
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Oct 2001

Metrics-Guided Quality Management for Component-Based Metrics-Guided Quality Management for Component-Based

Software Systems Software Systems

Sahra Sedigh
Missouri University of Science and Technology, sedighs@mst.edu

Arif Ghafoor

Raymond A. Paul

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
S. Sedigh et al., "Metrics-Guided Quality Management for Component-Based Software Systems,"
Proceedings of the 25th Annual International Computer Software and Applications Conference (2001,
Chicago, IL), pp. 303-308, Institute of Electrical and Electronics Engineers (IEEE), Oct 2001.
The definitive version is available at https://doi.org/10.1109/CMPSAC.2001.960631

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229175293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1718&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/CMPSAC.2001.960631
mailto:scholarsmine@mst.edu

Metria-Guided Quality Management for Component-Based Software Systems

Sahra Sedigh-Ali and Arif Ghafoor
School of Electrical and Computer Engineering

Raymond A. Paul
Department of Defense, OASD/C3I

Purdue University
West Lafayette, IN 47907-1285

{ sedigh,ghafoor} @ ecn . purdue.edu

Abstract

The growing reliance on Commercial-Off-The-Shelf
(COTS) components for developing large-scale projects in-
troduces a new paradigm in software engineering, which re-
quires the design of new software development and business
processes. Large scale component reuse leads to savings in
development resources, enabling these resources to be ap-
plied to areas such as quality improvement. These savings
come at the price of integration dificulties, performance
constraints, and incompatibility of components from mul-
tiple vendors. Relying on COTS Components also increases
the system’s vulnerability to risks arising from third-parq
development, which can negatively affect the quality of the
system, us well as causing expenses not incurred in tra-
ditional software development. We aim to alleviate such
concerns by using software nietrics to accurately quantijj
factors contributing to the overall quality of a Component-
Based System (CBS), guiding quality and risk nianagement
by identifiing and eliminating sources of risk,

1 Introduction

The paradigm shift to Commercial-Off-The-Shelf
(COTS) components appears inevitable, necessitating
drastic changes to current software development and
business practices [6, 71. With software development
proceeding at Internet speed, in-house development of
all system components may prove too costly in terms
of both time and money. Large-scale component reuse
or COTS component acquisition can generate savings
in development resources, which can then be applied to
quality improvement, including enhancements to reliability,
availability, and ease of maintenance. Prudent component
deployment can also localize the effects of changes made
to a particular portion of the application, reducing the
ripple effect of system modifications. This localization can
increase system adaptability by facilitating modifications

0-7695-1372-7/01 $10.00 0 2001 IEEE

Pentagon
Washington, DC 20453

ray.pau1 @ osd.pentagon.mil

to system components or integration code, which are
necessary for conforming to changes in requirements or
system design [4]. COTS component acquisition can
reduce time to market by shifting developer resources from
component-level development to integration. Increased
modularity also facilitates rapid incremental delivery,
allowing developers to release modules as they integrate
them and offer product upgrades as various components
evolve.

These advantages bring related disadvantages, including
integration difficulties, performance constraints, and incom-
patibility among products from different vendors. Further,
relying on COTS components increases the systems vulner-
ability to risks arising from third-party development, such
as vendor longevity and intellectual-property procurement.
Component performance and reliability also vary because
component-level testing may be limited to black-box tests,
and inherently biased vendor claims may be the only source
of information [15, 4, 131. Such issues limit COTS compo-
nent use to noncritical systems that require low to moderate
quality. Systems that require high quality cannot afford the
risks associated with employing these components [23,27].

One way of alleviating such concerns is by using soft-
ware metrics to guide quality and risk management in a
Component-Based System (CBS), accurately quantifying
various factors contributing to the overall quality, and iden-
tifying and eliminating sources of risk. Metrics can also
be used in guiding decisions throughout the software life
cycle, determining whether software quality improvement
initiatives are financially worthwhile [19, 22, 241.

In this paper, we outline research addressing the issues of
cost and quality management in CBSs. As in any develop-
ment or manufacturing process, software quality is achieved
at a cost. Our research uses metrics to quantify the concept
of quality, aiming to investigate the tradeoff between cost
and quality, and using the information gained to guide qual-
ity management. In the remainder of this paper, we describe
the details of our research, and the approaches we are pursu-
ing. Section 2 provides a summary of related research. Sec-

303

http://purdue.edu
http://osd.pentagon.mil

tion 3 elaborates upon the identification and collection of
software metrics. In Section 4, we describe software qual-
ity costs, and discuss models depicting the tradeoff between
cost and quality in CBSs. Section 5 discusses our approach
to metrics-based quality management for software systems.
The final section, sumrnarizes the preceding sections and
describes the impact of the research in hand.

2 Related Work

Considerable research has been conducted in software
metrics in the past two decades, especially on reliability
models, cost estimation, and application of software met-
rics [9, 16, 3, 211. The bulk of this research is restricted
to traditional (non-component-based) software systems. In
[22], a formal set of test and evaluation metrics is presented
for traditional systems, which similar to our set, is com-
prised of management, requirements, and quality metrics.
Both papers also investigate metrics-guided software reuse,
which is related to quality management in our research, but
the emphasis is on reuse decisions, not quality. [16, 31 con-
ducts an assessment of the impact of reuse on quality and
productivity in object-oriented systems. The metrics used
are size, reusability, effort, productivity, and number of de-
fects. These metrics can be used for CBSs, provided that
the notion of size is suitably modified.

Very little, if any, research has been conducted on the
economics of quality in CBS development. Cost models for
software reuse have been widely studied [2], but quality is
largely ignored in these studies. In [171, an integrated cost
model for software reuse is presented. This paper quanti-
fies reuse decisions in economic terms, and evaluates their
economic rationale by traditional investment analysis func-
tions such as return on investment and net present value.
The assessment is from a purely economic point of view,
and quality plays no role in deciding for or against software
reuse. COCOMO 2.0 [111 takes software reuse into ac-
count, and allows the use of Logical Lines of Code (LLOC)
as the standard measure. This model has limited applicabil-
ity to CBS, as COTS software, libraries, and auto-generated
code are excluded when counting the LLOC, nonetheless,
i t can be used for estimating component-level cost fac-
tors. The Constructive COTS Model (COCOTS) [1, 51, an
extension of COCOMO, addresses four sources of COTS
software integration costs, namely, the costs of (1) assess-
ing alternative components, (2) customizing the selected
COTS components, (3) development and testing of middle-
ware or integration code, and (4) increased risk manage-
ment efforts. Quality attributes such as correctness, avail-
abilityRobustness, and security are considered in the as-
sessment phase, but do not reappear in other phases. The
model we are currently developing can be applied at any
stage of the life cycle, and is aimed at determining the value

of quality improvement initiatives.
In other related work, the tradeoff between cost and reli-

ability has been widely studied, and several formulations for
optimizing software reliability have been proposed. In [121,
system-level reliability has been evaluated as a function
of component-level failure intensities, and the optimization
problem seeks to minimize the total cost of achieving the
desired reliability, by allocating specific failure intensities
to the components. This is of interest to our work, as we
seek to develop similar formulations for other software met-
rics.

3 Identification and Collection of Software
Metrics for CBSs

In any development process, models depicting the rela-
tionship between costs and quality can be utilized to guide
decisions regarding investments in quality improvement. In
the case of CBSs, accurately representing the relationship
between cost and quality can be particularly challenging, as
can be the integration of component-level cost-quality mod-
els, or system-level models defined for an individual quality
factor [12]. As in the case of traditional software environ-
ments, defining an appropriate set of software metrics can
be the first step in developing cost-quality models.

3.1 Metrics for Component-Based Systems

Central to the development of a CBS is the concept
of a software component, which has various definitions in
software engineering literature, including work by Hopkins
[131, where a software component is defined as “a phys-
ical packaging of executable software with a well-defined
and published interface.” This definition, as well as many
others, stresses the requirement of well-defined interfaces
for a component. The source code of most COTS compo-
nents is inaccessible to the designers of systems deploying
them, making highly structured interfaces essential for the
success of the design. This leads to an important difference
between metrics for CBSs and traditional systems, which
is the unavailability of “size” as a metric. Most traditional
metric sets incorporate the size of the source code, mea-
sured in Lines of Code (LOC) into several metrics. This
size is generally not known for COTS components, hence,
if a measure of program or component size is required, al-
ternate measures can be used, such as the number of use
cases supported by a given component, where a use case
refers to a business task performed by the application [26].
Another difference is in the concept of time-to-market. The
acquisition of components changes this concept, as their de-
velopment time may not be known, and cannot be incorpo-
rated into time calculations in a straightforward manner. For
CBSs, a simple delivery rate measure can be used in place

304

of the time-to-market measure. One proposed measure is
based on the number of use cases divided by the elapsed
time in months [26].

Metrics can guide risk and quality management, help-
ing to reduce risks encountered during planning and exe-
cution of software development, resource and effort allo-
cation, scheduling and execution, and product evaluation
[22, 241. Risks can include performance issues, reliabil-
ity, adaptability, and return on investment. Risk reduction
can take many forms, such as using component wrappers
or middleware, replacing components, relaxing system re-
quirements, or even issuing legal disclaimers for certain
failure-prone software features. Metrics let developers iden-
tify and isolate these risks, then take corrective action. The
key to success is selecting appropriate metrics- especially
metrics that provide measures applicable over the entire
software cycle and that address both software processes and
products. Selection criteria for the metrics set also include
usefulness, clarity, and cost-effectiveness [191.

Based on our previous research [22, 241, we propose a
set of thirteen system-level metrics for CBS software engi-
neering, as described in Table 1. These metrics help man-
agers select appropriate components from a repository of
software products and aid in deciding between using COTS
components or developing new components. The primary
considerations are cost, time to market, and product quality.
We can divide these metrics into three categories: manage-
ment, requirements, and quality.

The management metrics include cost, time-to-market,
system resource utilization, and software engineering en-
vironment. These metrics can be used for resource plan-
ning or other management tasks, or utilized by Enterprise
Resource Planning (ERP) applications. The cost metric
measures the overall expenses incurred during the course
of software development. These expenses include the costs
of component acquisition, integration, and quality improve-
ments to the system. We discuss this metric in detail in the
next section. The time-to-market metric is a measure of the
time needed to release the product, from the beginning of
development and COTS acquisition to delivery. This metric
can also be modified to evaluate the speed of incremental
delivery, by measuring the amount of time required to de-
liver a certain fraction of the overall application functional-
ity. System resource utilization determines the percentage
of target computer resources that will be consumed by the
system. The software engineering environment metric is a
measure of the capability of producing high quality soft-
ware, and can be expressed in terms of the Software Acqui-
sition Capability Maturity Model (SA-CMM) [101.

The requirements metrics include measures of require-
ments conformance and requirements stability of the CBS,
and enable monitoring of the specification, translation, and
volatility of requirements, as well as the level of adherence

to the requirements.
The quality metrics include adaptability, complexity of

interfaces and integration, integration test coverage, end-
to-end test coverage, reliability, and customer satisfaction.
Adaptability is a measure of the flexibility of the system,
and evaluates the ability of the system to adapt to changes
in requirements, whether as a result of system redesign, or
to accommodate multiple applications. The complexity of
interfaces and integration has also been chosen as a qual-
ity metric, as overly complex interfaces or integration code
complicate testing, debugging, and maintenance, degrading
the quality of the system. Two measures of test coverage
are included in the metric set: integration test coverage, and
end-to-end (E2E) test coverage, where each metric indicates
the fraction of the system that has undergone the respec-
tive test. The reliability metric estimates the probability of
fault-free operation of the system, and can be obtained by
techniques similar to those used in traditional systems, in-
cluding fault injection to the integration code. The fault
projiles metric measures the cumulative number of detected
faults. Finally, the customer satisfaction metric evaluates
the degree to which the software has met the expectations
and requirements of the customer. This metric can be es-
timated before final product delivery, using beta releases to
estimate predictors of customer satisfaction. Sample predic-
tors include schedule requirements, management maturity,
culture of the customer, and marketplace and knowledge of
the customer.

3.2 Relationships among Metrics

The metrics we have proposed may not be independent
of each other, and analyzing the relationships among them
can yield valuable information for decision making regard-
ing investments in quality improvement for CBSs. The most
obvious relationship arises among the cost metric and qual-
ity metrics such as reliability. More subtle relationships
among the metrics also exist. For instance, time-to-market
is a critical management metric for many applications, as
it may determine the commercial viability of the product.
Delayed product releases due to extensions to phases such
as testing and debugging will cause a loss of revenue, and
in extreme cases, the market may be lost to a competitor
with an earlier product release. Premature release of the
product may lead to lower reliability. Analyzing the rela-
tionship among the time-to-market, test coverage, and re-
liability metrics can aid the selection of a suitable release
schedule.

One possible approach to modelling the relationships
among metrics, which we are employing, are influence dia-
grams [18]. An injuence diagram is a network for prob-
abilistic and decision analysis models. In order to con-

305

I Category
1 Management

-
Metric
cos t
‘Time-to-market

:Software Engineering Environment
System Resource Utilization
:Requirements Conformance

Requirements Stability

- -
-

-
-
-

-

EvaluatesMeasures
Total software development expenditure
Time elapsed between start of development to deliv-
ery of software
Capability of producing high quality software
Utilization of target computer resources
Adherence of integrated product to defined require-
ments
Level of changes to established software require-
ments
Ability of integrated system to adapt to changes in
requirements

Complexity of Interfaces and

Adaptability

-

-
integration Test Coverage Fraction of the system that has undergone satisfac-

-
End-to-End (E2E) Test Coverage

Fault Profiles
-

tory integration testing
Fraction of the system that has undergone satisfac-
tory E2E testing
Cumulative number of detected faults -

Reliability
(Customer Satisfaction
-

struct the influence diagram for our software metrics, we
aggregate low level metrics such as requirements confor-
mance and requiremenf s stability into higher level abstrac-
tions such as “requirements”, which represent quality or
risk factors within the system. A preliminary influence dia-
gram 1201 is presented in Figure l , and depicts the relation-
ships among a subset of the metrics of Table 1.

Vendor specifications for COTS components are often
incomplete or unreliable, hence estimation techniques may
be required for gathering metrics data from such compo-
nents. The set of metrics we have proposed are defined at
the system level. We are in the process of developing tech-
niques for deriving system-level metrics from component-
level information. Simj lar research has been conducted for
the reliability metric, resulting in an expression for system-
level reliability as a function of component-level fault den-
sities [121. Estimation of COTS integration costs has also
been performed in [14]. We will utilize both studies in
developing accurate estimation techniques for the software
metrics.

Probability of failure-free system operation
Degree to which the software has met customer ex-
Dectations

4 Modeling Cost and Quality in CBSs

In deciding between in-house development and COTS
component acquisition, the anticipated effect on system
quality is an importanl: concern. Software quality can be

defined from several different perspectives, including the
level of satisfaction of the customer, the key attributes of
the software, or freedom from defects in the software’s op-
eration. In metrics-guided quality management, software
metrics are used to guide the allocation of resources to qual-
ity improvement initiatives. The Cost of Qualiv (Cue) de-
termines the resources that can be dedicated to quality im-
provement in a project. In Table 1, CoQ is one component
of the cost metric, and can be evaluated based on the costs
of factors measured by the quality metrics. For example, in-
creasing or maintaining reliability involves costs that can be
considered the cost of reliability. The overall cost of quality
is the sum of such costs and other costs that cannot be di-
rectly attributed to a factor measured by the quality metrics.

4.1 Modeling Tradeoffs between Cost and Quality

In any development process, models depicting the rela-
tionship between costs and quality can be utilized to guide
decisions regarding investments in quality improvement.
Such models have been discussed in economics and man-
agement literature [8] and generally depict a nonlinear rela-
tionship between CoQ and quality. Figure 2 depicts a gen-
eral model of optimum quality costs. This model illustrates
the relationship between the “cost per good unit of product”
and the “quality of conformance” (expressed as a percent-

306

Figure 1. Preliminary Influence Diagram for a
Subset of the Software Metrics.

age of total conformance), and accounts for recent techno-
logical developments that enable the achievement of very
high quality (“perfection”) at finite costs.

These models can be analyzed in terms of the quality
metrics defined in the previous section. The horizontal
axis, which represents quality of conformance in the origi-
nal model, can be viewed as representing one of the quality
metrics, such as adaptability and reliability. Accordingly,
the vertical axis can represent a component of the CoQ,
namely, the portion of quality costs dedicated to improving
the quality factor corresponding to the metric represented
by the horizontal axis. Intuitively, the same nonlinear re-
lationship should hold. Increasing the investment in im-
proving a certain quality factor should increase the value of
the corresponding metric, and the amount of this increase
should taper off as high quality levels are achieved. “Per-
fect” quality may not be achievable at finite costs, in par-
ticular in CBSs, where the quality and performance of the
COTS components cannot be determined with certainty.

5 Metrics-Guided Quality Management

A number of challenging issues hinder the development
of CBSs [131, including component granularit),, specijicity,
interoperubility, and qualit),, as discussed in Section 4.
Software management decisions can involve any of the

Figure 2. Optimum Quality Costs Model
Source: Juran’s Quality Control Handbook, 4th Ed., by J. M.

Juran and Frank M. Gryna.
New York: McGraw-Hill Book Co., 1988.

aforementioned challenges, and utilizing decision theory in
management can lead to choices that are financially sound.
Questions arising about investments in software quality im-
provement initiatives can be approached from a Return on
Investment (ROI) perspective [25, 171. The ROI can be ex-
amined in terms of increased conformance to requirements
such as reliability. We propose to use metrics to evaluate
the quality improvement achieved as a result of a particular
investment in software quality improvement initiatives.

Cost-benefit analysis of traditional software systems
[25, 81 concludes that quality improvements yield the great-
est returns early in the life cycle. In CBSs, quality im-
provements are not possible during early stages of the de-
velopment of the acquired components. To compensate for
this problem, quality improvement efforts can be spread
throughout the various stages of system design and devel-
opment. In the design phase, such initiatives include iden-
tification of cost factors and cost-benefit analysis involving
the unique risks associated with CBSs, determination of the
level of architectural match between the application and the
COTS components, and evaluation of the complexity and
cost associated with integration, interoperability and mid-
dleware development. The metrics and models we have
proposed can be used to guide these evaluations, with the
objective of deciding between in-house development and
COTS acquisition, and if the latter is chosen, selecting the
most suitable component from a set of available alterna-
tives. In the development phase, our proposed metrics-
based cost-quality models can be used to estimate the costs
associated with the traditional development process. Dur-
ing the entire life cycle, the models can guide the estimation

307

of costs associated with the unique testing requirements of
COTS-based systems, such as integration, end-to-end, and
thread testing. After delivery, cost metrics and models can
be used for trend analysis of the COTS market.

6 Conclusions

Quality and risk concerns currently limit the application
of COTS-based system design to noncritical applications.
New approaches to quality and risk management will be
needed to handle the growth of CBSs. The metrics-based
approach and software engineering metrics presented in this
paper can aid developers and managers in analyzing the re-
turn on investment in quality improvement initiatives for
CBSs. These metrics also facilitate the modelling of cost
and quality, although more complex models are needed to
capture the intricate relationships between cost and quality
metrics in a CBS. The findings can alleviate concerns about
the risks associated with deploying COTS components in
applications where quality is of importance and enable more
wide-scale use of CBSs.

References

[l] C. Abts. COTS software integration cost modeling study.
Technical Report USC-CSE-98-520, University of Southern
California, Los Angeles, 1998.

[2] R. D. Banker, R. J. Kauffman, C. Wright, , and D. Zweig.
Automating output s,ize and reuse metrics in a repository-
based computer-aided software engineering (case) environ-
ment. IEEE Trans. on Software Eng., 20(3):169-187, Mar.
1994.

[3] V. R. Basili, L. C. Briand, and W. L. Melo. Measuring the
impact of reuse on software quality and productivity. Comm.
oftheACM, 39(10):104116, Oct. 1996.

[4] B. Boehm and C. Abts. COTS integration: Plug and pray?
IEEE Computer, 32(1):135-138, Jan. 1999.

[5] B. W. Boehm, C. M. .4bts, and E. Bailey. COCOTS software
integration cost model: An overview. In Proc. California
Software Symposium, Oct. 1998.

[6] P. Brereton and D. Budgen. Component-based systems: A
classification of issues. IEEE Computer, 33(11):54-62, Nov.
2000.

[7] L. Brownsword, T. Obemdorf, and C. A. Sledge. Develop-
ing new processes for COTS-based systems. IEEE Software,

[8] J. Campanella. Principles of Quality Costs: Principles, Im-
plementation, and Use. ASQ Quality Press, Milwaukee,
Wis., 3rd edition, 19!>9.

[9] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. ITSE, 20(6):476-493, Jun. 1994.

[IO] J. Cooper, M. Fisher, and S. W. Sherer. Software Acquisition
Capability Maturity Model (SA-CMM) version 1.02. Tech-
nical Report CMU/SEI-99-TR-002, Carnegie Mellon Soft-
ware Eng. Inst., Philadelphia, 1999.

17(4):48-55, Jul. 2000.

[I 11 B. W. Boehm et. al. Cost models for future lifecycle pro-
cesses: COCOMO 2.0. Annals of Software Engineering,

[121 M. E. Helander, M. Zhao, and N. Ohlsson. Planning models
for software reliability and cost. IEEE Trans. on Software
Eng., 24(6):420434, Jun. 1998.

[13] J. Hopkins. Component primer. Comm. of the ACM,

[141 L. L. Jilani and A. Mili. Estimating COTS integration: An
analytical approach. In Proc. 5th Maghrebian Con$ on Sof-
ware Eng. and Artijcial Intelligence, Dec. 1998.

[I51 J. McDermid. The cost of COTS. IEEE Computer,
31(6):46-52, Jun. 1998.

[161 W. L. Melo, L. C. Briand, and V. R. Basili. Measuring the
impact of reuse on software quality and productivity. Tech-
nical Report CS-TR-3395, Univ. of Maryland, College Park,
MD, 1995.

[171 A. Mili, S. F. Chmiel, R. Gottomukkala, and L.Zhang. An
integrated cost model for software reuse. In Proc. 22nd Int’l
Con$ on Software Eng. (ICSE ’OO), June 2000.

[181 E Nadi et. al. Use of influence diagrams and neural networks
in modeling semiconductor modeling processes. IEEE
Transactions on Semiconductor Manufacturing, 4(1):52-58,
1991.

[I91 R. A. Paul. Metrics-guided reuse. Int’l J. on Artificial Intel-
ligence Tools, 5(1 and 2):155-166, 1996.

[20] R. A. Paul. Software Metrics. PhD thesis, School of Electri-
cal Eng., Tokyo University, Tokyo, Japan, Jan. 1999.

[21] R. A. Paul, A. Khan, and A. Ghafoor. A visual query in-
terface for software metrics database. In Proc. 8th Int’l
IEEE/KSI Con$ on Software Eng. and Knowledge Eng.
(SEKE ’96), pages 317-322, June 1996.

[22] R. A. Paul, T. Kunii, Y. Shinagawa, and M. E Khan. Soft-
ware metrics knowledge and databases for project man-
agement. IEEE Trans. on Knowledge and Data Eng.,
11(1):255-264, JanJFeb. 1999.

[23] N. E Schneidwind. Methods for assessing COTS reliability,
maintainability, and availability. In Proc. ofthe Int’/ Con$
on Sofbvare Maintenance (ICSM ’98), 1998.

[24] S. Sedigh-Ali, A. Ghafoor, and R. A. Paul. Software engi-
neering metrics for COTS-based systems. IEEE Computer,

34(5):44-50, May 2001.
[25] S. A. Slaughter, D. E. Harter, and M. S. Krishnan. Eval-

uating the cost of software quality. Comm. of the ACM,

[26] M. Tsagias and B. Kitchenham. An evaluation of the busi-
ness object approach to software development. J. Systems
and Software, 52: 149-156, June 2000.

The challenges of using COTS software in
component-based development. IEEE Computer, 3 1(6):44-
45, Jun. 1998.

1:57-94, 1995.

43(10):27-30, Oct. 2000.

41(8):67-73, Aug. 1998.

[27] J. M. Voas.

308

	Metrics-Guided Quality Management for Component-Based Software Systems
	Recommended Citation

	Metrics-guided quality management for component-based software systems

