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Clustering of Cancer Tissues Using Diffusion Maps and Fuzzy ART
with Gene Expression Data

Rui Xu, Steven Damelin, and Donald C. Wunsch II

Abstract—Early detection of a tumor’s site of origin is
particularly important for cancer diagnosis and treatment. The
employment of gene expression profiles for different cancer
types or subtypes has already shown significant advantages over
traditional cancer classification methods. Here, we apply a
neural network clustering theory, Fuzzy ART, to generate the
division of cancer samples, which is useful in investigating
unknown cancer types or subtypes. On the other hand, we use
diffusion maps, which interpret the eigenfunctions of Markov
matrices as a system of coordinates on the original data set in
order to obtain efficient representation of data geometric
descriptions, for dimensionality reduction. The curse of
dimensionality is a major problem in cancer type
recognition-oriented gene expression data analysis due to the
overwhelming number of measures of gene expression levels
versus the small number of samples. Experimental results on the
small round blue-cell tumor (SRBCT) data set, compared with
other widely used clustering algorithms, demonstrate the
effectiveness of our proposed method in addressing
multidimensional gene expression data.

I. INTRODUCTION

ANCERS of various types, for many decades, have been

a leading cause of death in the world. For example,

according to the report released by the National Center
for Health Statistics in 2004, cancer accounts for 22.9%
(550,270) deaths in the United States, only less than the
number caused by heart diseases [1]. Given the tremendous
complexity of various types of cancers, it is believed that the
single most important indicator for surviving cancers is and
will be early detection and, subsequently, early treatments.
Early cancer diagnoses require accurately identifying the site
of origin of a tumor. However, the traditional cancer
classification methods that are largely dependent on the
morphological appearance of tumors and parameters derived
from clinical observations cannot meet such an expectation
[2]. Their applications are limited by the existing
uncertainties, and their prediction accuracy is very low.
Tumors with similar appearances may have quite different
origins and may therefore respond differently to the same
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treatment therapy. For example, diffuse large B-cell
lymphoma (DLBCL), the most common type of lymphoma in
adults, can only be cured by chemotherapy in 35-40 percent
of patients due to the existence of unknown subtypes that
cannot be discriminated based only on their morphologic
parameters [3].

Fortunately, the recently-developed DNA microarray
technologies [4-5], which can measure the expression levels
of tens of thousands of genes simultaneously, offer cancer
researchers a novel method to investigate the pathologies of
cancers from a molecular angle. Under such a systematic
framework, cancer types or subtypes can be identified
through the corresponding gene expression profiles. Research
on gene expression profile-based cancer type recognition has
already attracted numerous efforts from a wide variety of
research communities [6-7]. Investigations on leukemia [2],
lymphoma [3], colon cancer [8], cutaneous melanoma [9],
bladder cancer [10], breast cancer [11], lung cancer [12], and
so on show very promising results. Supervised computational
methods, such as multi-layer perceptron [13], naive Bayes
[14], support vector machines [14-15], semi-supervised
Ellipsoid ARTMAP [16], and k-Top Scoring Paris [17], to
name a few, have already been wused in cancer
diagnosis-oriented gene expression data analysis.

In this paper, we consider the situation in which we do not
have labels for the cancer samples. This assumption is
reasonable with the requirement for discovering unknown
and novel cancer types or subtypes. In this case, unsupervised
learning or cluster analysis [6] is required in order to explore
the underlying data structure of the obtained data and provide
cancer researchers with meaningful insights on the possible
partition of the samples. Given N tumor samples measured
over D genes, the corresponding microarray data matrix is
represented as X={x;;}, 1<i<N, 1<j<D, where x;; represents
the expression level of gene j in tissue sample i. The goal of
our work is to generate a K-partition C={C;}, 1<k<K, such

K
Cit . U._c=c
C.NC,=¢,k,l=1,..,Kandk#].

One of the major challenges of microarray data analysis is
the overwhelming number of measures of gene expression
levels compared with the small number of samples, which is
caused by factors such as sample collections and experiment
cost. This problem is well known as the ‘curse of

dimensionality’ in machine learning, which is introduced to
indicate the exponential growth in computational complexity

that s and
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and the demand for more samples as a result of high
dimensionality in the feature space [18]. Not all of these
genes (features) are relevant to the discrimination of tumors.
From the computational point of view, the existence of
numerous irrelevant features not only increases the
computational complexity, but impairs the effective
discovery of the cancer clusters. In this sense, feature
selection or extraction is critically important for
dimensionality reduction and further analysis. Major
explorations include principal component analysis [19] and
ranking-based methods, such as signal-to-noise ratio [2],
Fisher discriminant score [20], #-statistics score [21], and
nonparametric test statistics like the TNoM score [22] and the
Park score [23]. Most of these methods work in a supervised
way, and the lack of such prior information makes the
problem more difficult.

Here, we address the high-dimensional problem using
diffusion maps, which consider the eigenfunctions of Markov
matrices as a system of coordinates on the original data set in
order to obtain efficient representation of data geometric
descriptions [24-26]. The new data obtained are then
clustered with a neural network cluster theory, Fuzzy ART
(FA) [27], to generate a partition of the cancer samples of
interest. FA is based on Adaptive Resonance Theory (ART)
[28-29], which was inspired by neural modeling research and
was developed as a solution to the plasticity-stability
dilemma: how adaptable (plastic) should a learning system be
so that it does not suffer from catastrophic forgetting of
previously-learned rules (stability)? ART can learn arbitrary
input patterns in a stable, fast, and self-organizing way, thus
overcoming the effect of learning instability that plagues
many other competitive networks. Experimental results on a
publicly accessible benchmark cancer data set, compared
with other widely-used clustering algorithms, such as
hierarchical clustering algorithms and K-means [6],
demonstrate the effectiveness of our proposed method in
addressing multidimensional gene expression data and
ultimately identifying corresponding cancer types. A brief
version of the work is published in [30].

The remainder of this paper is organized as follows.
Section II and III present introductions to diffusion maps and
FA, respectively. The experimental results are presented and
discussed in section IV, and section V concludes the paper.

II. DIFFUSION MAPS

Given a data set X={x;, i=1,...,N} on a m-dimensional data
space, a finite graph with N nodes corresponding to N data
points can be constructed on X as follows. Every two nodes in
the graph are connected by an edge weighted through a
non-negative, symmetric, and positive definite kernel w: X x
X — (0, o). Typically, a Gaussian kernel is defined as

2
x-x)|
! J

—= | ()

20

w(X,,X ) =exp| —

where o is the kernel width parameter. The kernel reflects the
degree of similarity between x; and x;, and ||-|| is the Euclidean
norm in R”.

Let
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dx)= Y wix,x,) )
x;eX
be the degree of x;; the Markov or affinity matrix P is then
constructed by calculating each entry as

w(x,,X,) 3
p(x;,x;) ix) 3)
From the definition of the weight function, p(x;, X;) can be
interpreted as the transition probability from x; to X; in one
time step. This idea can be further extended by considering
D'(x;, x;) in the ™ power P' of P as the probability of transition
from x; to X; in ¢ time steps [24]. Therefore, the parameter ¢
defines the granularity of the analysis. With the increase of
the value of #, local geometric information of data is also
integrated. The change in direction of # makes it possible to
control the generation of more specific or broader clusters.
Because of the symmetry property of the kernel function,
for each # > 1, we may obtain a sequence of N eigenvalues of
P 1=Ag 24, 2 ...2 Ay, with the corresponding eigenvectors {¢@;,

J=1,...,N}, satisfying,

Po, =1g,. “4)
Using the eigenvectors as a new set of coordinates on the data
set, the mapping from the original data space to an
L-dimensional (L< d) Euclidean space R can be defined as

T
¥, :x, = (49,(x), 40, (x)) - ©)
Correspondingly, the diffusion distance between a pair of
points X; and X;

D,(x,.x) =[p'(x. )= p'(x,. ), ©)
where ¢y is the unique stationary distribution
40 g -

¢0(X)=W=XE

x;eX
is approximated with the Euclidean distance in R”, written as
D,(x;.x,)=¥,(x)-¥,(x,). ®)

where ||-|| is the Euclidean norm in R~. It can be seen that the
more paths that connect two points in the graph, the smaller
the diffusion distance is.

The kernel width parameter o represents the rate at which
the similarity between two points decays. There is no good
theory to guide the choice of ¢. Several heuristics have been
proposed, and they boil down to trading off sparseness of the
kernel matrix (small sigma) with adequate characterization of
the true affinity of two points. One of the main reasons for
using spectral clustering methods is that, with sparse kernel
matrices, long range affinities are accommodated through the
chaining of many local interactions as opposed to standard
Euclidean distance methods - e.g. correlation - that impute
global influence into each pair-wise affinity metric, making
long range interactions dominate local interactions.

III. Fuzzy ART

Fuzzy ART (FA) incorporates fuzzy set theory into ART
and extends the ART family by allowing stable recognition of
clusters in response to both binary and real-valued input
patterns with either fast or slow learning [27]. The basic FA
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architecture consists of two-layer nodes or neurons, the
feature representation field F), and the category
representation field F,. The neurons in layer F are activated
by the input pattern, while the prototypes of the formed
clusters are stored in layer F,. The neurons in layer F, that are
already being used as representations of input patterns are
said to be committed. Correspondingly, the uncommitted
neuron encodes no input patterns. The two layers are
connected via adaptive weights w;, emanating from node j in
layer F,. After an input pattern is presented, the neurons
(including a certain number of committed neurons and one
uncommitted neuron) in layer F, compete by calculating the
category choice function

‘X/\W/.

, ©

a+lw,
where A is the fuzzy AND operator defined by
(xAy) =min(x,y,), (10)
and >0 is the choice parameter to break the tie when more
than one prototype vector is a fuzzy subset of the input pattern,
based on the winner-take-all rule,
T

J

)

The winning neuron J then becomes activated, and an
expectation is reflected in layer F; and compared with the
input pattern. The orienting subsystem with the pre-specified
vigilance parameter p (0<p<l) determines whether the
expectation and the input pattern are closely matched. If the
match meets the vigilance criterion,

=max{T }.
J

_[xaw)|

) (12)
X
weight adaptation occurs, where learning starts and the
weights are updated using the following learning rule,

w,(new) = B(xAw, (old))+(1— S)w, (old) , (13)
where fe[0,1] is the learning rate parameter. This procedure
is called resonance, which suggests the name of ART. On the
other hand, if the vigilance criterion is not met, a reset signal
is sent back to layer F, to shut off the current winning neuron,
which will remain disabled for the entire duration of the
presentation of this input pattern, and a new competition is
performed among the rest of the neurons. This new
expectation is then projected into layer F, and this process
repeats until the vigilance criterion is met. In the case that an
uncommitted neuron is selected for coding, a new
uncommitted neuron is created to represent a potential new
cluster.

IV. EXPERIMENTAL RESULTS

We applied the proposed method to the data set on the
diagnostic research of small round blue-cell tumors
(SRBCTs) of childhood. The SRBCT data set consists of 83
samples from four categories, known as Burkitt lymphomas
(BL), the Ewing family of tumors (EWS), neuroblastoma
(NB) and rhabdomyosarcoma (RMS) [13]. Gene expression
levels of 6,567 genes were measured using cDNA
microarrays for each sample, 2,308 of which passed the filter
that requires the red intensity of a gene to be greater than 20
and were kept for further analyses. The relative red intensity
(RRI) of a gene is defined as the ratio between the mean

TABLE I. PERFORMANCE RESULTS OF DIFFUSION MAPS AND FuzzY ART ON THE SRBCT DATA SET.

=22 0=24 =26
RI(p) ICop) | FMp) RI(p) JCp) | FM () RI(p) ICp) | FMp)
L=5 0.7417 0.2337 0.3875 0.7661 0.3017 0.4646 0.7802 0.3082 0.4835
(0.5) (0.25) (0.25) (0.5) (0.25) (0.25) (0.5) 0.4 0.4)
L=10 0.8569 0.5120 0.6929 0.8260 0.4136 0.6064 0.8187 0.3652 0.5778
(0.3) (0.3) (0.3) (0.35) (0.2) (0.35) (0.45) (0.45) (0.45)
L=15 0.8795 0.5648 0.7436 0.8290 0.4853 0.6539 0.8560 0.5015 0.6879
(0.35) (0.35) (0.35) (0.35) (0.2) 0.2) (0.35) (0.35) (0.35)
L=20 0.8707 0.6245 0.7704 0.8346 0.5047 0.6715 0.8795 0.5652 0.7437
(0.25) 0.2) (0.2) 0.4) (0.25) (0.25) (0.35) (0.35) (0.35)
L=50 0.8437 0.5503 0.7099 0.8149 0.4981 0.6672 0.8175 0.5040 0.6740
(0.3) (0.3) (0.3) (0.35) (0.25) (0.25) (0.5) (0.3) 0.3)
=28 =30 0=32
RI(p) ICp) | FM(p) RI(p) JICp) | FM(p) RI(p) JCp) | FM(p)
L=5 0.7761 0.2950 0.4599 0.7743 0.2898 0.4668 0.7708 0.3044 0.4670
(0.5) (0.2) (0.45) (0.45) (0.4) (0.45) (0.6) (0.25) (0.25)
L=10 0.9019 0.6673 0.8039 0.8601 0.5036 0.6953 0.8760 0.5977 0.7513
(0.2) (0.2) (0.2) (0.3) (0.3) (0.3) 0.2) (0.2) (0.2)
L=15 0.8431 0.5389 0.7006 0.8619 0.5553 0.7186 0.8322 0.4742 0.6499
0.2) 0.2) 0.2) (0.3) (0.3) (0.3) (0.25) (0.25) (0.25)
L=20 0.8284 0.5485 0.7129 0.8578 0.5268 0.6907 0.8160 0.4316 0.6031
(0.25) (0.2) (0.2) 0.4) (0.25) (0.25) (0.45) (0.25) (0.25)
L=50 0.8137 0.4052 0.5882 0.8354 0.5495 0.7102 0.8196 0.4985 0.6665
(0.55) (0.25) (0.25) (0.35) (0.35) (0.35) (0.6) (0.35) (0.35)

RI: Rand index;
JC: Jaccard coefficient;
FM: Fowlkes and Mallows index
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TABLE II. PERFORMANCE RESULTS OF DIFFUSION MAPS AND HIERARCHICAL CLUSTERING ON THE SRBCT DATA SET.

0=22 =24 =26
RI JC FM RI JC FM RI JC FM
L=5 0.6706 0.2544 0.4255 0.7114 0.2682 0.4327 0.7320 0.2525 04111
L=10 0.6920 0.2547 0.4738 0.7267 0.3416 0.5729 0.7473 0.2493 0.4540
L=15 0.6324 0.2642 0.4976 0.6567 0.2617 0.4972 0.6550 0.2549 0.4740
L=20 0.4126 0.2712 0.5044 0.4572 0.2617 0.4972 0.4790 0.2578 0.4913
L=50 0.5075 0.2703 0.5102 0.4364 0.2578 0.4913 0.5145 0.2578 0.4913
0=28 =30 =32
RI JC FM RI JC FM RI JC FM
L=5 0.7150 0.2504 0.4011 0.6820 0.2236 0.3744 0.7138 0.2077 0.3525
L=10 0.7217 0.2941 0.4550 0.7011 0.2380 0.4222 0.7085 0.3091 0.4991
L=15 0.7264 0.2514 0.4145 0.7044 0.2525 0.4586 0.7094 0.2612 0.4937
L=20 0.7220 0.2338 04161 0.6441 0.2594 0.4937 0.7032 0.2638 0.4937
L=50 0.5786 0.2912 0.4937 0.6682 0.2594 0.4937 0.7073 0.3186 0.5334

RI: Rand index;
JC: Jaccard coefficient;
FM: Fowlkes and Mallows index

intensity of that particular spot and the mean intensity of all
filtered genes and the ultimate expression level measure is the
natural logarithm of RRI. The data are expressed as a matrix,
X={x;;} s3x2,308. In our further analysis, an additional logarithm
was taken to linearize the relations between different genes
and to make very high expression levels less high.

According to our experiments, we find that the clustering
results are not sensitive to the category choice parameter a,
which is then set as 0.1 for our further study. We adjusted the
kernel width parameter ¢ and vigilance parameter p, and
observed the performance of the proposed method. Because
we already have a pre-specified partition H of the data set,
which is also independent from the clustering structure C
resulting from the use of FA, the performance can be
evaluated by comparing C to H in terms of external criteria,
such as the Rand index, the Jaccard coefficient, and the
Fowlkes and Mallows index [31].

Considering a pair of tissue samples x; and x;, there are four
different cases based on how x; and x; are placed in C and H.
® Case I: x; and x; belong to the same clusters of C and the

same category of H.
® Case 2: x; and x; belong to the same clusters of C but
different categories of H.
®  Case 3: x; and x; belong to different clusters of C but the
same category of H.
® Case 4: x; and Xx; belong to different clusters of C and a
different category of H.
Correspondingly, the number of pairs of samples for the four
cases are denoted as a, b, ¢, and d, respectively. Because the
total number of pairs of samples is N(N-1)/2, denoted as M,
we have atbtctd=M. The external criteria that we used in
our analysis can then be defined as follows:
1. Rand index

R=(a+d)/M, (14)
2. Jaccard coefficient
J=alla+b+c); (15)
3. Fowlkes and Mallows index
M= 44 (16)
a+ba+c

186

As can be seen from the definition, the larger the values of
these indices, the more similar are C and H. Specifically, the
values of both the Rand index and the Jaccard coefficient are
in the range of [0, 1]. The major difference between these two
statistics is that the Rand index emphasizes the situation in
which pairs of samples belong to the same group or different
groups in both C and H, but the Jaccard coefficient excludes d
in the similarity measure.

Table 1 summarizes the best clustering results for the
SRBCT data set using the three external criteria, with o
varying from 22 to 32. The corresponding p is also indicated
in the table. The dimensions of the transformed space are
chosen at 5, 10, 15, 20, and 50, respectively. From the table, it
can be seen that the effective dimensions for representing the
data are 10 and 15, among those selected. The values of the
indices decrease as the dimension becomes either smaller or
larger.

0z

018 H ki

016+ 9

014 R

012r 1

01r ki

0osr ki

006 9

0.04 - R

0.0z 1

Fig. 1. The eigenvalues of the affinity matrix for the
SRBCT data set. o, p, and L are chosen at 30, 0.3, and 15,
respectively. For clarification, the first eigenvalue that is
equal to 1 is not shown here.
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TABLE III. PERFORMANCE RESULTS OF DIFFUSION MAPS AND K-MEANS ON THE SRBCT DATA SET.

0=22 =24 =26
RI JC FM RI JC FM RI JC M
L=5 0.7285 0.3283 0.5492 0.7493 0.2694 0.4285 0.7549 0.2019 0.3774
L=10 0.7567 0.2292 0.3986 0.7667 0.3392 0.5066 0.7555 0.2407 0.4067
L=15 0.7388 0.2276 0.3718 0.7670 0.2443 0.4340 0.7423 0.2675 0.4289
L=20 0.7344 0.2676 0.4294 0.7658 0.2951 0.4727 0.7561 0.3159 0.4885
L=50 0.7200 0.2498 0.4203 0.7579 0.2749 0.4316 0.7364 0.2487 0.4007
=28 =30 =32
RI JC FM RI JC FM RI JC FM
L=5 0.7379 0.2706 0.4271 0.7576 0.3039 0.4726 0.7294 0.2222 0.3717
L=10 0.7482 0.2391 0.3969 0.7540 0.2882 0.4475 0.7699 0.2405 0.4294
L=15 0.7643 0.2319 0.4018 0.7402 0.2840 0.4579 0.7482 0.2279 0.3949
L=20 0.7505 0.2299 0.3826 0.7514 0.3310 0.4989 0.7443 0.2415 0.4052
L=50 0.7367 0.2265 0.3829 0.7332 0.2695 0.4300 0.7435 0.2307 0.3868

RI: Rand index;
JC: Jaccard coefficient;
FM: Fowlkes and Mallows index

We further examine the eigenvalues for the corresponding
affinity matrix (see Fig. 1), 15 of which are listed below, in
decreasing order:

1.0000 0.1856 0.1424 0.1277 0.1017 0.0879 0.0816
0.0698  0.0633  0.0569 0.0514 0.0459  0.0442
0.0401  0.0391

Obviously, the curve decays rapidly for the first 15
eigenvalues and then decreases gradually. This explains the
deterioration of the clustering performance when we use only
5 corresponding eigenvectors to construct the mapping,
which causes the loss of too much information.

ok T T T T T T T T T 25

Rand Index
5131507 40 J3gLInpy

L 1 1 1 L L
3 035 04 045 05 055 0
Wigilance Parameter

065 :

I I 0
02 02 0 6 08 07

Fig. 2. The vigilance parameter vs. the number of clusters and the value of the
Rand index for the SRBCT data set.

Fig. 2 shows the influence of p on the number of generated
clusters and the value of the Rand index. o and L are set as 22
and 15, respectively. As p increases, the number of clusters
increases, too. However, the largest value of the Rand index is
achieved at p=0.35. When performing the stricter vigilance
tests, the samples that belong to the same category are divided

2008 International Joint Conference on Neural Networks (IJCNN 2008)

TABLE IV. PERFORMANCE RESULT OF FA, HIERARCHICAL CLUSTERING,
AND K-MEANS ON THE SRBCT DATA SET WITHOUT USING DIFFUSION

MAPS.
RI JC M
FA 0.7705 0.3089 0.5183
Hierarchical 0.4505 0.2578 0.4919
Clustering
K-means 0.7138 0.1970 0.3330

RI: Rand index;
JC: Jaccard coefficient;
FM: Fowlkes and Mallows index

into more small categories, which causes the decrease of the
value of the Rand index.

The best clustering results with hierarchical clustering
algorithms (single-linkage) and K-means on the SRBCT data
set are summarized in Tables II and III, respectively. It can be
seen that FA can consistently achieve better partitions of the
given samples than the other two methods. We further
examined the clustering results of FAs, hierarchical
clustering algorithms, and K-means algorithms when the
diffusion maps are not used. As shown in Table IV, the
effectiveness of diffusion maps is obvious: the performance
of all three algorithms without dimension reduction
deteriorates dramatically, especially for the hierarchical
clustering algorithm.

V. CONCLUSIONS

Cancer classification is important for subsequent diagnosis
and treatment. DNA microarray technologies provide a
promising way to address the problem, while bringing many
challenges. Particularly, publicly accessible gene expression
data sets usually include a small set of samples for each tumor
type, in contrast to the rapidly and persistently increasing
capability of gene chip technologies. Here, we propose to use

187

Authorized licensed use limited to: University of Missouri. Downloaded on December 15, 2008 at 13:04 from IEEE Xplore. Restrictions apply.



the diffusion maps to reduce the high dimensions of gene
expression data and Fuzzy ART to form the clusters of cancer
samples. The experimental results demonstrate the potential
of the proposed method in extracting useful information from
these high-dimensional data sets.
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