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ABSTRACT 

 Restrictions in the allowable exhaust gas emissions of diesel engines has become a 

driving factor in the design, development, and implementation of internal combustion (IC) 

engines. A dual fuel research engine concept was developed and implemented in an indirect 

injected engine in order to research combustion characteristics and emissions for non-road 

applications. The experimental engine was operated at a constant speed and load 2400 rpm and 

5.5 bar indicated mean effective pressure (IMEP). n-Butanol was port fuel injected at 10%, 20%, 

30%, and 40% by mass fraction with neat ultra-low sulfur diesel (ULSD#2). Peak pressure, 

maximum pressure rise rates, and heat release rates all increased with the increasing 

concentration of n-Butanol. MPRR increased by 127% and AHRR increased by 30.5% as a result 

of the shorter ignition delay and combustion duration. Ignition delay and combustion duration 

were reduced by 3.6% and 31.6% respectively. This occurred despite the lower cetane number of 

n-Butanol as a result of increased mixing due to the port fuel injection of the alcohol.  NOx and 

soot were simultaneously reduced by 21% and 80% respectively. Carbon monoxide and 

unburned hydrocarbons emissions were increased for the dual fuel combustion strategies due to 

valve overlap. Results display large emission reductions of harmful pollutants, such as NOx and 

soot. 
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CHAPTER 1: INTRODUCTION 

1.1 Diesel Engines 

 Internal combustion engines provide mechanical power by harvesting the chemical energy 

contained in the combusted fuel.  The fuel-air mixture, and combustion products serve as the 

working fluids. The engine’s output comes from the work transfer between these fluids and the 

mechanical components of the engine (Heywood 1988). Two engine design concepts lead the 

engine market. These are the compression ignition (CI) engine and the spark ignition (SI) engine. 

The prevalence of the two designs comes from their simplicity, ruggedness, and high power to 

weight ratios (Norman 2016).   

 Heat engines have existed in one form or another for over two and a half centuries, but it 

wasn’t until the 1860s that innovations in design made them a practical reality. Early engines used 

steam in addition to fuel and air as a working fluid. J.J. E. Lenoir (1822-1900), is credited with 

developing the first marketable engine of this type. The first half of the piston stroke inducted gas 

and air. During the second half of the stroke a spark was use to initiate combustion. Combustion 

products would be cleared from the cylinder during the second stroke (Cummins 1976). 

 Efficiencies for these engines were at best 5%. In 1867 Nicolaus A. Ottos (1832-1891) and 

Eugen Langens (1833-1895) introduced their atmospheric engine. The pressure rise on the power 

producing stroke was used to accelerate a free piston and rack assembly and generate a vacuum in 

cylinder with atmospheric pressure on the otherside. The pressure gradient created moved the 

piston and generated mechanical power. This allowed for thermal efficiencies of up to 14%.  

 In 1876 Otto released a prototype that made use of four strokes per cycle. This allowed for 

a reduction in the weight and volume of the engine and an increase in efficiency. This breakthrough 
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is credited as being the beginning of the modern IC engine industry. Five years prior Alphonse 

Beau de Rochas (1815-1893) filled a patent which described the four stroke process implemented 

by Otto. Despite this Otto is credited as the inventor of the modern IC engine because he actually 

put the idea into practice (Heywood 1988).  

 In 1892 following Otto’s developments for SI engines, Rudolf Diesel (1858-1913) 

proposed a compression ignition concept. Diesel drew inspiration for his engine design from 

Nicholas Carnot’s idea of a cycle in heat engine operation (Norman 2016).  In Diesel’s concept 

fuel is injected into compressed air in cylinder at high temperatures and pressures which causes 

the liquid fuel to auto ignite. This concept allowed him to increase efficiency to 30%. The increase 

was a result of higher compression ratios and a more stoichiometric air-fuel charge (Heywood 

1988).  

 Diesel unveiled his engine to the public in Munich in 1898. Interest was high and Diesel 

immediately sold licensing rights to companies in France, England, Germany, Russia, and the 

United States. Early applications for his engine were focused on marine applications. The size of 

the engine as well as the requirements for the auxiliary systems made it impractical for use in 

automobiles. The first seafaring diesel powered-ship made its’ maiden voyage from England to 

Bangkok in 1912. The 7000 ton Danish Selandia was powered by two 1000 horsepower, eight 

cylinder diesel engines (Norman 2016).  

 Two key milestones led to the development of the automotive diesel engine. In the 1920s 

solid fuel injection was perfected. This allowed for fuel to be injected directly into the combustion 

chamber without the use of an air compressor. Bosch in Stuttgart developed a compact and more 

reliable fuel pump. These developments allowed for the production of smaller, lighter, and faster 
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diesel engines. With these breakthroughs in technology Daimler-Benz introduced the first 

production model diesel automobile in 1936 (Norman 2016).  

 Diesel engines can be classified according to their injection method. Direct injection (DI) 

engines inject fuel directly into the combustion chamber. This is advantageous because it reduces 

heat loss. This combined with more precise fuel metering increases fuel efficiency. Direct injection 

engines also have better cold start behavior. Direct injection methods can increase the costs of 

injectors due to the high injection pressure required to inject in cylinder. They also increase 

particulate matter emissions.  

 Indirect injection (IDI) works by injecting fuel into a smaller combustion chamber, often 

called a precombustion or swirl chamber, connected to the main combustion chamber by a narrow 

throat (Stone 1993). This allows for an increase in mixing as the working fluid heats up and 

expands through the throat into the main chamber. The increase in air speed as the fluid passes 

through the narrow throat is what promotes the increased mixing. This speeds up the combustion 

process allowing for an increase in power output due to an increase in engine operating speeds. 

These engines are easier to design and manufacture due to more flexible tolerances, and lower 

injection pressures. Indirect injection suffers from lower fuel efficiencies due to heat loss from 

increased surface area, and poor cold start behavior (Dempsey 2007).  

1.2 Diesel Exhaust Emissions  

Exhaust emissions from IC engines reduce environmental protection and contribute to 

climate change and air pollution. The transportation sector is one of the main producers of 

environmental pollution. The transportation sector is responsible for over 55% of NOx emissions 

10% of VOCs, and 10% of PM2.5 and PM10 emissions in the U.S. (EPA 2014) Organizations like 
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the Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) set 

and enforce regulations to reduce the impact of tailpipe emissions. EPA emissions standards for 

nonroad compression ignition engines producing 8 kW of power or less can be seen in Table I 

below. 

Table I: Nonroad Compression Ignition Engines: Exhaust Emission Standards 

(Environmental Protection Agency 2016) 

Rated Power 

(kW) 

Tier Model Year 

NMHC +  

NOX 

(g/kWh) 

PM (g/kWh) CO (g/kWh) 

≤ 8 kW 

1 2000 – 2004 10.5 1.0 8.0 

2 2005 – 2007 7.5 0.80 8.0 

4 2008+ 7.5 0.40 8.0 

 

 Diesel exhaust pollutants account for 1% of the total exhaust gases produced. These 

pollutant gases are primarily composed of nitrogen oxides and particulate matter. NOX accounts 

for up to 50% of exhaust gas pollution. Hydrocarbon and carbon monoxide emissions are kept to 

a minimum due to the lean burning nature of diesel combustion. Sulfur dioxide is also reduced due 

to the implementation of ultra-low sulfur diesel.  
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Figure 1 Composition of Diesel Exhaust Gases (Majewski 2012) 

Principle diesel exhaust emissions include water (12%), diatomic oxygen (17%), diatomic 

nitrogen (58%), and carbon dioxide (12%). CO2 is of great concern due to its environmentally 

hazardous effects as a greenhouse gas.  

 Nitrogen oxides are composed of nitrogen oxide (NO) and nitrogen dioxide (NO2). NO 

constitutes up to 85 – 95% of NOX (Majewski and Khair 2006). NO is a colorless and odorless gas 

while NO2 is a reddish brown gas with a pungent odor. NO is principally produced from the 

oxidation of atmospheric nitrogen. NO can be produced from the oxidation of fuel nitrogen but the 

contribution is minimal and the mechanism by which it forms isn’t very well understood. NO 

formation is a temperature dependent reaction happening at temperatures above 1600 ℃ through 

the Zeldovich mechanism presented below (Heywood 1988).  

𝑶 +  𝑵𝟐  = 𝑵𝑶 + 𝑵               Equation 1 

𝑵 +  𝑶𝟐 = 𝑵𝑶 + 𝑶                                  Equation 2   

𝑵 + 𝑶𝑯 = 𝑵𝑶 + 𝑯                 Equation 3 
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 Most of the NOx formation occurs early in the combustion process when the piston is near 

top dead center where in-cylinder pressures and temperatures are the highest. NOX is hazardous to 

the environment because it contributes to ozone formation and smog formation which can also 

develop into acid rain. Nitrogen oxide emissions also pose a health risk to people as they can 

contribute to lung disease. (EPA 1999).  

 Particulate matter in compression ignition engines is a carbonaceous material called soot. 

It is produced from the incomplete combustion of hydrocarbon fuel and to a lesser extent 

lubricating oil. Soot is principally clusters of smaller particles of carbon and hydrogen with 

individual diameters of 15 to 30 nm (Heywood 1988). The formation of soot is dependent on many 

factors such as the combustion and expansion processes, sulfur content, ash content, lubrication 

oil quality, combustion temperature, and exhaust gas cooling (Burtscher 2005). Typical particle 

composition of a heavy-duty diesel engine is classified as 41 % carbon, 7 % unburned fuel, 25 % 

unburned oil, 14 % sulfate and water, 13 % ash and other components.   

 

Figure 2 Composition of Particulate Matter in Diesel Exhaust Gases (Kittelson 1998) 

Particle size is directly linked to their potential health effects. Particles less than 10 µm in 

diameter pose the greatest risk because they can get deep into the lungs and may even pass into 

the bloodstream causing heart complications. Larger particles pose less danger, but they can still 

irritate your eyes, nose, and throat (EPA 2003). These emissions contribute to pollution of air, 
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water, and soil; soiling of buildings; reductions in visibility; impact agriculture productivity; global 

climate change. The World Health Organization estimated that around 2.4 million people die every 

year due to air pollution (WHO 2007). 

Carbon monoxide emissions result from the incomplete combustion of fuel. The 

concentration of CO is dependent on the air/fuel equivalence ratio. CO emissions are highest in 

fuel rich mixtures where λ is less than 1. Diesel combustion is a lean operation where CO emissions 

are generally low. In dual fuel combustion modes, CO can increase due to the low reactivity fuel’s 

partial oxidation and unburned fuel entering the exhaust due to valve overlap (Soloiu and 

MoncadaB 2018). CO is also produced if the droplets in a diesel engine are too large or if 

insufficient turbulence or swirl is created in the combustion chamber. CO concentrations increase 

greatly in fuel rich combustion because there is an oxygen deficiency and all the carbon cannot be 

converted to CO2 (Resitoğlu and Altinisik 2016). Carbon monoxide is an odorless and colorless 

gas. In humans, CO binds to hemoglobin and inhibits its ability to transfer oxygen leading to 

asphyxiation. This can result in impaired concentration, slow reflexes, and confusion (CDC 2017).  

Unburned hydrocarbon emissions also known as organic emissions, are produced from the 

incomplete combustion of hydrocarbon fuel. Factors that influence UHC emissions include 

temperature and mixing (Heywood 1988). Hydrocarbon emissions are higher at idle or part load. 

Under these conditions the quantity of mixture at the perimeter of the reaction zone is too lean to 

burn. Under-mixing or over-fueling can also increase UHC concentration by creating a rich air/fuel 

mixture (Stone 1993). Engine exhaust fumes contain a wide variety of hydrocarbon compounds 

with varying levels of toxicity. They can contribute to the formation of ground level ozone, and 

have the potential to cause respiratory tract irritation and cancer (Krzyzanowski et al 2005). 
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 Exhaust gas after-treatment systems used to treat the exhaust gases from diesel combustion 

include diesel oxidation catalysts (DOC), diesel particulate filters (DPF), and selective catalytic 

reduction (SCR) systems. SCR technology is used for the reduction of nitrogen oxide emissions. 

NOX is reduced to water and N2 through the use of urea. Lean NOX traps (LNT) reduce NOx 

emissions under lean operating conditions. During lean operation the LNT stores NOX on a catalyst 

wash coat. Under rich operating conditions the NOX emissions are released and allowed to react 

by the usual three-way reaction.  

 The primary function of a DOC is to oxidize CO and UHC emissions. They also play a role 

in the reduction of particulate matter by oxidizing some of the HC that would be absorbed into the 

carbon particles (Wang et al. 2008).  CO and HC are oxidized to form CO2 and H2O. DOCs also 

oxidize NO to form NO2. The increase in NO2 in the exhaust gases increases efficiency of 

downstream reduction technology like SCR and DPF. DPF remove particulate matter from exhaust 

gas through physical filtration. As the filters accumulate PM negative effects can take hold such 

as increased fuel consumption, engine failure, and stress in the filter. To prevent these negative 

effects, the DPF has to be regenerated by burning trapped PM (Resitoğlu and Altinisik 2015). 

1.3 Statement of the Purpose 

Federal regulations covering tailpipe emissions are some the most challenging design 

constraints placed on engine manufacturers today. Depleting petroleum reserves also create 

concerns regarding energy security. Dual fuel combustion strategies were developed to operate in 

low temperature combustion regions where NOX and particulate matter production is reduced. 

Dual fuel strategies can make use of fuels from both fossil fuels and renewable resources. Bio-

butanol fermented from energy crops and agricultural byproducts in the south east present an 
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immediate and sustainable solution over current petroleum based fuels. This study is the first 

investigation into the combustion properties of dual fuel combustion using ultra-low sulfur diesel 

and n-butanol in an indirect injection diesel engine. It is being done to understand the combustion 

characteristics that relate to low emission levels to potentially find a replacement for diesel fuel in 

the future. 

1.4 Hypothesis 

If a dual fuel combustion strategy involving the port fuel injection of n-butanol is used in 

conjunction with the indirect injection of ultra-low sulfur diesel, then engine out emissions for 

nitrogen oxides and particulate matter in single cylinder, off-road diesel engines can be reduced 

below Tier 4 EPA standards while maintaining engine performance.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Renewable Energy Policy 

 The United States transportation sector consumes 68% of the nation’s total energy demand. 

This is expected to rise to 73% by the year 2030 (Soloiu 2015). The growing demand for petroleum 

products, decrease in finite fossil fuel reserves, and instability in petroleum-rich countries have led 

to uncertainty in the cost and availability of energy. As a result, the development of alternative 

transportation fuels has become a national priority. The 2007 Energy Independence and Security 

Act established regulations and programs to move the U.S. toward a secure and energy 

independent state. The act sought to increase the production, development, and infrastructure of 

renewable fuels. The EISA fuel economy standards required that automakers reach a minimum 

average fuel economy for all passenger vehicles in increasing proportion per year. With the 

mandate stating that the total fleet reach an average of 35 mpg by the year 2020 (U.S. Energy 

Information Administration, 2014).  It also established a goal of 36 billion barrels of biofuel to be 

blended into fossil fuel resources by 2022 (EISA 2007).  

Alternative fuels are also of interest from an environmental perspective. Legislative bodies 

like the Environmental Protection Agency and a California Air Resources Board were established 

to investigate and address the impact of energy production on human health and the environment.   

Legislation like the Clean Air Act of 1970 was established to address concerns surrounding the 

byproducts produced from the burning of fossil fuels. Revisions to the act were made in 1977 and 

1990 to address the newly recognized issues of smog, acid rain, and ozone layer depletion. EPA 

established a tier system for the systematic reduction of tailpipe emissions. Tier 1, 2 3, and 4 

standards were enacted in 1998, 2004, 2006, and 2008. Since The passing of the Clean Air Act of 
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1970 stationary source pollution from industry has been reduced by nearly 70%. Mobile source 

pollution from automobiles has been reduced by more than 90%. These reductions have caused 

the six most commonly found air pollutants to decrease by more than 50 percent (EPA 2007). 

Although great progress has been made in addressing the negative impacts of burning fossil fuels 

areas of possible improvement still exist.   

2.2 Non-road Engines 

 

Small displacement non-road engines have been found by the EPA to cause a 

significant amount of air pollution. EPA research (EPA 2008) concluded that 26% of mobile 

source volatile organic compound (VOC) emissions and 23% of mobile source carbon 

monoxide emissions are produced by these engines. Mobile source pollution includes cars, 

light and heavy trucks, buses, non-road recreational vehicles, farm and construction equipment, 

marine engines, aircraft, locomotive and lawn and garden equipment. This is a substantial 

contribution when the broad definition of mobile source is taken into account. Road vehicle 

emissions have been regulated for decades. New policy has shifted the focus to off road 

vehicles. One possible approach to the problem is the implementation of dual fuel combustion.    

2.3 Alcohol Fumigation in Internal Combustion Engines 

Fossil fuels have a major impact on the sphere of modern civilization including industrial 

development, transportation, and power generation. The rapid increase in use of fossil fuel over 

the past two centuries has destructive effects on environment. The depletion of reserves coupled 

with the increase in consciousness has created a drive to reduce emissions while preserving 

performance. The scope of research into dual fuel combustion strategies for compression ignition 

engines is split between fuel blends and fuel fumigation. Fuel blends involves the mixing of fuel 
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before injection. Fumigation techniques involve the injection of a secondary fuel into the intake 

air charge. This literature review will focus on the fumigation aspect of dual fuel combustion. 

Relevant research first explored fumigation using gasoline, and then alcohol, and natural gas as 

the secondary fuel. Due to the scope of my research this literature review will focus on alcohol 

fumigation. Alcohol fumigation is a dual fuel engine operation technology in which alcohol fuels 

are premixed with incoming air (Imran 2013). Alcohol fumigation is being explored as an effective 

measure to reduce emissions from diesel engine vehicles.  

Park et al (2014) examined the effects of bioethanol and gasoline as a premixed injection 

source on the combustion performance and exhaust emissions characteristics of a dual-fuel 

combustion engine. The ignition source of dual-fuel combustion was biodiesel derived from 

soybean oil. The premixing ratio was calculated based on the total input energy and was varied 

from 0.2 through 0.8. Experimental results show that dual-fuel combustion had a higher maximum 

combustion pressure, shorter ignition delay, significantly lower NOx, and soot emissions. 

Hydrocarbon and carbon monoxide emissions were shown to increase when compared to single-

fuel combustion. In a comparison of bioethanol and gasoline during dual-fuel combustion, 

biodiesel–bioethanol dual-fuel combustion showed lower maximum pressure, longer ignition 

delay, and higher IMEP than biodiesel–gasoline dual-fuel combustion. The increase in the 

premixing ratio for both dual-fuel combustion modes increased the ignition delay and IMEP, and 

decreased the maximum combustion pressure. With the increase in the premixing ratio, fuel 

consumption increased during biodiesel–gasoline dual-fuel combustion, but decreased during 

biodiesel–bioethanol dual-fuel combustion. NOx significantly decreased during biodiesel–

bioethanol dual-fuel combustion; however, biodiesel–gasoline dual-fuel combustion had a limited 

effect on NOx reduction. Hydrocarbon and carbon monoxide emissions were increased by 
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bioethanol or gasoline premixing. The biodiesel–bioethanol dual-fuel combustion mode showed 

higher hydrocarbon emissions than the biodiesel–gasoline dual-fuel combustion mode, and the 

carbon monoxide emission level was similar in both combustion modes. 

Sarjovaara et al (2015) studied, E85 as the primary fuel in a dual-fuel combustion concept. 

The E85 blend was injected at low pressure into the intake manifold and the mixture was ignited 

via a diesel fuel injection near top dead center. The research engine was based on a heavy-duty 

diesel engine equipped with a common-rail injection system. Only the duration of the diesel 

injection was modified in the diesel injection system during the tests – the other diesel injection 

parameters were not changed. The goal was to study the possibilities of using the waste material-

based E85 ethanol blend on dual-fuel concept as a promising future bio-fuel option. The results 

were promising, though the engine was not optimized for the combustion concept being studied 

and minimum modifications were done to the engine. High E85 rates (up to 89%) by energy 

content were achieved, especially under medium load conditions. On the high and low load 

portions were lower, but the E85 rates were higher than 30% even in these cases. For most of the 

cases, the limiting issue was the pressure rise rate, but in cases with the highest portions of E85 

the limiting factor was the minimum quantity of the diesel fuel enabling two phase diesel fuel 

injection. In all cases the E85 increased carbon-monoxide and un-burned hydrocarbon emission, 

but the nitrogen oxide emission decreased simultaneously in most of the cases. Smoke emissions 

were low in all cases, but at highest E85 rate smoke emissions further decreased to near zero value. 

Tutak et al (2015) investigated the impact of both methanol and E85 (85% ethanol and 

15% gasoline) as additional fuels added to a diesel fueled engine on its combustion characteristics 

and exhaust emissions. These fuels were added by injection into an intake manifold in amounts 

expressed by their energy percentage of 20%, 50%, 75% and 90% with respect to total diesel fuel–
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methanol or diesel fuel–E85 blends. The tests in a compression ignition engine contained analysis 

of heat release rate and combustion parameters as well as analysis of exhaust toxic emission NOx, 

THC, CO and soot. It was observed that with increase in methanol or E85 peak combustion 

temperature decreases as well as temperature of the mixture at the end of compression stroke that 

affects combustion duration. For methanol or E85 two characteristic peaks in the heat release rate 

profile were observed. The first peak represents burning the diesel fuel and the second burning 

methanol or E85. Hence, diesel fuel injection timing should be corrected, if alcohols, even in small 

amounts, are applied. Furthermore, as advantage, slight increase in brake efficiency was observed. 

Next, radical reduction in soot, particularly at 50% alcohol (methanol or E85) addition was also 

managed as important advantage. On the other hand, increase by 16% in NOx emission was 

observed, while 20% methanol or E85 were added. Summing up, addition of methanol or E85 to 

the diesel fueled engine is justified, however, it significantly changes entire combustion process. 

Especially, intensive research should be undertaken on reducing higher NOx emission. 

Tutak (2014) investigated the potential of E85 fueling in a diesel engine. Researches were 

performed using a three-cylinder a direct injection diesel engine. A dual-fueling technology is 

implemented such that E85 is introduced into the intake manifold using a port-fuel injector while 

diesel is injected directly into the cylinder. The primary aim of the study was to determine the 

operating parameters of the engine powered on E85 bioethanol fuel in dual fuel system. The 

parameters that were accounted for are: engine efficiency, indicated mean effective pressure, heat 

release rate, combustion duration and ignition delay, combustion phasing and exhaust toxicity. 

With E85 fuel participation, NOx and soot emissions were reduced, whereas CO and HC emissions 

increased considerably. It was found that E85 participation in a combustible mixture reduced the 
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excess air factor for the engine and this led to increased emissions of CO and HC, but decreased 

emissions of nitrogen oxides and soot. 

Abu-Qudais et al (2000) investigated and compared the effects of ethanol fumigation and 

ethanol–diesel fuel blends on the performance and emissions of a single cylinder diesel engine 

have been. An attempt was made to determine the optimum percentage of ethanol that gives lower 

emissions and better performance at the same time. This was done by using a simple fumigation 

technique. The results show that both the fumigation and blends methods have the same behavior 

in affecting performance and emissions, but the improvement in using the fumigation method was 

better than when using blends. The optimum percentage for ethanol fumigation is 20%. This 

percentage produces an increase of 7.5% in brake thermal efficiency, 55% in CO emissions, 36% 

in HC emissions and reduction of 51% in soot mass concentration. The optimum percentage for 

ethanol–diesel fuel blends is 15%. This produces an increase of 3.6% in brake thermal efficiency, 

43.3% in CO emissions, 34% in HC and a reduction of 32% in soot mass concentration. 

Imran et al (2013) identified the potential use of alcohols in fumigation mode on diesel 

engines. In their review, the effect of ethanol and methanol fumigation on engine performance and 

emission of diesel engine has been critically analyzed. A variety of fumigation ratios from 5% to 

40% have been applied in different types of engines with various types of operational mode. It has 

been found that the application of alcohol fumigation technique leads to a significant reduction in 

the more environment concerning emissions of carbon dioxide (CO₂) up to 7.2%, oxides of 

nitrogen (NOx) up to 20% and particulate matter (PM) up to 57%. However, increase in carbon 

monoxide (CO) and hydrocarbon (HC) emission have been found after use of alcohol fumigation. 

Alcohol fumigation also increases the BSFC due to having higher heat of vaporization. Brake 

thermal efficiency decreases at low engine load and increases at higher engine load. 
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Liu et al (2014) investigated he combustion and emissions of n-butanol/biodiesel dual-fuel 

injection on a diesel engine through experiments and simulations. n-Butanol was injected into the 

intake port, while soybean biodiesel was directly injected into the cylinder. Three different 

premixed ratios (rp) were investigated, including 80%, 85% and 90%. The injection timings of 

biodiesel were adjusted to keep the 50% burn point (CA50) between 2° CA and 10° CA after top 

dead center for achieving stable operation. The EGR (exhaust gas recirculation) rates were 

changed from 35% to 45%. Results demonstrate that the same CA50 can be achieved by the early 

or late-injection of biodiesel. For both early- and late-injection, the auto-ignition is triggered by 

the biodiesel reaction. Increasing premixed ratios can retard the combustion phasing and reduce 

the pressure rise rate, while the indicated thermal efficiency (ITE) reduces by about 0.6% as 

increasing rp to 90%. The early-injection has lower NOx emissions compared to the late-injection 

due to lower combustion temperature. The soot emissions are comparable for both early- and late-

injection. With the increase of EGR, the NOx and soot emissions decrease, while the HC 

(hydrocarbons) and CO (carbon monoxide) emissions increase. The ITE reduces by 1–2% as 

increasing EGR to 45%. 

Chen et al (2013) conducted an experimental investigation on a direct injection (DI) diesel 

engine with exhaust gas recirculation (EGR), coupled with port fuel injection (PFI) of n-butanol. 

Effects of butanol concentration and EGR rate on combustion, efficiency, and emissions of the 

tested engine were evaluated, and also compared to a DI mode of diesel–butanol blended fuel. The 

results show butanol concentration and EGR rate have a coupled impact on combustion process. 

Under low EGR rate condition, both the peak cylinder pressure and the peak heat release rate 

increase with increased butanol concentration, but no visible influence was found on the ignition 

delay. Under high EGR rate condition, however, the peak cylinder pressure and the peak heat 
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release rate both decrease with increased butanol concentration, accompanied by longer ignition 

delay and longer combustion duration. As regard to the regulated emissions, HC and CO emissions 

increase with increased butanol concentration, causing higher indicated specific fuel consumption 

(ISFC) and lower indicated thermal efficiency (ITE). It is also noted that butanol PFI in 

combination with EGR can change the trade-off relationship between NOx and soot, and 

simultaneously reduce both into a very low level. Compared with the DI mode of diesel–butanol 

blended fuel, however, the DI diesel engine with butanol PFI has higher HC and CO emissions 

and lower ITE. Therefore, future research should be focused on overcoming the identified 

shortcomings by an improved injection strategy of butanol PFI. 

Al-Hasan an Al-Momany (2008) investigated the effect of using iso-butanol and diesel fuel 

blends. The engine used was a single cylinder four stroke CI engine Type Lister 1-8. The tests 

were performed at engine speeds from 375 to 625 in intervals of 42 rpm at different loads. The 

fuel blends were 10, 20, 30 and 40% butanol to diesel by volume. The overall engine performance 

parameters measured included air-fuel ratio (AFR), exhaust gas temperature, brake power (Bp), 

brake specific fuel consumption (bsfc) and brake thermal efficiency (ηth). The experimental results 

show that AFR, exhaust gas temperature, (Bp) and (ηbth) decreased and bsfc increased with iso-

butanol addition compared to neat diesel fuel. The results indicate that the engine performance 

parameters were optimal when using up to 30% iso-butanol in fuel blends.  

Soloiu and MoncadaA (2018) studied the direct injection of methyl oleate and PFI of n-

butanol in RCCI operation to minimize exhaust emissions in reference to conventional diesel 

combustion. An experimental common rail engine was operated in RCCI and conventional diesel 

combustion modes under constant boost and similar combustion phasing. The RCCI strategy used 

two pulses of direct injections with a fixed first injection at 60° before top dead center and a varied 
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second injection for smooth combustion. Ringing intensity was reduced by 70% for methyl oleate 

RCCI compared to diesel conventional diesel combustion. The molecular oxygen from methyl 

oleate allowed a reduction in soot by 75% and 25% compared to diesel in RCCI and conventional 

diesel combustion operation, respectively. Compared to conventional diesel combustion, NOx and 

soot decreased for RCCI by several orders of magnitude with both emissions approaching near 

zero levels at low load. The fuels produced a stable RCCI operation where mechanical efficiency 

was sustained within 2% for same-load points and the coefficient of variation of indicated mean 

effective pressure was limited to 2.5%. 

Soloiu and Gaubert (2018) investigated low temperature combustion was by introducing 

an 80% mass fraction of n-butanol in a reactivity controlled compression ignition (RCCI) mode. 

A 60% mass fraction of n-butanol was port fuel injected (PFI) and the additional 20% was directly 

injected through a blend of n-butanol (Bu) with Fischer-Tropsch gas to liquid synthetic paraffinic 

kerosene (GTL) with ULSD as a reference. The blended fuels GTL20-Bu80 and ULSD20-Bu80 

reduced cetane for improved combustion phasing control compared to the reference RCCI mode 

with direct injection of neat ULSD and n-Butanol PFI (ULSD40-Bu60). RCCI strategies delayed 

ignition and increased peak heat release rates due to prolonged mixing time and reactivity 

stratification, inducing faster flame speeds. In RCCI mode, the ringing intensity (RI) increased up 

to 85% higher than in CDC. NOx and soot were reduced up to 90% with ULSD40-Bu60 compared 

to CDC. The butanol blends decreased CO by 25% compared to ULSD RCCI. CO levels overlayed 

each other for GTL20-Bu80 and ULSD20-Bu80 across loads, suggesting that the butanol was the 

influencing factor. ULSD and ULSD20-Bu80 RCCI increased mechanical efficiencies compared 

to CDC by 3–4% across loads. ULSD20-Bu80 had the lowest cetane and displayed the greatest 

improvement in the overall emissions and efficiencies in RCCI compared to CDC. 
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 It has been found that the application of alcohol fumigation technique leads to a significant 

reduction in the emissions of carbon dioxide, nitrogen oxides, and particulate matter without a 

serious reduction in engine performance.  However, carbon monoxide and unburned hydrocarbon 

emissions have been found to increase after use of alcohol fumigation. Alcohol fumigation also 

increases the BSFC due to having higher heat of vaporization, which leads to a lower indicated 

thermal efficiency. The literature reviewed suggests that applying alcohol fumigation to an IDI 

diesel engine will yield positive results. 

2.4 n-Butanol 

Growing energy demand has created a need to shift from finite fossil fuels to renewable 

bio-fuels. The ever decreasing worldwide petroleum reserves have led to efforts in the search for 

alternative energy sources such as nuclear, geothermal, biomass, and others (Al-Hasan and Al-

Momany 2008). Butanol blends can be used as a drop-in replacement in blends or as a secondary 

fuel for dual fuel combustion concepts. Butanol has many advantages over other alcohol based 

fuels. Butanol has a lower vapor pressure and is less corrosive of components of the fuel system. 

Butanol can be refined from petroleum or produced by fermentation resulting in bio-butanol. The 

petroleum based butanol is produced from propylene feedstock (Atsumi 2008). Butanol is used in 

a variety of industries ranging from paint thinners to an additive in personal hygiene. A new 

application for bio-butanol has recently emerged as an alternative fuel source to petroleum (Dürre 

2008) Bio-butanol can be produced through acetone-butanol-ethanol fermentation from renewable 

sources like sugar beets, sugar cane, corn, wheat, cassava, switch grass, guayule, bagasse, and 

straw (Qureshi 2006).  



36 

 

 

 

CHAPTER 3: METHODOLOGY 

3.1 Overview 

The purpose of this study was to investigate the emissions of a single cylinder experimental 

IDI engine, and to optimize the emissions and efficiency of this engine. The experimental test bed 

consisted of the Kubota EA330-E3-NB1 engine, EMS 8860 engine management computer, port 

fuel injection system, dynamometer, Kistler piezoelectric pressure transducers, Fourier transform 

infrared spectroscopy emissions analysis systems, and National Instruments data acquisition 

boards. It was crucial to design and develop a system that can be used to obtain repeatable results 

for different fuels. The electronic fuel injection system was developed with the goal of injecting 

the low reactivity n-butanol into the intake manifold of the engine as a percentage by mass of the 

total fuel flow. The methods for the development of the port fuel injection system, engine 

instrumentation, data collection, and fuel analysis are discussed in this section. To control the 

injection event of the n-butanol an aftermarket ECU was installed and programed to provide the 

optimal injection timing. This also allows for precise control of the mass flow rate of the port fuel 

injector based on engine speed and load. This is of importance because it allows for the percentage 

of n-butanol to be adjusted based on its’ percentage of the total mass of both fuels. This is of 

significance because the percentage of the injected alcohol fuel has a direct impact on the overall 

emissions of the research engine.    

3.2 Research Implementation 

 To understand the correlations between the chemical and thermo-physical properties of the 

test fuel analysis of the reference fuel ULSD#2 and n-butanol was performed. This includes; 

Cetane number, thermos-gravimetric analysis, differential thermal analysis, and dynamic 
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viscosity. Next the influence of dual fuel combustion using alcohol with respect to conventional 

diesel combustion was observed. This includes combustion pressure, ignition delay, heat release, 

mass fraction burned, maximum volume averaged in cylinder gas temperature, cylinder heat 

fluxes, and heat transfer. Finally, the characteristics of combustion in terms of emissions, and 

thermal, mechanical, and overall efficiency were determined.  

3.3 Fuel Analysis 

Determination of a fuels quality was performed. Technical functionality and performance 

of a fuel are prevalent concerns when determining a fuel's quality. Both the physical and chemical 

properties influence the ignition and combustion of the fuel, which in turn influences the 

performance and emissions characteristics. The properties of the fuel will also affect the longevity 

of the engine and of its critical components. In order to verify the quality of the biofuel, 

experimental determination of lower heating value, calorific value, stability, and values of dynamic 

viscosity were performed.  

3.3.1 Viscosity 

The viscosity of a fuel can affect its’ atomization quality as well as the wear of the 

injection system. The viscosity of the test fuels was determined using a Brookfield Viscometer 

DV-II Pro Type. Testing occurred over a temperature gradient of 26-60°C with viscosity values 

measured in cP. The viscometer measures the torque of a rotating motor attached to a spindle 

submerged in the fuel sample. Shear stress can be determined based on the torque values and 

spindle geometry. Dynamic viscosity can be then be derived using the shear stress and shear rate. 

For this thesis 7 mL of fuel was tested using a SC-18 spindle.  Figure 3 below shows the 

Brookfield Viscometer used in testing.  
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Figure 3 Brookfield Viscometer and Shell and Tube Heat Exchanger 

3.3.2 Lower Heating Value 

 The lower heating value (LHV) of the test fuel and fuel blends was determined using a Parr 

6772 Digital Calorimeter. The LHV determines the energy content of the fuel. The sample being 

studied is placed in a pressurized chamber filled with O2. The chamber is submersed completely 

in distilled and deionized water to thermodynamically isolate the system. A fuse wire inside the 

calorimeter ignites the sample. A thermocouple is then used to measure the change in water 

temperature from the heat release. A gross heating value for the process is found. The lower heating 

value is then derived by subtracting the latent heat of vaporization of water. This is based on the 

ASTM D240 standard. The constant volume calorimeter can be seen in Figure 4 below.  

Viscometer 

PID Temperature 

Controller Heat Exchanger 
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Figure 4 Parr 6772 Digital Calorimeter (Parr 2014) 

3.3.3 Thermal Gravimetric and Differential Thermal Analysis 

The thermal gravimetric and differential thermal analysis was determined using a DTG-60 

from Shidmadzu. Data was recorded using the TA-60WS thermal analysis workstation. Thermal 

gravimetric analysis shows how a sample burns and the mass changes over a temperature gradient 

0°C-600°C. This gives insight to the volatility of the fuel being tested. The differential thermal 

analysis shows how the sample of test fuel will absorb and release energy over the same 

temperature gradient. Tests were conducted at a constant temperature rise rate of 20 ℃/min and a 

constant flow rate of oxygen at 5 mL/min. This is done to simulate the environment of an IC 

engine. The DTG-60 apparatus can be seen in Figure 5 below.  
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Figure 5 Shimadzu DTG-60 TGA-DTA (Shimadzu Corporation 2012) 

3.3.4 He-Ne Mie Scattering 

The droplet size, Sauter Mean Diameter (μm) with respect to time and the volume 

frequency distribution (%) of the fuel spray was analyzed with a Malvern Spraytec Mie scattering 

He-Ne laser. A reduction in the Sauter Mean Diameter of a fuel’s spray creates a larger surface to 

volume ratio, which increases combustion efficiency and reduces ignition delay. The test setup of 

the experimental apparatus is displayed in Figure 6. Calculations are performed by measuring the 

light scattered by the spherical particles injected through the laser (Malvern 2006). The test setup 

places the injector 14 cm from the center of the laser beam with an injection pressure of 80 bar. 

Data collection began 0.1 ms after initiating the spray and stopped at 2 ms. The sampling rate was 
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set to 10 kHz for 3 ms.  The Helium-Neon laser is 10 mm diameter with a wavelength of 632.8 nm. 

The SMD determination is based on the British Standard BS2955:1993. 

 

Figure 6 Malvern Spraytec Mie Scattering He-Ne Laser in the Engine Laboratory 

3.3.5 Constant Volume Combustion Chamber  

The Derived Cetane Number (DCN) is calculated based on testing in accordance with ATSM 

Standard D7668-14a for the determination of derived cetane number (DCN) of diesel fuel oil-

ignition delay and combustion delay using a constant volume combustion chamber (CVCC) 

(ASTM 2014). The CVCC, shown in Figure 7, utilizes a fuel sample as low as 60 mL to determine 

the DCN, Ignition Delay (ID), Combustion Delay (CD), Negative Temperature Coefficient Region 

(NTC), and Low Temperature Heat Release (LTHR). For this study, a PAC CID510 constant 

volume combustion chamber was used. Low temperature heat release is a low magnitude natural 

luminosity associated with the injection of fuel. LTHR encompasses the NTC region where the 
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thermal characteristics of a fuel cause the fuel to ignite for a small amount of time until a ‘cool 

flame’ reduces the energy output of the reaction until high temperature heat release (HTHR).  

A constant volume combustion chamber is a useful tool to observe LTHR through 

conventional combustion analysis (Szybist 2007). For this study, a PAC CID510 constant volume 

combustion chamber was used to observe and compare the LTHR behavior of ULSD#2 and n-

butanol. 

 

Figure 7 PAC ID510 Combustion Chamber 

3.4 Engine Operating Procedures 

 The purpose of this investigation was to demonstrate the dual fuel combustion capability 

of an IDI engine using ULSD#2 and n-butanol. The basis of data acquisition was centered on the 

pressure from combustion and the crank angle. A schematic of the experimental engine is 

presented in Figure 8 and Figure 9 below. In general, the auxiliary chambers are designed to 

produce high temperatures and high velocity swirl, which causes the fuel and air to mix well before 
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ignition. This will cause the fuel blends to exhibit very similar combustion characteristics with 

almost identical ignition delay in spite of variations in fuel properties. Load was applied to the 

engine from a dynamometer and testing was commenced at increasing loads over increasing 

concentrations of n-butanol by mass. Continuous testing was performed and the engine was 

allowed to run for a 2 minute transition period before switching to a different concentration of n-

butanol. Measurements were taken at a constant engine load of 5.5 bar indicated mean effective 

pressure and a constant speed of 2400 rpm. The concentration of n-butanol was varied from 10% 

to 40% by mass of the total fuel flow rate. Injection timing was fixed at 24 CAD BTDC for the 

main injector and at TDC twice per cycle for the port fuel injector. A total of 100 engine cycles 

were averaged for each research point. 

3.5 Experimental Engine Setup 

The engine used in this research was an indirect injection, single cylinder Kubota EA330-

E3-NB1. The engine is liquid cooled, naturally aspirated, uses compression ignition, and has 2 

valves per cylinder. The engine contains a three vortex separate combustion chamber with no 

exhaust gas recirculation and no turbo or supercharging. The engine is limited to 3000RPM, and 

is capable of producing 6 HP of continuous power. The injection system was a plunger type pump 

with a 1×0.200mm pintle tip needle injector. In cylinder pressure was obtained using a Kistler 

6053cc non-cooled piezoelectric pressure transducer and the fuel line pressure was measured using 

a Kistler 6229 inline injection pressure sensor with a Kistler 6533A11 clamp adaptor. An Omron 

2000 pulse/rev rotary encoder gave a time line for the engine. Data was obtained using a high 

speed Yokogawa DL750 data acquisition system (DAQ) that is capable of 1 MS/s. Torque was 

measured with an Omega TQ513 torque cell. The mass flow rate of air was measured with a 

Merriam Z50MC2-2 laminar flow meter equipped with a probe that automatically adjusts air 
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density for test cell ambient conditions. The emissions data was gathered from an AVL 415S 

Smoke Meter, Horiba MEXA-720NOx analyzer, and a MKS Multigas 2030 FTIR.  

 

Figure 8 Experimental Engine Schematic (Kubota Tractor Corporation) 
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Figure 9 Triple Vortex Combustion Chamber 

Swirl Chamber Opening 
Valves 
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Table II: Kubota Engine Specifications (Kubota 2014)
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Figure 10 Fuel Consumption, Power, and Torque vs. Engine Speed (Kubota 2014) 
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Figure 11 Test Cell Setup 

3.5.1 Pressure Transducers 

In-cylinder pressure is obtained using two piezoelectric pressure sensors introduced to 

the combustion chamber via a specially manufactured sleeve for the main chamber and a glow 

plug adapter for the swirl chamber. These sensors combined with the rotary shaft encoder is 

used to obtain the combustion pressures during the engine cycle. A Kistler Type 6053CC was 

mounted in the main combustion chamber.   

MKS FTIR 

Laminar Flow Meter 

AVL Smoke/Soot Meter 

Horiba NOx Analyzer 

Yokogawa Oscilloscope 
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Figure 12 Kistler Main Chamber Transducer (Kistler 2011) 

The pressure sensor used for the swirl chamber was a Kistler 6056A piezoelectric 

pressure transducer, Figure 13. This sensor is housed in a glow plug fitting, Figure 14, which 

enables the sensor to be in direct contact with the in-cylinder gases during combustion.  
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Table III: Kistler Type 6056A Specifications 

Measuring 

range 

bar 0 – 250 

Sensitivity change  

23 – 350 ℃ 

% ≤ ± 2 

Calibrated 

sub-ranges 

bar 

0 – 50, 0 – 100,  

0 – 150, 0 - 250 

Thermal shock error bar ≤ ± 0.5 

Overload bar 300 ∆pMIN % ≤ ± 2 

Sensitivity pC/bar ≈ -20 ∆pMAX % ≤ ± 1 

Natural 

frequency, 

nominal 

kHz ≈ 160 
Insulation resistance 

at 23 ℃ 

Ω < 1013 

Linearity at 

23 ℃ 

%FSO ≤ ± 0.03 Shock resistance g 2000 

Acceleration 

sensitivity 

bar/g 

< 0 .0002 

< 0.0005 

Tightening torque Nm 1.5 

Operating 

temperature 

range 

℃ - 20 – 360  Weight g 10 

Connector ℃ 200 Connecter (PTFE) - KIAG 10-32 
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Figure 13 Kistler Swirl Chamber Transducer (Kistler 2017) 
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Table IV: Kistler Type 6053CC Specifications 

Range bar 0 – 250 

Calibrated  ranges bar 0 – 50, 0 – 100, 0 – 150, 0 – 250 

Overload bar 300 

Sensitivity pC/bar -20 

Natural frequency kHz ≈ 160 

Linearity %FSO ≤ ± 0.03 

Acceleration sensitivity bar/g < 0.0005 

Shock resistance g 2,000 

Thermal shock error ∆p bar ≤ ± 0.7 

Operating temperature range ℃ -20 - 350 

Capacitance pF 5 

Insulation resistance at 23 ℃ TΩ  ≥ 1013 

Tightening torque Nm 1.5 

Weight g 30 

Connector - M3X0.35 
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Figure 14 Kistler Glow Plug Adapter (Kistler 2013) 

 

The pressure transducers are housed in a stainless steel case with coaxial cables on one 

end and stainless steel diaphragms on the other. The diaphragm covers a cavity that houses the 

piezoelectric crystal sensing element. The cylinder pressures act on the piezoelectric crystal in 

the Kistler sensor resulting in an output charge that is proportional to the measured pressures. 

The signal from the pressure sensors was conditioned and amplified by a Kistler 5010B dual 

charge amplifier. 

A clamp style pressure transducer has been installed to measure fuel pressure. A Kistler 

6229 inline injection pressure sensor with a Kistler 6533A11 clamp adapter were chosen for 

the application. The type 6229 is capable of making high pressure measurements within the 

fuel pump or through the fuel lines up to 500 bar.  
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Figure 15 Kistler Type 6229A Fuel Line Pressure Transducer (Kistler 1997) 

 

 

Figure 16 Kistler Clamp on Adapter (Kistler 1997) 
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Table V: Kistler Type 6229A Transducer Specifications 

Range bar 0 – 5000 

Calibrated partial range bar 0 – 500 

Overload bar 6000 

Sensitivity pC/bar -2.5 

Natural frequency kHz >200 

Rise time µs 1 

Linearity %FSO ≤ ± 1 

Acceleration sensitivity axial and 

transverse 

bar/g 

< 0.004 

< 0.01 

Shock resistance axial and transverse g 

10,000 

5,000 

Temperature coefficient of sensitivity % /℃ + 0.02 

Operating temperature range ℃ -50 - 200 

Capacitance pF ≈ 8 

Insulation resistance TΩ 50 

Tightening torque Nm 20 

Weight g 12 

Service life number of cycles from 0-3000 bar > 107 
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3.5.2 Charge Amplifier 

 

The Kistler Dual Mode Amplifier is an amplifier used for signal conditioning of various 

types of transducers. In the case of this research, the amplifier was used in the charge 

amplifier mode required for high impedance piezoelectric pressure transducers such as the 

Kistler 6053CC used in the experimental setup. Figure 17 is a depiction of the Kistler 5010B 

Dual Mode Charge Amplifier used for in-cylinder pressure signal conditioning. 

 

Figure 17 Kistler 5010B Dual Mode Charge Amplifier (Kistler 2010) 

 

The amplifier converts the charge from the pressure transducer into a usable 0-10V 

output. The conversion is based on the sensitivity of the transducer, obtained from transducer 

calibration certificate, and the measurement scale. The measurement scale used by the amplifier 

is in Measuring Units per Volt (MU/V), and the transducer sensitivity is in pC/MU. The unit 

MU is used on the amplifier because it is not specific to the pressure transducer. The amplifier 

can be used with sensors that measure force, strain, acceleration, and other parameters requiring 
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piezoelectric transducers. Technical data for the Kistler 5010B amplifier can be found in Table 

VI. 

Table VI: Technical Data for Kistler 5010B Amplifier (Kistler 2010) 

  

Specifications Unit 
Type 

5010B 

Time 

Constant 
Unit 

Type 

5010B 

Measurement range pC 
±10-

999000 
Long sec 0 - 100000 

Scale settings 1,2,3,4,5 

sequence 
MU/V 

0.0002 - 

10000000 
Medium sec  1 - 10000 

Sensor sensitivity 
pC/MUmv 

/MU 
0.01 -9990 Short sec 0.01 - 100 

Input Time constant resistor  

Connector charge, voltage  BNC neg. Long Ω >1014 

Impedance charge mode Ω 70 Medium Ω 1011 

Impedance voltage mode Ω 100K Short Ω 109 

Voltage max. V 50 Noise 

Insulation resistance at input Ω 1014 

Reffered to 

with input 

shield 

pCrms 0.0035 

Sensor power voltage mode mA 4 1 pC/V max µVrms 500 

Frequency response Hz 180000 

Drift 

MOSFET 

leakage 

current 

pC/s ≤ ± 0.03 

Accuracy % ≤ ± 0.050 Zero offset  mV 0.50 

 

 

3.5.3 Rotary Encoder 

 

In order to measure the angular location of the engine a rotary encoder was 

implemented. The rotary encoder chosen for the experimental setup was the Omron E6C2-

CWZ3E incremental rotary encoder pictured in Figure 18. The rotary encoder was mounted on a 

plate behind the engine and connected, via a flex coupling, directly to the engine’s flywheel. 

This allowed for the direct measurement of the angular displacement in respect to engine’s TDC 

position with a 1:1 ratio. 
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Figure 18 Omron E6C2 Rotary Encoder (Omron 2015) 

 

The rotary encoder is a 2000 pulse per revolution (ppr) optical encoder that features 3 

channels (A,B, and Z). Channels A and B output 2000 ppr while channel Z outputs a homing 1 

ppr. The Z encoder was mounted and aligned in such a way that the Z channel pulse lined up 

with the engine TDC. This allowed for the Z channel to sync the 2000 ppr signals in respect 

with TDC.  For the experimental setup channel B was not used. This is because the engine 

always rotates in a counter-clockwise direction facing the flywheel, and the encoder’s 

capability of determining rotational direction was unnecessary. 

3.5.4 Temperature 

Monitoring operational temperatures of the test engine is important in maintaining 

repeatability throughout the experiment. Drastic changes in operating temperatures will have a 

direct effect on emissions and performance results. The test engine was instrumented with K- Type 

thermocouples for measurements of exhaust gas temperature, engine oil temperature, cooling 

water temperature, and dyno oil temperature.  
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Omron E5CS temperature controllers were paired with K-Type thermocouples. The Omron 

E5CS series controller has the capability to display the temperature from a K-Type thermocouple 

to +- 0.3% accuracy. Fig. 20 is a depiction of the E5CS series of thermocouple controllers and the 

1/16DIN size pictured on the left was used in the experimental setup. 

 

Figure 19 Omron E5CS Thermocouple Controllers (Omron 2015) 

The K-Type thermocouple was chosen for its versatility, robustness, and ability to 

accurately measure the temperatures encountered by an engine. The K-Type thermocouples have 

a temperature range of -200˚C to 1250˚C which is higher than the maximum observed exhaust 

temperatures by a magnitude of 4. 

3.5.5 Flow Meters 

The Meriam Laminar Flow Element from the 50MC2 series was used to monitor the 

incoming air charge. The meter is paired with an integral flow computer that adjusts for test cell 

pressure, static pressure, temperature and relative humidity to provide the most accurate results 

possible. Calibration data for up to five meters can be stored in memory and recalled allowing for 
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quick transitions between experimental engines.  Measurements are based on the differential 

pressure principle. 

  

Figure 20 Meriam 50MC2 Series Laminar Flowmeter and Integral Flow Computer (Meriam 

2018) 

Fuel mass flow rates for the port fuel injector were observed using a P001 piston flow 

meter from Max Machinery. The fuel flow meters are designed with variable output transmitters 

for optimal resolution and, anti-dithering, and signal dampening. The flow meter is capable of 

low flow measurement from 0.005 to 200 cc/min (0 to 0.053 gpm).  

 

Figure 21 Max Machinery P001 Piston Flow Meter (Max Machinery 2017) 
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 Data for the piston flow meter was observed in real time using an Arduino Mega2560 

microcontroller.  An original sketch was written to convert the analog input reading of the 

microcontroller which is observed as a number from 0 – 1023 to a voltage. The voltage value 

was then converted to a mass flow rate in kg/hr based on a linear curve fit acquired from the 

injector calibration. A preset number of data values were stored to the mega and averaged. The 

average value was then displayed on a desktop computer within the test cell. Averages were 

updated every 100 microseconds.   

 

Figure 22 Arduino Mega2560 Microcontroller (Arduino 2018) 
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Figure 23 Arduino Mass Flow Rate Sketch 
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Figure 24 Arduino Serial Monitor Displaying Flow Rate Measurements 

3.5.6 Emissions Analyzers 

Emissions species from the experiments, were observed using Fourier-transform infrared 

spectroscopy. The MultiGas 2030 from MKS was used. The instrument is capable of measuring 

with a sensitivity of 10 – 100 parts per billion. Up to 30 different species can be monitored 

simultaneously at a 1Hz sampling rate.  

Table VII: MKS Main Measured Species and Calibration Ranges 

Nitrogen Monoxide (NO) 

 0 -3000 ppm 

Carbon Monoxide (CO)  

0 – 500 ppm 

Ethane (C2H6)  

0 - 1000 

Nitrogen Dioxide (NO2)  

0 -2000 ppm 

Carbon Dioxide (CO2)  

0 – 20 % 

Ethylene (C2H4)  

0 – 3000 ppm 

Acetylene (C2H2)  

0 – 1000 ppm 

Isocyanic Acid (HNCO)  

0 – 400 ppm 

Ammonia (NH3)  

0 – 3000 ppm 

Methanol (MeOH)  

0 – 1000 ppm 

Formic Acid (HCOOH)  

0 – 100 ppm 

Propylene (C3H6)  

0 – 1000 ppm 

Methane (CH4)  

0 – 3000 ppm 

Nitrous Oxide (N2O)  

0 – 1040 ppm 

Formaldehyde (HCHO)  

0 – 500 ppm 

Water (H2O)  

0 – 25 % 

Nitrous Acid (HNO2)  

0 – 20 ppm 

Sulfur Dioxide (SO2)  

0 – 300 ppm 

Ethanol (C2H6O)  

0 – 10000 ppm 

Hydrogen Cyanide (HCN) 

 0 – 100 ppm 

Benzene (C6H6)  

0 – 1000 ppm 
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Figure 25 MKS MultiGas 2030 FTIR (MKS 2017) 

 The instrument passes an infrared beam through the gas sample. The sample absorbs 

spectral frequencies from the beam. The absorbed frequencies and their intensities are dependent 

on the atoms associated with the chemical bond and the strength of those bonds. The absorption 

spectrum is unique for each gas and can be used to identify and quantify emissions. The 

instrument is also equipped with a flame ionization detector (FID). Ions can be formed from the 

combustion of organic compounds in a hydrogen flame. The formation of ions is proportional to 

the concentration of the organic compound in the sampled gases. The FID can measure the 

quantity of ions formed. They are primarily used for measuring hydrocarbon content of the 

exhaust gases.  

 

Figure 26 AVL 415s Smoke/Soot Meter (AVL 2011) 
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 The AVL 415s Smoke Meter was used to measure soot emissions. It uses the filter 

paper method in accordance with ISO 10054 to measure filter smoke number, soot concentration, 

and percent pollution. The instrument measures over a range from 0 to 10 FSN. The minimum 

detection limit is 0.002 FSN and 0.02 mg/m3 for soot. The resolution of the instrument is 0.001 

FSN and 0.01 mg/m3. The smoke meter operates by passing a volume of exhaust gas through clean 

filter paper. The blackening of the paper due to soot is then detected by an optical reflectometer 

head.  

3.6 Port Fuel Injection System Design 

The port fuel injection (PFI) fabrication and installation was an integral part of 

achieving full control of fuel delivery to the engine. The PFI system allowed for precise fuel 

mass flow rates to be achieved during changing operational conditions. Developing the system 

composed of manufacturing components specific to the test engine. The required components 

for the system are listed in Table VIII. The flow path of the system can be seen in Figure 27. 
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Table VIII: Port Fuel Injection System Components 

1 Engine Control Unit (ECU) – EMS8860 

2 In-port electronic fuel injector – PL2-155 

3 Potentiometer 

4 Variable Reluctance Crank Sensor 

5 12V Battery 

6 64 Tooth Ferrous Trigger Wheel 

7 Hose fittings 

8 High Pressure SAE 30R9 Fuel Line 

9 High Pressure Fuel Injection Pump (100psi) + 

10 42psi Fuel Pressure Regulator 

11 Fuel Tank 

12 Fuel Filter 

13 Mounting Bracket 

14 Power Switch 

15 Intake Manifold 

16 Fuel Flow Meter 
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Figure 27 Port Fuel Injection System Schematic 

3.6.1 Intake Manifold Design 

 A preliminary computational fluid dynamics analysis was performed using Fluent in 

ANSYS Workbench version 17.1. This was done to provide a baseline for comparison and 

to understand the flow behavior in the intake. Understanding the fluid motion helps to 

prevent poor mixing due to wall wetting. To simplify computations the working fluid was 
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assumed to be incompressible so a pressure based solver was used. The working fluid for the 

baseline simulation was air and was assumed to be an ideal gas. The simulation with port 

fuel injection used air and n-butanol as working fluids. Both were predefined by ANSYS. 

Properties for the working fluid were assumed constant and were evaluated at standard 

atmospheric temperature and pressure. 

The computational domain being modeled was the intake runner from the inlet to 

the mating surface at the cylinder head. The velocity gradient close to the wall was of great 

interest, especially the effects that the port fuel injector will had on the flow characteristics. 

Due to this a mesh with a fine relevance was used. Advanced meshing controls were 

manually selected. Proximity and curvature were used for the advanced sizing function. 

Inflation was used at the inlet and outlets to capture the boundary layer behavior. The 

inflation was program controlled. The transition control was left on the default setting of 

slow to allow for a smooth transitions.  Tetrahedral cells were used to more accurately 

capture the complex, curved geometry of the injector nozzle. Patch conforming was selected 

for a high quality mesh and because of the features’ compatibility with inflation.  

The geometry is divided into five zones. Boundary conditions were set for the inlet, 

pfi inlet, and outlet zones. Boundary conditions were considered for pressure and 

temperature, and heat flux. Heat flux was assumed to be zero for all zones. Boundary 

conditions were taken from experimental data with the exception of the temperature at the 

inlet which was assumed to be room temperature. 
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Table IX: Boundary Conditions 

Zone Pressure Temperature 

inlet 1.01325 bar 300 °K 

pfi inlet 2.75790 bar 300 °K 

outlet 0.80000 bar 570 °K 

 

 For flows involving heat transfer or compressible flow, the energy equation must be enabled (4). 

An Eulerian approach was chosen for particle tracking. Fluent solves three transport equations: continuity 

(5), momentum (6 & 7). 

    Equation 4 

        Equation 5 

     Equation 6 

      Equation 7 

 

 Fluent turbulence models are based off the Reynolds Averaged Navier-Stokes equations. The k-ε 

turbulence model was selected. The Large Eddy Simulation model could have also been chosen, but 

ultimately was not to save on computational time. The realizable k-ε model with standard wall functions 

was chosen. Species transport was enabled to allow for the use of multiple working fluids. The transport 

equations are as follows. The P terms represent the generation of turbulent kinetic energy (ANSYS 2013). 

 Equation 8 
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 Equation 9 

 

 Table X displays the simulation results for different mesh sizes as well as a comparison to 

an analytical solution calculated using Bernoulli’s equation. This was done to validate the mesh 

and assess the accuracy of the model. Changing the cell size resulted in a maximum change of 

1.26% between solutions which suggest a well meshed model. The percent error between the 

analytical solution and CFD analysis reached a maximum of 5.32% which shows that the model 

is well developed.  

Table X: Mesh Validation and Analytical Solution Comparison 

Cell Size (mm) Velocity (m/s) % Difference  % Error 

0.5 194.15 1.26% 4.01% 

1 196.59 0.67% 5.31% 

2 195.28 0.67% 4.61% 

5 196.60 ----- 5.32 % 
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Table XI: Simulation Convergence Criteria 

Residual Convergence Criteria Final Values 

Continuity 1.00e-03 5.76e-03 

X-velocity 1.00e-03 2.85e-05 

Y-velocity 1.00e-03 3.43e-05 

Z-velocity 1.00e-03 3.45e-05 

Energy 1.00e-06 5.56e-06 

K 1.00e-03 8.24e-04 

Epsilon 1.00e-03 1.60e-03 

 

 

Figure 28 CFD Residuals 

 

Table XI and Figure 28 display the convergence criteria, and residuals for the 

simulation. These are displayed to show that convergence was reached. Figure 29 displays 

the velocity profile of air passing through the intake and the expected pathlines of a butanol 

injection. 
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Figure 29 Velocity Contour (left) and PFI Pathlines (right) 

 

Installation of the port fuel injector required the complete remanufacturing of the 

OEM intake. A 3D model of the intake design is depicted in Figure 30.  
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Figure 30 Intake Design 3D Model 

 

The manifold started out as an OEM aluminum intake, which was milled to make an 

opening for the port fuel injector. An aluminum collar was TIG welded over the opening and 

used to seat the injector. Figure 31 is a depiction of the finished intake complete with injector. 

It is bolted directly to the engine’s intake port with the fuel injector pointing at a 70˚ angle to 

the face of the cylinder head. The injector was aimed at the intake valve face for optimum 

combustion characteristics based on the study conducted by Kato, Hayashida, & Lida (2008). 
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Figure 31 Custom Intake Manifold and Injector 

3.6.2 Injector Selection and Calibration 

A peak and hold type injector was chosen for the application due to its’ precision and 

response time. A generic sizing formula was used with some simplifying assumptions to size 

the injector. The average brake specific fuel consumption for a naturally aspirated engine is 

approximately 0.50 lbs/hr for each horsepower produced. The research engine has a single 

cylinder that produces 6.7 horsepower. The industry standard is that most injectors will max out 

at an 80% duty cycle. 

𝑭𝒍𝒐𝒘 𝑹𝒂𝒕𝒆 =  
𝑯𝑷∗𝑩.𝑺.𝑭.𝑪

# 𝒐𝒇 𝑰𝒏𝒋𝒆𝒄𝒕𝒐𝒓𝒔∗𝑫𝒖𝒕𝒚 𝑪𝒚𝒄𝒍𝒆
=  

𝟔.𝟕∗𝟎.𝟖𝟎

𝟏∗𝟎.𝟖 
= 𝟔. 𝟕 𝒍𝒃𝒔/𝒉𝒓       Equation 10 

𝑭𝒍𝒐𝒘 𝑹𝒂𝒕𝒆 = 𝟔. 𝟕 
𝒍𝒃𝒔

𝒉𝒓
∗

𝟎.𝟒𝟓𝟒 𝒌𝒈

𝟏 𝒍𝒃
=  𝟑. 𝟎𝟒 𝒌𝒈/𝒉𝒓       Equation 11 

Based on calculations the PL2-155 injector from RC engineering was chosen. The 
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calculations above must be verified experimentally to ensure the accuracy of research done 

using the PFI system. This was done by measuring the amount of fuel released into a beaker 

and determining the volume per unit time. The test bench for this was developed in lab. Figure 

33 displays the apparatus. An aftermarket ECU was used to control the injector actuation and 

the engine speed signal from the rotary encoder was simulated using a function generator.  

 

Figure 32 PL2-155 Peak and Hold Injector (Vivid Racing 2018) 

 

Figure 33 Developed Injector Calibration Test Bench 

Front Side 

Function 

Generator 

ECU 

Desktop 

Computer 

Injector 
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Table XII: PL2-155 Injector Specifications 

Flow Rate – cc/min 155 at 43.5 psi 

Flow Rate – lbs/hr 15  at 43.5 psi 

Flow Rate – kg/hr 6.8 at 43.5 psi 

Resistance 2.5 ohms at 68 F 

Voltage 8 – 15 volts, nominal 13 volts 

Amperage Peak 4 amps/ Hold 1.5 Amps 

Pressure Min 30 psig/Max 100 psig 
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Figure 34 PL2-155 Peak and Hold Injector Calibration Curves 
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The injector was selected and installed before the flow meter used to record the mass 

flow rate. To verify that the flow meter had no major impact on the flow characteristics of the 

PFI system a calibration check was performed. A plot of the mass flow rates for the injector 

before and after the installation of the flow meter can be seen in Figure 35. This calibration was 

performed at a constant engine speed of 2000 rpm. An average difference of 4.0% was observed 

between the data used to generate both curves. 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.5 2 2.5 3 3.5 4

Pre Flow Meter
Post Flow Meter

M
a
s
s
 F

lo
w

 R
a

te
 [

k
g

/h
r]

Duration [msec]
 

Figure 35 Calibration Curves for the PL2-155 from Before and After the Flow Meter Installation 

 

Table XIII contains the experimentally obtained mass flow rates of ULSD#2 through the 

main fuel injector at a constant speed of 2400 RPM and loads of 2, 3, and 4 bar BMEP. 
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Table XIII: Main Injector Mass Flow Rate at 2400 RPM 

Dyno Load (bar) Fuel Mass Flow Rate (kg/hr) 

2 0.557 

3 0.675 

4 0.808 

 

 Table XIV contains calculated total mass flow rates to inject n-butanol as a specified 

percentage of the total mass flow rates from both fuels. 

Table XIV: Total Fuel Mass Flow Rate at 2400 RPM 

Percent PFI 2 bar 3 bar 4 bar 

10 0.619 0.750 0.898 

20 0.696 0.844 1.010 

30 0.795 0.965 1.155 

40 0.928 1.125 1.347 

50 1.113 1.350 1.617 

60 1.392 1.688 2.021 

70 1.856 2.251 2.695 

80 2.783 3.376 4.042 

 

Table XV: Fuel Mass Flow Rate for the Port Fuel Injector at 2400 RPM 

Percent PFI 2 bar 3 bar 4 bar 

10 0.062 0.076 0.091 

20 0.139 0.169 0.202 

30 0.239 0.290 0.348 

40 0.372 0.452 0.541 

50 0.557 0.675 0.808 

60 0.835 1.013 1.213 

70 1.303 1.580 1.892 

80 2.227 2.701 3.233 
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 From the data in Table XIV the mass flow rates through the port fuel injector were 

calculated. These numbers were then verified using the calibration curve for the port fuel 

injector. Injector duration for the PFI injector for loads ranging from 2 to 4 bar were calculated.  

By increasing the injector duration to the maximum of 13.00 ms PFI percentage of 80% can 

theoretically be supported at all loads. These values can be found in Table XVI.    

 

 

Table XVI: Port Fuel Injector Duration at 2400 RPM 

Percent PFI 2 bar 3 bar 4 bar 

10 0.90 0.95 1.02 

20 1.19 1.30 1.43 

30 1.57 1.76 1.97 

40 2.06 2.36 2.70 

50 2.75 3.20 3.70 

60 3.80 4.46 5.21 

70 5.55 6.57 7.75 

80 9.00 10.87 12.78 

 

3.6.3 ECU Selection and Programming 

The EMS 8860 sequential motorsports ECU was selected for control of the fuel delivery. 

The ECU was chosen because it was already available and researchers are already familiar with 

the equipment. It is a fully programmable control module capable of closed loop control using 

either analog or digital inputs.  The ECU uses information from sensors and a fuel map 

developed in this research to calculate the amount of fuel needed for engine operation. The two 

main feedback sensors required for proper operation are the variable reluctance (VR) speed 

sensor and the throttle position sensor (TPS). The VR sensor provides the ECU with crank 
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rotation speed and position in a 360° degree revolution. The TPS sensor measures the percentage 

of throttle opening from 0-100%. A potentiometer was used to simulate a throttle. 

Electrical 

 
The ECU required an extensive wiring system to provide for the sensor connections 

and power source supply. For this purpose a wire schematic was designed, as can be seen in 

Figure 36. 

 

Figure 36 Wire Schematic for Engine Control Unit 

The TPS sensor is a variable potentiometer which required a 5V supply and a 

sensor GND from the ECU. The signal output is 0-5V. The injector on time has a 
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maximum value of 20 ms. Each load point allows for 255 increments. Allowing for the 

injection duration to be varied from 0 – 20 ms in 1/255 increments.  

Based on these two sensors the ECU is able to plot its place on a fuel map that is a three 

dimensional map of speed (RPM), load (TPS %) and amount of fuel to be injected (injector 

open time). A sample fuel map can be seen in Figure 37 and with the input values shown in 

Figure 38. The ECU setup parameters are displayed in Figure 39. 

 

Figure 37 Sample Fuel Map from the EMS 8860 
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Figure 38 PL2-155 Port Fuel Injection Fuel Map Inputs 

 

 

 

 
Figure 39 EMS 8860 Setup Parameters 
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3.6.4 Trigger Mechanism Design 

The EMS ECU is capable of controlling both the fuel injection and ignition control 

system for most two and four-stroke engines. For this application only the fuel injection 

functionality is being used. The ECU only requires a few inputs to accomplish this.  Throttle 

position and an indication of engine speed are all that are required to trigger the injection event. 

The throttle position was simulated using a potentiometer. The engine speed and injection 

timing for the port fuel injector was determined by using a standard steel pickup wheel attached 

to the output shaft of the engine. The trigger wheel for crankshaft position had to be custom 

fabricated and precisely aligned. The trigger wheel started out as a sheet of ferrous steel that 

was cut into a 64-tooth drive sprocket with one missing tooth. Cutting operations were 

conducted using a water jet. A variable reluctance sensor was installed on to the engine test 

bench and was wired into the ECU. This VR sensor used the trigger wheel as a reference for 

where the engine was in rotation. For this reason it had to be mounted very precisely and within 

three thousands of an inch tolerance. Any contact of the trigger wheel and the pickup would 

destroy the sensor. The trigger wheel also had to be oriented in such a way that the missing 

tooth would line up with top dead center (TDC) of the engine. This combination of hardware 

allowed the ECU to determine engine speed and injection timing very precisely. 
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Figure 40 VR Sensor Solid Model and Fabricated Part 

 

 

Figure 41 Trigger Wheel Solid Model and Fabricated Part 

Material has been removed from the trigger wheel itself. This serves the function of 

balancing the wheel. For rotating solid bodies, rotation about an axis not located at the parts center 

of gravity can cause oscillations that can introduce noise in data acquisition equipment or cause 

damage to the rotating parts. Figure 42 is a screenshot of mass evaluations for the trigger wheel 
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and bushing using Solidworks 2018. Because each solid model has its center at the origin and 

normal to the axis of rotation (Z-axis) the parts needed to have a center of gravity with X and Y 

coordinates of zero.   

 

Figure 42 Mass Evaluation of the Trigger Wheel 

 A frequency analysis was performed using ANSYS Workbench 18.1 to verify that the 

trigger wheel design is balanced. The Campbell plot can be seen in Figure 43. The trigger wheel 

was subjected to a rotational speed ranging from 2000 RPM to 3000 RPM. The first six natural 

frequencies were found. These can be viewed in Table XVII. Each mode is stable and below the 

critical speed of the part. This suggest that the trigger wheel is well balanced and can safely be 

used for the application.  

 

Figure 43 Campbell Plot of the Trigger Wheel 
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Table XVII: Frequency Analysis Results 3000 RPM 

Mode Whirl Direction Mode 

Stability 

Critical 

Speed 

Natural 

Frequency 

1 BW Stable None 851.7 Hz 

2 BW Stable None 1079.9 Hz 

3 FW Stable None 1443.1 Hz 

4 FW Stable None 1764.4 Hz 

5 FW Stable None 1998.7 Hz 

6 FW Stable None 2589.2 Hz 

 

3.7 Metrics for Success 

The metrics for success are defined by simultaneously reducing NOx and soot emissions 

with dual fuel combustion while exceeding or meeting EPA regulations for small displacement, 

non-road diesel engines. Engine out NOx + UHC emissions must be lower than 7.5 g/kWhr, 

soot emissions must be lower than 0.4 g/kWh, and CO emissions must be lower than 8.0 

g/kWhr without the need for exhaust after-treatment systems.  An optimal dual fuel strategy 

must be developed to produce these emission reductions while maintaining desirable 

combustion characteristics. 
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CHAPTER 4: DATA ANALYSIS 

 4.1 Fuel Properties  

 Both the physical and chemical properties influence the ignition and combustion of the 

fuel, which in turn influences the performance and emissions characteristics. The properties of 

the fuel will also affect the longevity of the engine and of its critical components. Due to this, the 

quality of the fuel being used must be assessed to fully understand the effect it will have on the 

combustion process. 

The values that were determined experimentally were comparable to values found in the 

literature. Table XVIII below presents the fuel properties of ULSD#2 and n-butanol.  

Table XVIII: Fuel Properties 

Property ULSD #2 n-Butanol 

Cetane NumberA 47.21 16.4 

Density @ 20℃ (g/cm3)A 0.850 0.790 

Dynamic Viscosity @ 40° C (cP)A 2.34 1.78 

LHV (MJ/kg)A 42.6 33.7 

Ignition Delay (ms) (CVCC)A 3.47 40.16 

Combustion Delay (ms) (CVCC)A 5.12 81.25 

Latent Heat of Vaporization (kJ/kg)* 233 595 

Flashpoint (℃)** 53.5 35 

*(Lapuerta et al. 2010), **(Soloiu and MoncadaA 2018), A Determined experimentally in lab 
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4.1.1 Dynamic Viscosity 

 Viscosity is one of many important factors that go into determining if a fuel is applicable 

for commercial use. It influences droplet diameter and vaporization rate. Increased viscosity can 

cause poor atomization which can lead to soot production and deposit formation, and lower 

viscosities can accelerate injector wear due to a decrease in lubricity (Soloiu and MoncadaA 2018). 

The viscosity of the test fuels was determined using a Brookfield Viscometer DV-II Pro Type. The 

viscosity was determined over a temperature range of 26-60°C in increments of 2℃. Figure 44 

below presents the viscosity vs. temperature diagram for each of the tested fuels. The n-butanol 

had a lower viscosity than ULSD at all points. This was expected given the lower density and 

lubricity of the alcohol based fuel when compared to diesel.  
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Figure 44 Viscosity vs. Temperature of All Tested Fuels 

4.1.2 Ignition Quality    

Three graphs were created to illustrate the difference between the two fuels, including the 

combustion pressure, apparent heat release rate (AHRR), and combustion temperature versus time. 

Figure 45 is a plot of the combustion pressure for both fuels.   
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Figure 45 Combustion Pressure of ULSD and n-Butanol in the Constant Volume Combustion 

Chamber 

 The reference parameters for both fuel test were constant. Temperature was kept at 595.5 

℃, and initial chamber pressure was kept at 20 bar. The temperature of the cooling fluid was 

maintained at 50 ℃. Injection pressure was held at 1000 bar for 2500 milliseconds.  The curve 

for n-butanol can be observed to decrease in pressure due to the high latent heat of vaporization 

that is characteristic of this alcohol (Soloiu and MoncadaA 2018). 
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Figure 46 ULSD Heat Release Rate and n-Butanol in the Constant Volume Combustion Chamber 

As observed in Figure 45, there was an oscillation in the combustion pressure of neat ULSD 

as well as an oscillation in the apparent heat release rate (shown in Figure 46). The oscillations in 

the graphs are indications of ringing within the constant volume chamber. The oscillations 

correlate to delayed combustion of small amounts of fuel that create a shock wave that is detectable 

by the pressure transducer inside the chamber. In Figure 46 it was observed that the apparent heat 

release output of neat n-butanol was significantly less, the low temperature heat release region was 

much longer, and the negative temperature coefficient region was much longer. Due to the slower 

pressure rise rate, the combustion delay is delayed. The longer NTC region of the n-butanol is a 

result of its’ weaker ignition reactivity when compared to neat ULSD.  
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With longer CD being present for the alcohol, the result is a lower derived cetane number. 

The CVCC uses Equation 12 to calculate the DCN, using an average ignition delay and CD from 

a sweep of 15 injections.  

𝑫𝑪𝑵 = 𝟏𝟑. 𝟎𝟐𝟖 + (
−𝟓.𝟑𝟑𝟕𝟖

𝑰𝑫
) + (

𝟑𝟎𝟎.𝟏𝟖

𝑪𝑫
) + (

−𝟏𝟐𝟔𝟕.𝟗𝟎

𝑪𝑫𝟐 ) + (
𝟑𝟒𝟏𝟓.𝟑𝟐

𝑪𝑫𝟑 )         Equation 12 

 The DCN of n-butanol was calculated to be 65% lower than that of the DCN of ULSD. 

The high combustion delay, and the low apparent heat release rate resulted in a lower temperature 

distribution, shown in Figure 46. 
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Figure 47 Combustion Temperature of ULSD and n-Butanol in the Constant Volume Combustion 

Chamber. 
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The combustion temperatures of the two fuels reached the same maximum temperature. The 

major difference in the temperatures is the amount of time that it took the n-butanol to fully 

combust when compared to the ULSD.  

4.1.3 Thermo-Gravimetric and Differential-Thermal Analysis 

 The thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) was 

performed on a Shimadzu DTG-60. An analysis of ULSD#2 and n-butanol was performed. 

Vaporization characteristics are determined from the TGA curve and endothermic and 

exothermic reactions are determined from the DTA curve. The TGA curve indicates the fuel's 

vaporization temperature and speed of vaporization. An increase in vaporization temperature 

indicates an increase in the droplets' momentum and an increase in the duration of travel time 

inside of the combustion chamber and the higher possibility of wall impact (Soloiu 2014). Lower 

vaporization temperatures are desirable because they lead to an increase in mixing in cylinder 

which facilitates a more complete combustion.   

The results of the experiment are displayed in Figure 48 and Table XIX below. The TGA 

showed a decrease in vaporization temperature for n-butanol when compared to ULSD#2. The 

alcohol fuel began to vaporize at 54°C while ULSD#2 maintained stability until 110°C. n-Butanol 

then vaporized rapidly with TA50 and TA90 occurring at 80.8°C and 95.42°C respectively. The 

increase in vaporization rate could be related to the oxygen content of the fuel facilitating initial 

oxidation (Soloiu and MoncadaA 2018). The differential thermal analysis results show that 

ULSD#2 reaches its maximum endothermic reaction around 190°C (absorbing the lower heat of 

vaporization). The maximum exothermic reaction (heat release) for ULSD#2 occurred around 

300°C and lasted to approximately 375℃. The DTA of the alcohol fuel showed a maximum 
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endothermic reaction around 97°C (much higher than that of ULSD). n-butanol displayed 

exothermic reaction from 160°C to 340°C.  

The energy release of the fuels is split into two stages. The initial endothermic reaction is 

due to oxidation. The second reaction takes place at high temperatures as a result of pyrolysis. The 

high latent heat of vaporization of butanol can be seen in the initial endothermic reaction. This is 

almost 5 times the magnitude of ULSD#2. This large absorption of energy creates a cooling effect 

in cylinder which has an impact on the formation of certain emissions species.  
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Figure 48 TGA for ULSD#2 and n-Butanol 
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Table XIX: Thermal Gravimetric Analysis 

 ULSD#2 n-Butanol 

TA10 (°C) 110.05 54.35 

TA50 (°C) 180.64 80.80 

TA90 (°C) 239.63 95.42 
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Figure 49 DTA for ULSD#2 and n-Butanol 
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4.1.4 Mie Scattering Spray Analysis  

 The fuel spray atomization determines the quality of the combustion and affects the 

amount of emissions produced. Efficient combustion is largely influenced by the size and 

distribution of the droplets. A decrease in the droplet size increases the surface area and increases 

the vaporization and air entrainment (Soloiu 2015). Spray analysis was performed with a 

Malvern Mie Scattering Laser using a 1×0.200mm pintle tip injector (same type as on the 

engine). The spray test injection pressure matched that of the experimental setup. The results of 

the analysis are shown in Figure 50. The figure presents the average of ten sprays for various 

blends shows the average SMD resulting by statistical analysis. SMD is shown as a function of 

time. 

The results display a continuous increase in SMD with time for both fuels. Similar numbers 

were obtained for ULSD#2 and n-butanol with the alcohol based fuel having slightly larger values 

for Dv(10), Dv(50), and Dv(90), which are the largest droplet SMD for 10%, 50%, and 90% of the 

spray volume. This is most likely a result of a drop in injection pressure caused by the lower density 

and higher volatility of the alcohol fuel when compared to neat ULSD#2. Peak volume frequency 

distributions indicate the droplet size that is the most prevalent. This peak is around 34 μm at 7% 

for both ULSD#2 and n-butanol. Table XX lists the particle size by volume and the percent spray 

volume under 10 μm.  
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Figure 50 Sauter Mean Diameter and Droplet Frequency Distribution 

Table XX: Particle Size Distribution by Volume (µm) 

 Dv(10) Dv(50) Dv(90) SMD %v<10µm 

ULSD 12.5 40.1 131.1 23.7 9.0 

n-Butanol 12.4 39.5 136.7 23.9 9.1 
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4.2 Thermodynamic Combustion Analysis 

4.2.1 Combustion Pressure 

 Direct measurement of the combustion pressure is possible by in-cylinder instrumentation 

of two Kistler Piezoelectric Pressure transducers. For the main chamber a Kistler 6053CC was 

used while a Kistler 6056A was used in the pre-chamber. The evaluation of the maximum 

combustion pressure for all fuel blends and injection regimes will be evaluated and compared to a 

reference fuel. Combustion pressure data will be averaged over approximately 100 cycles taken at 

intervals of 3-5 minutes. Proposed data will include the CAD at peak pressure and the magnitude 

of peak pressure along with a motoring curve to indicate the TDC of the engine. The combustion 

pressure will be pegged to an intake plenum at a particular CAD to ensure proper alignment.  The 

figure below is sample data that was taken using cottonseed biodiesel injection strategies. Figure 

51 displays the pressure traces for each fueling strategy. Conventional diesel combustion (CDC) 

saw similar peak compression at 63 bar to the 10% dual fuel strategy. After 10% a trend can be 

seen where cylinder pressure increases with the increasing concentration of n-butanol with a 

maximum pressure of 73 bar being observed at 40% dual fuel strategy. This correlates to the longer 

mixing time available to the butanol (Soloiu and MoncadaB 2018). The location of the peak 

pressure can be seen to shift early in the cycle with the 40% dual fuel strategy reaching peak 

pressure 4° earlier than CDC. This correlates to the shorter ignition delay observed from the dual 

fuel strategies, which is a result of the increased oxygen content of the butanol causing a more 

rapid combustion. An inflection in the pressure trace can be seen just after TDC, due to the cooling 

effect of n-butanol (Soloiu and Gaubert 2018). 
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The maximum pressure rise rate (MPRR) can be seen in Figure 52. A steady increase in 

MPRR can be seen from CDC to the 30% dual fuel strategy showing an increase of 35%. By 40% 

injection of n-butanol a MPRR of 4.98 bar/degree is observed. This is a 127% increase over CDC 

which had a MPRR of 2.19 bar/degree.  These increases are a result of smaller reactivity gradients 

at the time of combustion (Li 2015).  
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Table XXI: Maximum Combustion Pressure and Respective Crank Angle 

Fueling 

Strategy 

Peak Pressure 

(bar) 

Crank Angle 

CDC 63.33 372.60° 

10% n-

Butanol 

63.22 373.32° 

20% n-

Butanol 

65.21 370.44° 

30% n-

Butanol 

66.43 369.72° 

40% n-

Butanol 

73.25 368.82° 
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Figure 52 Maximum Pressure Rise Rate 
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Figure 53 P-V Diagrams for CDC (left) and 20% n-Butanol (right) 

 Figure 53 above displays the P-V diagrams for CDC and the 20% dual fuel strategy. The 

dual fuel mode has a peak pressure 2 bar higher than CDC giving it a narrower area under the 

compression and combustion areas of the curve.  

4.2.2 Apparent Heat Release 

 The net rate at which heat is absorbed and released is described as the apparent heat release. 

The work done on the piston and the heat transfer from the hot gasses to the cylinder walls must 

be accounted for to gain quantitative information about this process. We made the assumption that 

the system is closed, and the mass transfer of the injected fuel is omitted. Other assumptions were: 

the working fluid of the combustion chamber operates under the laws of ideal gas and the first law 

of thermodynamics. Crevice flow and blow by were ignored since it represents less than 2% of the 

system’s mass. Equivalent substitutions were made where necessary. For analysis, Equation 13 

below is used. Referencing the equation Q is in Joules, ϴ is crank angle degrees, γ is the specific 

heat capacity of air, V is the cylinder volume in liters, and P is combustion pressure in bar. 

TDC TDC BDC BDC 
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𝑑𝑄

𝑑𝜃
=

1

(𝛾−1)
𝑉

𝑑𝑃

𝑑𝜃
+

𝛾

𝛾−1
𝑃

𝑑𝑣

𝑑𝜃
                         Equation 13 

 The figure below represents the apparent heat release rates (AHRR) for each fueling 

strategy. Values of peak heat release and the respective CAD can be seen in Table XX. In Figure 

54 and Figure 55 below, the apparent heat release for each fueling strategy is presented. The 

apparent heat release reaches a maximum of approximately 21.45 J/degree for the CDC. From 

10% to 30% dual fuel strategies a decrease in the AHRR can be seen. This is due to the lower 

energy content of the alcohol fuel. The 40% dual fuel strategy displays the maximum AHRR of 

almost 28 J/degrees. This is a 30% increase over what was observed for CDC. This deviation from 

the trend observed previously is a result of an increase in the premixed heat release from the n-

butanol. This is visible as the first peak. The high latent heat of vaporization of both the n-butanol 

led to more prominent concave minimums in the dual fuel strategies (Soloiu and Gaubert 2018).  
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Figure 54 Apparent Heat Release Rate 
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Figure 55 Apparent Heat Release Rate- Detail of Figure 54 
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Table XXII: Maximum Apparent Heat Release Rate and Respective CAD 

Fueling 

Strategy 

Peak Heat Release 

Rate (J/degree) 

Crank Angle 

CDC 21.45 373.50° 

10% n-Butanol 22.13 373.14° 

20% n-Butanol 21.26 373.14° 

30% n-Butanol 19.60 368.82° 

40% n-Butanol 27.99 366.84° 

 

4.2.3 Mass Fraction Burned 

 Mass fraction burned is a cumulative characteristic of heat release, specifically the 

integration of gross heat release plotted against the CAD. It gives insight to the burning rate of the 

fuel where CA10, CA50, and CA90 are representative of 10%, 50%, and 90% of the mass of the 

fuel being consumed. In Figure 56 below, the mass fraction burned for each fueling strategy is 

presented. Ignition delay and combustion duration can be analyzed from this data. Ignition delay 

as defined above is the time from the start of injection to CA10, while the combustion duration is 

the time from CA10 to CA90. The test fuels behave similarly due to the engines high temperature 

& high vortex auxiliary chamber. The overlap of the mass fraction burned is a good indication of 

the engines ability to burn various fuels. This is shown by CA50 for each fueling strategy which 

falls within 375° ± 2° with respect to the crank angle. A decrease in both ignition delay and 

combustion duration can be seen as the concentration of n-butanol being injected increases. This 

contradicts what would be expected given the alcohol based fuel’s lower cetane number when 

compared to neat ULSD#2. This is a result of both the chemical and physical properties of the fuel 

as well as the injection strategy. The volatility of n-butanol as observed by the thermogravimetric 



106 

 

 

 

analysis, combined with its’ lower viscosity promoted increased atomization and evaporation. 

When combined with the increased mixing time obtained by injecting into the intake manifold a 

more premixed charge is introduced into the combustion chamber allowing for the shorter ignition 

delay and faster rate of combustion (Soloiu and Gaubert 2018). Overall a 12.5% decrease in 

ignition delay and a 31.6% decrease in combustion duration was observed between CDC and the 

40% dual fuel strategy.  

 

Figure 56 Mass Fraction Burned 
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Table XXIII: Mass Fraction Burned 

 CDC 10% n-Butanol 20% n-Butanol 30% n-Butanol 40% n-Butanol 

CA10 365.76° 365.40° 365.04° 364.86° 364.68° 

CA50 377.10° 376.02° 375.48° 375.12° 373.50° 

CA90 403.92° 395.64° 395.46° 393.30° 390.78° 

 

Table XXIV: Combustion Duration 

 CDC 10% n-Butanol 20% n-Butanol 30% n-Butanol 40% n-Butanol 

Ignition 

Delay 
14.4°/ 1 ms 13.68°/ 0.95 ms 13.14°/ 0.93 ms 12.24°/ 0.85 ms 12.6°/ 0.88 ms 

Combustion 

Duration 
38.16°/ 2.65 ms 30.24°/ 2.10 ms 30.42°/ 2.11 ms 28.44°/ 1.98 ms 26.10°/ 1.81 ms 

 

4.2.4 Instantaneous Volume Averaged Maximum Gas Temperature 

To maintain the integrity of the engine, a vital parameter to consider is instantaneous 

volume averaged maximum gas temperature. If the maximum temperature inside the cylinder 

becomes too high and the oil film is negatively affected, then the reliability and lifespan of the 

engine will be compromised. The max gas temperature also directly correlates to the amount of 

NOx and soot emissions produced. Higher concentrations of NOX occur as a result of a higher 

maximum temperature. Soot had an inverse relationship. It decreases with increasing temperature 

and pressure.  

In the ideal diesel cycle during the compression stroke the pressure in the cylinder 

increases, which correlates to an increase in temperature. The high compression ratio of the diesel 

engine causes the temperature of the combustion chamber to be above that of the ignition point. In 

order to accurately calculate the maximum gas temperature a zero dimensional model was used 

and the contents of the cylinder are considered homogeneous and operate under the ideal gas law. 
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Figure 57 below presents the instantaneous volume averaged maximum gas temperature for all 

fueling strategies. Maximum temperatures range from a minimum of 1760 K observed in the 30% 

dual fuel strategy to a maximum of 1794 K observed in the 40% dual fuel strategy. This is a 1.9% 

difference. This consistency is a result of the extensive premixing from both the use of an auxiliary 

combustion chamber as well as the port fuel injection. The rapid inflections in temperature 

correlate to the delays in premixed combustion (Soloiu and MoncadaB 2018).  

 

Figure 57 Instantaneous Volume Averaged Maximum Gas Temperature 

Inflection
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4.2.5 Ringing Intensity 

Fuel properties, mixture composition and heat release rates will all influence the rate of 

pressure rise in cylinder. The magnitude of pressure waves will impact the life of an engine as well 

as the noise it produces. Gaseous pollution is a prominent concern when it comes to IC engines. 

Noise pollution is also a concern due to the higher compression ratios and autoigniton behavior 

of CI engines. Ringing Intensity (RI) was calculated using Equation 14. A value of 0.05 was used 

for β, which is a constant that relates pressure rise rate and pulsation amplitude (J.A. Eng 2002). 

𝑹𝑰 =  
(𝜷(

𝒅𝑷

𝒅𝒕
)

𝒎𝒂𝒙
)

𝟐

𝟐𝜸𝑷𝒎𝒂𝒙
√𝜸𝑹𝑻𝒎𝒂𝒙               Equation 14 

 Ringing intensity for all fueling strategies are displayed in Figure 58. RI increased with the 

mass flow rate of n-butanol. The 40% dual fuel strategy had the highest RI at 5.66 MW/m2. This 

was 220% higher than conventional diesel combustion. CDC had the lowest RI at 1.77 MW/m2. 

The influence of the maximum gas temperature can be considered negligible due to the narrow 

range in which they fell. The biggest influences on the RI of each strategy would therefore be the 

maximum pressure release rates. The 40% dual fuel strategy had the highest RI intensity due the 

MPRR being 127% higher than that of CDC. 
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Figure 58 Ringing Intensity 

4.2.6 Cylinder Heat Fluxes and Heat Transfer  

Evaluation of the heat fluxes is necessary to evaluate the heat transfer. The models used 

are based off the work of Borman and Nishiwaki (1987) and were further developed by Soloiu 

(Soloiu 2012). To evaluate the heat fluxes the in-cylinder Reynolds number must be calculated. 

Equation 15 below is used to calculate instantaneous volume-averaged in-cylinder Reynolds 

number.  
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𝑅𝑒(𝛼) = 𝜌(𝛼)
𝑆∙𝑁∙𝐷

30∙𝜇(𝛼)
                         Equation 15 

 Where ρ is the density of in-cylinder gas, S is the engine stroke, N is the engine speed, D 

the piston diameter, and µ is the air viscosity.  Equation 16 below was used for the calculation of 

the air viscosity. 

𝜇(𝛼) = 4.94 ∙
1273.15+110.4

𝑇𝐴(𝛼)+110.4
∙ (

𝑇𝐴(𝛼)

1273.5
)1.5 − 10−5

              Equation 16 

TA is the cylinder gas temperature at each increment of 0.18°CAD. For the convection flux, 

σ is the Stefan-Boltzmann constant, while the emissivity factor ε was considered for the smoothed 

walls of the combustion chamber. 

�̇�(𝛼) = 𝐴
𝜆𝐴(𝛼)

𝐷

̇
𝑅𝑒(𝛼)0.7(𝑇𝐴(𝛼) − 𝑇𝑤) + 𝜎 ∙ 𝜀(𝑇𝐴

4(𝛼) − 𝑇𝑤
4)                Equation 17 

The air conductivity is calculated using the following formula.  

𝜆𝐴(𝛼) = −1.2775 ∙ 10−8 ∙ 𝑇𝐴(𝛼) + 7.66696 ∙ 10−5 ∙ 𝑇𝐴(𝛼) + 0.00444888         Equation 18 

Due to the triple vortex separate combustion chamber, the conditions inside the combustion 

chamber reach a Reynolds numbers well above 100,000 which is considered highly turbulent. The 

Reynolds numbers varied with CDC having the lowest and the 30% dual fuel strategy having the 

highest. The magnitude and crank angle locations of the radiation, convection, and total heat fluxes 

are visible in Figure 59. Shown in the figure, the total heat fluxes are relatively similar for CDC 

up to 30% port fuel injection of n-butanol. The 40% dual fuel strategy had the highest fluxes and 

deviated from the other strategies. This correlates to the higher AHRR observed. The total flux 

(solid line) is a combination of the convection and radiation heat fluxes (dashed lines). The primary 

source of heat transfer comes from the forced convection from the bulk gas to the cylinder walls 

as seen in Figure 58. 
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Figure 59 Heat Fluxes 

The heat losses in the cylinder are based on the heat fluxes and the apparent heat release 

calculated in previous sections. Figure 60 and Figure 61 below show the losses throughout the 

cycle for CDC and 40% n-butanol dual fuel strategy respectively. The heat losses described as 

convection is shown as the blue area on each plot. The radiation heat losses are represented by the 

green area, between the blue line and red gross heat release line. The heat losses for all fuels across 

all loads are very similar with the heat losses due to convection being larger in every case. The 

Total Flux 

Radiation 

Flux 

Convection 

Flux 
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heat losses at TDC are minimal and begin to grow with the expansion of the gasses and the increase 

in combustion chamber volume. The presence of n-butanol affected the local droplet temperatures 

and vapor pressures due to the higher vaporization rate, increasing convection fluxes.  The 

radiation flux followed the in-cylinder temperature curve (Soloiu and Gaubert 2018). Combustion 

efficiency was higher at 100% at 450° crank angle for the 40% fueling strategy due to the shorter 

combustion duration experienced.  

 

Figure 60 Heat Losses for Conventional Diesel Combustion 
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Figure 61 Heat Losses for Dual Fuel Combustion at 40% of the Total Fuel Mass Flow Rate 

4.3 Emissions and Efficiencies Investigation 

4.3.1 Nitrogen Oxides and Soot 

 The main goal of this study was to reduce the emissions produced from combustion by 

controlling the reactivity of the air/fuel charge through the use of dual fuel combustion. The 

emissions data is collected and analyzed based on a reference measurement of conventional diesel 

combustion at the same speed and load. Data is converted to the mass in grams of the select 
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emission per kilowatt-hour. Shown in Figure 62 below the concentrations of NOX emissions are 

plotted based on concentration of n-butanol. A decrease in NOX was observed from CDC to the 

30% dual fuel strategy. This was a reduction from a maximum of 3.0 g/kWh to a minimum of 2.4 

g/kWh which is a 20% reduction. The 40% dual fuel strategy increased from the 30% strategy by 

8%. The decrease in NOX emissions was a result of the cooling effect of the alcohol based fuel 

caused by its’ higher latent heat of vaporization. 

0

0.5

1

1.5

2

2.5

3

3.5

4

Nitrogen Oxide Emissions

CDC
10% n-Butanol
20% n-Butanol
30% n-Butanol
40% n-Butanol

[g
/k

W
h

]

 

Figure 62 Nitrogen Oxide Emissions for increasing n-Butanol Concentrations 
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 The port fuel injection of n-butanol resulted in a homogeneous air/fuel mixture prior to 

ignition, resulting in much lower levels compared to CDC. The slight change in trend for n-butanol 

blends can be related to some increases seen in AHRR, specifically the 40% dual fuel strategy 

which lead to the increase in NOX observed (Soloiu and Gaubert 2018).  

Soot emissions are shown in Figure 63. A steady decrease in soot can be seen as the 

concentration of n-butanol increases. CDC has the highest concentration of soot at 0.37 g/kWh. 

The 30% dual fuel strategy had the lowest concentration of soot at 0.073 g/kWh. The 40% fueling 

strategy was marginally higher at 0.074 g/kWh. Between the 30% dual fuel strategy and CDC a 

reduction of soot of 80% was observed. Port fuel injection allowed for in-cylinder mixing which 

created a more homogenous mixture, reducing fuel rich areas across the chamber. The higher 

oxygen content of n-butanol allowed a more complete combustion by enhancing soot oxidation 

(Soloiu and Gaubert 2018). This also happens as a result of butanol’s high volatility which 

increased mixing rates and carbon recession rates (Amann et al 1980).   
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Figure 63 Soot Emissions for increasing n-Butanol Concentrations 

4.3.2 Carbon Monoxide and Unburned Hydrocarbons 

 Figure 64 and Figure 66 display the carbon monoxide CO emissions and unburned 

hydrocarbon UHC emissions for each fueling strategy.  Both CO and UHC emissions increased 

with n-butanol concentration. CO emissions increased from 0.98 g/kWh for CDC to 25.1 g/kWh 

for the 40% dual fuel strategy. This is a 2461% increase.  This results from CO being unable to 

fully oxidize because of the decreased combustion duration and the increase in the total amount 

of fuel present at the time of combustion (Soloiu and Gaubert 2018). This correlates to the 
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decrease in the relative air/fuel ratio visible in Figure 65. UHC emissions weren’t as drastic with 

a 1091% increase from CDC to the 40% dual fuel strategy. This is a result of butanol passing 

straight through the cylinder during valve overlap as well as the decreased air fuel ratio causing a 

lower combustion efficiency. Increases in CO and UHC can also be attributed to over mixing 

(Soloiu and MoncadaB 2018). 
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Figure 64 Carbon Monoxide Emissions for increasing n-Butanol Concentrations 
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Figure 65 Unburned Hydrocarbons Emissions for increasing n-Butanol Concentrations 
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4.3.3 Aldehyde Emissions 

 Aldehyde emissions are shown in Figure 67. The aldehyde emissions recorded were for 

formaldehyde only. Dual fuel combustion increases formaldehyde emissions due to the 

combustion of the oxygenated alcohol. This is confirmed by the observed trend. As n-butanol 

concentration increases so does the aldehyde emissions. The increase in aldehyde emissions 

contributes to the increase in convection heat losses due to a quenching effect (CIMAC WG 17). 
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Figure 66 Formaldehyde Emissions for increasing n-Butanol Concentrations 
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4.3.4 Efficiencies and Specific Fuel Consumption 

The efficiency of the engine is a vital parameter to knowing whether or not the injection 

strategy is viable. Mechanical and indicated thermal efficiencies (ITE) give an indication to how 

the engine is operating.  

The efficiencies of the investigation are presented in Figure 68 below. Mechanical 

efficiency is defined as the ratio of BMEP to IMEP. Indicated thermal efficiency is the ratio of 

indicated power to fuel energy. Mechanical efficiencies were higher for the alcohol fumigation 

strategies. This was a result of the higher cylinder pressures observed as well as negating parasitic 

losses due to the external injection pump for the n-butanol. The maximum mechanical efficiency 

was 58% for the 30% dual fuel strategy, while the minimum was 56% for CDC. A trend should be 

observed with the mechanical efficiency increasing with increasing cylinder pressure. This trend 

holds true to the up to the 30% dual fuel strategy. The 40% dual fuel strategy breaks the trend. 

This is due to the earlier onset of combustion decreasing the amount of energy released during the 

expansion stroke as well as the higher heat transfer observed (Soloiu and Gaubert 2018). Indicated 

thermal efficiencies decreased with increasing n-butanol fumigation. CDC had the highest ITE at 

43% and dropped to the lowest at 37.8% for the 40% dual fuel strategy. This occurred because the 

total fuel energy increased with the increasing n-butanol concentration, while the indicate power 

remained consistent for all fueling strategies at 3.4 kW. 

The diesel equivalent brake specific fuel consumption (BSFC) was selected instead of the 

standard brake specific fuel consumption (BSFC) to account for the decrease in flow through the 

primary injector caused by the secondary injection source. Equation 19 below was used to calculate 

the Diesel equivalent BSFC (Xing-cai et al 2004). 
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𝐷𝑖𝑒𝑠𝑒𝑙 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐵𝑆𝐹𝐶 = 𝐵𝑆𝐹𝐶 ×
𝐿𝐻𝑉𝐵𝑙𝑒𝑛𝑑

𝐿𝐻𝑉𝑈𝐿𝑆𝐷
               Equation 19 

Figure 69 below presents the diesel equivalent BSFC for all fueling strategies. A linear 

increase was seen from CDC to the 40% dual fuel strategy. CDC had a BSFC of 273.17 g/kWh 

while the 40% dual fuel strategy had a BSFC of 314.30 g/kWh. This is a 15.1% increase. The 

increase results from the lower energy density of the n-butanol. This also corresponds to an 

increase in mechanical efficiency (Soloiu and Gaubert 2018). 

 

Figure 67 Mechanical and Thermal Efficiencies for increasing n-Butanol Concentrations 



123 

 

 

 

0

100

200

300

400

Diesel Equivalent

CDC
10% n-Butanol
20% n-Butanol
30% n-Butanol
40% n-Butanol

[g
/k

W
h

]

Brake Specific Fuel Consumption
 

Figure 68 Diesel Equivalent Brake Specific Fuel Consumption for increasing n-Butanol 

Concentrations 
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CHAPTER 5: CONCLUSIONS  

5.1 Conclusions  

Dual fuel combustion in an indirect injected diesel engine was researched to study its 

characteristics and exhaust gas emissions.   

The hypothesis for research stated: If a dual fuel combustion strategy involving the port 

fuel injection of n-butanol is used in conjunction with the indirect injection of ultra-low sulfur 

diesel, then engine out emissions for nitrogen oxides and soot in single cylinder, off-road diesel 

engines can be reduced below Tier 4 EPA while maintaining engine performance. Combustion 

results validate the stated hypothesis with significant reductions being made in both NOX and soot 

emissions. At 2400 rpm and 3 bar brake mean effective pressure a 21% reduction in NOX from a 

maximum of 3.0 g/kWh to a minimum of 2.4 g/kWh was observed due to the cooling effect of the 

butanol. Soot emissions were reduced by 80% from 0.37 g/kWh to 0.073 g/kWh due to more 

complete combustion caused by the increased oxygen content of the butanol. Port fuel injection 

also allowed for greater in-cylinder mixing which created a more homogenous mixture, reducing 

fuel rich areas across the chamber. Peak reductions were all made at the 30% butanol mass flow 

rate.   

Combustion pressure results show an increase in peak pressure with increasing mass flow 

rates of n-butanol. For the highest concentration of butanol tested at 40% of the total fuel flow rate, 

displayed pressure rise rates 127% higher than that of conventional diesel combustion. This is due 

to the volatility of the alcohol fuel and the increased mixing from injecting butanol into the intake 

manifold. Peak heat release rates were observed to increase with the mass flow rate of butanol with 

a 30.5% increase between CDC and the 40% dual fuel combustion strategy. The increase in peak 
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pressure, maximum pressure rise rates, and heat release rates can be attributed to the shorter 

ignition delay and combustion duration. Both decreased with increasing butanol mass flow rates. 

This contradicts what would be expected given the alcohol based fuel’s lower cetane number when 

compared to neat ULSD#2. This is a result of both the chemical and physical properties of the fuel 

as well as the injection strategy. The volatility of n-butanol and its’ lower viscosity promoted 

increased atomization and evaporation. When combined with the increased mixing time obtained 

by injecting into the intake manifold a more premixed charge is introduced into the combustion 

chamber. Overall a 3.6% decrease in ignition delay and a 31.6% decrease in combustion duration 

was observed between CDC and the 40% dual fuel strategy. 

Peak temperatures remained consistent around 1800 K. Ringing intensity for dual fuel 

strategies exceeded that of CDC, increasing with the increasing mass flow rates of butanol. RI for 

the 40% dual fuel strategy was the highest. This was a result of the substantial increase in peak 

pressure rise rates for this fueling strategy. The lowest RI for the dual fuel strategies was for the 

20% dual fuel strategy which was higher than CDC by 6.2%. The heat flux was increased with 

increasing butanol content. Butanol blends increased the heat flux from the high vaporization rate 

of the fuel. Carbon monoxide and unburned hydrocarbon emissions increased by 2461% and 

1091% respectively for the 40% dual fuel strategy. This results from CO being unable to fully 

oxidize because of the decreased combustion duration and the increase in the total amount of fuel 

present at the time of combustion. UHC emissions increased as a result of butanol passing straight 

through the cylinder during valve overlap as well as the increased lower air/fuel ratios caused by 

the increase of fuel in cylinder from the alcohol injection. Despite increases NOX + NMHC 

emissions for all fuel strategies remained below EPA standards. CO emissions exceeded EPA 
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standards once the flow rate of n-butanol reached 20%. Optimization of the injection timing for 

both the port fuel injector and main injector could reduce both CO and UHC emissions.   

Mechanical efficiencies were 1-2% higher for the alcohol fumigation strategies with the 

maximum occurring with the 30% dual fuel strategy. This was a result of the higher cylinder 

pressures observed as well as negating parasitic losses due to the external injection pump for the 

n-butanol. Indicated thermal efficiencies decreased with increasing n-butanol concentration. CDC 

had the highest ITE at 43% and dropped to the lowest at 37.8% for the 40% dual fuel strategy. 

This occurred because the total fuel energy increased with the increasing n-butanol concentration. 

A linear decrease was seen in diesel equivalent BSFC from CDC to the 40% dual fuel strategy. 

The largest contributor to this result is the lower energy content of n-butanol. Comparing 

parameters suggests that the optimum dual fuel mode is at the 20% flow rate. RI intensity is at a 

minimum for the dual fuel combustion modes, indicated thermal efficiency reaches a maximum of 

40% for the dual fuel modes, mechanical efficiency is close to the maximum at 58%, and 

significant reductions in both NOX (19.8%) and soot (62%) are achieved. CO monoxide emissions 

do increase past EPA standards here but could be reduced through optimization of the injection 

timing. The combustion and emissions characteristics for dual fuel combustion displayed 

promising results with potential to reduce emissions in cylinder and promote the increase use of 

renewable fuels.  

5.2 Future Work 

This study focused primarily on the effect the mass flow rate of the butanol would have on 

combustion characteristics and emissions.  There are many factors that influence the production of 

gaseous emissions including the injection timing, operating speed, operating load, and the use of 
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exhaust gas re-circulation (EGR). Through the development of an EGR system NOX emissions 

could be further reduced. The effect that injection timing would have on carbon monoxide and 

unburned hydrocarbon emissions could also be explored.  
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