k)w (k)) (A. 12)
a1

From the weights updating rule of (31), we obtain

iv-1(k + 1) = W (k + 1)- w,

wiv1 (k) - a,A(k)(w (k)A (k) + wiA (k) + Ale, (k)) (A.13)

Using 4 (k) =w (k) (k) in (10) to simplify (A. 13):

wi1 (k + 1) = wi (k) - a, A(k)(w (k)A (k) + wiA (k) + Ale, (k))

(A.14)

Simplifying (A.14) to get

AJ2 (k) < -(1 - a, I|4 (k)112) J, (k) + (w1T4 (k) + Ale, (k)) +

3w 2 O4m- IIJ,(k)112 + 311A||212 ax||ej(kjj2, (A. 15)

where 41(k) is defined in (10), wlm and Am are upper
bounds for ideal weight w1 and activation function 41(k)
respectively, and /max is the maximum eigenvalue of the
gain matrix I.

Similar to the above procedure, we can get AJ3 (k) as

AJ3 (k) < -(1 - a21102 (k)112) J2 (k) + (w2Tc02 (k) + Ble (k)) 2+
3W m2 2m - J2 (k)|2 + 311BI12 maxlle1(kII2. (A.16)

Combining (A. 11), (A. 15) with (A. 16), the first difference
of Lyapunov function AJ(k) can be written as

1~2 1 2 1 2
A k) 2

I

m.ax 8g2 Il|en(k)| - 2 jjlkAlj - l ||2(kll2y ~8gmn) 2 2

+ I|ldl(kf +3W2mO,j +3W2m 2m +

K31AI2l max +311BI1 Imax 1 2 )|el(k)||16gm)

-(1 -a2 l2(k)l 2) J2(k) +(wT02 (k) + Ble, (k)) 2 (A.17)

(A. 11) This implies that AJ(k) < 0 as long as (33) through (35)
hold and

(A.18)P,e (kAl > 2S
1 12

2 max8gm
or

(A.19)IIJ, (kll > VIDlM, or 11$2(kjj > 2D,m,

2 1where DIM dl2m + 3WImnln + 3W2tmm.2

Case 2: ||u(kll > Umax
The proof is similar to that of Case 1, and same conclusion

can be derived that AJ(k) < 0 .
In both Case 1 and Case 2, AJ(k)<o for all k greater

than zero. According to the standard Lyapunov extension
theorem [5], this demonstrates that en(k) and the weight
estimation errors are UUB. The boundedness of en (k)
implies that all the tracking errors are bounded from the error
system (3). The boundedness of jj;Jkjj and jj;2(k)j implies

that jw1 (kjj and j|wj(k)j are bounded, and this further

implies that the weight estimates w (k) and W2 (k) are
bounded. Therefore all the signals in the closed-loop system
are bounded.
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