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Abstract -- This paper presents novel structures for optimization 
and communication of a swarm of mobile sensors or robots for 
maximizing local and global tasks such as firefighting, landmine 
detection, radioactivity detection, etc. The navigation of the 
sensors is carried out using two strategies. The first strategy is 
based on Particle Swarm Optimization (PSO) and the second 
strategy is based on a swarm of fuzzy logic based controllers. In 
addition, the membership functions and the rules of the Fuzzy 
Logic Controller (FLC) are optimized using the PSO algorithm. 
Navigation of mobile sensors is considered in this paper to locate 
desirable target sources in a given sensing area. Both approaches 
presented do not depend on the number of target sources.  
Results are provided for target locations based on a PSO, a 
swarm of fuzzy logic controllers and a swarm of optimized fuzzy 
logic controllers. 
 

Keywords - Mobile sensors; particle swarm optimization; fuzzy 
logic; membership functions, rules, optimization 
 

I.    INTRODUCTION 

Mobile sensors are used for various applications because of 
their area coverage and simplicity of implementation. A 
number of these sensors are used to explore and exploit 
environments which are inhospitable to humans. These include 
remote areas, hazardous or toxic locations, planetary 
exploration, seismic activity detection, military surveillance 
etc. The advantage of using this method is that when an event 
occurs, all the sensors in the given space try to flock to the 
source of the event. Since the number of the sensors is large it 
accommodates for the failure of any of the sensors thereby 
increasing the redundancy of the system and in turn the 
reliability. There are various methods used so far for 
unmanned navigation. Most of these are vision based 
applications. Neural networks, information fusion techniques 
[1, 2], multi-sensor and computer controlled methods have 
also been explored. 

In order to optimize the effective operation of these 
sensors, the computation and memory need to be reduced to a 
minimum. Also the communication between the distributed 
sensors and a local/central station (if they exist) should be kept 
at a minimum. The power consumption of the entire system 
also needs to be reduced to a minimum. Therefore, it is better 
to execute as many operations as possible locally on each 
sensor and only the most vital data be sent across to the other 
sensors if necessary via coordinating base. Stochastic - 
distributed algorithms have proven to be most efficient for 
these applications. Various algorithms like evolutionary 

computations, genetic algorithms, adaptive cultural evolutions, 
etc have also been used to perform these tasks.  

Swarm intelligence is based on the social behavior of 
flocks of birds/schools of fish and the success of the swarm is 
because of the communication established between them. The 
division of large networks into swarms comprising of 
cooperating nodes has several advantages such as increased 
robustness and security; simplified addressing, routing, and 
localization; low energy consumption, and lower memory 
requirements.  

This paper explores two novel methods for navigation of 
mobile sensors. The first method involves the use of the 
particle swarm optimization algorithm and the second method 
is based on an embedded PSO in a swarm of fuzzy logic 
controllers for the navigation of mobile sensors.  In the second 
method, PSO is also used to determine the optimal input and 
output membership functions and the optimal rules for a 
swarm of fuzzy logic based controllers. Navigation of mobile 
sensors has been developed with these two methods for the 
location of a single, multiple and unknown number of targets 
in a given sensing area.  

The rest of the paper is outlined as follows: Section II 
describes mobile sensor network architecture; Sections III and 
IV describe PSO and fuzzy logic respectively. Section V 
describes the application of PSO and fuzzy logic to the target 
location problem and presents results with these approaches. 
And finally, the conclusion is given in Section VI. 

 
II.    MOBILE SENSOR NETWORK ARCHITECTURE 

Mobile sensor networks are becoming increasingly 
important to manage unmanned physical systems. Distributed 
systems are implemented in order to decentralize the 
computational complexity. The factors for design 
consideration include energy management, efficient 
communication with less disturbances, efficient computation, 
etc. Various methods explored until now have included 
wireless communication, image processing and vision based 
application, neural networks, etc [3]. Due to interference, the 
transmission range for the communicating bodies reduces. 
Therefore, stochastic algorithms run at the sensor level and 
only data to be sent out to the others is sent over a 
communication media.  

Fig. 1 shows a three tier architecture for the 
communication and navigation of mobile sensors presented in 
this paper. The sensing area has been divided into local 
neighborhoods based on arbitrary sensor deployment and if 
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known the number of targets. Each sensor node sends it best 
position with respect to potential target to the neighborhood 
level. The neighborhood level calculates the local best within 
each neighborhood and sends back to the sensor nodes. The 
global level gets the local best positions from the 
neighborhood level and uses this information for further action 
if required. 

 

 
Figure 1. A three tier architecture for the navigation of mobile sensors. 

 
This architecture can be used for various applications such 

as the landmine detection problem, firefighting, military 
operations, etc; the sensors can be dropped in the area under 
surveillance by an airplane. The area is divided into clusters so 
that the sensor motion can be restricted to a smaller area based 
on a divide and conquer philosophy [4]. Each sensor calculates 
its position on the basis of a fitness function with respect to the 
target. The only parameter it sends is that of its best position 
and in turn receives the best position of the swarm/cluster. 
Thus, the communication is kept to a minimum and this 
reduces transmission losses and congestion overcoming 
bandwidth limitations.  

 
III.    PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization reported by Kennedy and 
Eberhart is similar to the concept described above [5]. It is 
relatively a new concept and has been used for target tracing 
by autonomous communicating bodies [6]. A problem space is 
initialized with a population of random solutions in which it 
searches for the optimum over a number of 
generations/iterations and reproduction is based on prior 
generations. The concept of PSO is that each particle 
randomly searches through the problem space by updating 
itself with its own memory and the social information gathered 
from other particles. In this paper, the PSO particles are 
referred to as mobile sensor nodes and the local version of the 
PSO algorithm is considered in the context of this application. 
[7] 

Fig. 2 shows a graphical representation of a single 
cluster/neighborhood. Within a defined sensing area, the 
system has a population of mobile sensor nodes. Each node is 

randomized with a velocity and ‘flown’ in the problem space. 
They have memory and they are able to keep track of their 
previous best position (‘Pbest’) with respect to the target. Thus 
each sensor node has a ‘Pbest’. The best value of all these 
‘‘Pbest’s’ is defined as the best position in the local 
neighborhood ‘Lbest’ with respect to the target. The velocities 
and positions of these sensors are constantly updated until they 
have all converged at the target.  Thus, in terms of memory 
requirements, PSO requires only two values (other than the 
velocity and position from the previous iteration), ‘Pbest’ and 
‘Lbest’. The basic PSO velocity and position update equations 
are given by (1) and (2).  

 

 

T  

 
Figure 2. Randomized sensor nodes with a single target shown in the 

sensing area. 

 

       Vnew = w * Vcur + c1 * rand() * (Pbest –Pcur) +  

                   c2 * rand() * (Lbest –Pcur)                             (1) 

 
Pnew = Pcur  +  Vnew               (2) 

Where 
Vnew -   New velocity calculated for each sensor node 
Vcur -   Velocity of the mobile sensor node from the 

    previous iteration 
Pnew -   New position calculated for each mobile sensor 

    node 
Pcur -   Position of the mobile sensor node from the 

    previous iteration 
w -   Inertial weight constant 
c1 & c2 -   cognitive and social acceleration constants 
 
The population responds to the factors ‘Pbest’ and ‘Lbest’ in 

order to find a position whose fitness gets better over iterations 
finally reaching a stage where all the swarm members achieve 
the highest fitness. The procedure for the implementation of 
PSO involves the following basic steps:  

 
( i ) Define the sensing area with its boundaries. Initialize an 

array of sensors with random positions and velocities. 
These random positions are initially assigned to be the 
Pbest. Also initialize the target(s) position(s) randomly in 
the sensing area (for the simulation studies only).  

( ii ) Evaluate the fitness function (e.g. Euclidean distance, 
intensities).  Select the Lbest from Pbest . 

( iii ) Compute the new velocities and positions of the sensor 
nodes using (1) and (2) above respectively. 

( iv ) Check if the sensors’ positions are within the problem 
space. Also check if the velocity exceeds the predefined 
limits and if they do then the velocity is set to the 
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maximum velocity and the new position is set to its 
previous best position. 

( v ) Calculate the new fitness function for all the sensors’ 
new positions. Determine the new Pbest. Compare with 
the previous Pbest and update the value with the new one 
if necessary. 

( vi ) Calculate the new local best position Lbest among all the 
new best positions, Pbest. Compare with the previous best 
and update the local best before the next iteration. 

( vii ) The procedure is repeated from step (iii), until all the 
sensors converge at the target(s). 

 
IV.    FUZZY LOGIC CONTROLLER 

From the inception of fuzzy logic by Zadeh in the 1960’s, 
its foundations and applications have grown stronger and 
wider over the years [8]. Conventional control techniques that 
have been used over the ages rely on linear models. They do 
not accurately model real world systems but are only 
approximations. Most real world systems are far too 
complicated for linear approximators and they require non 
linear techniques. 

Fuzzy logic techniques are primarily applied to systems 
that cannot function well with the conventional analytical 
model-based control techniques [9]. Fuzzy logic introduces a 
realistic situation into a system. It differs from binary logic by 
allowing an addition of a degree of truthfulness or falsehood 
into the system. A fuzzy logic system contains linguistic 
variables that define the parameters of the real world. It has 
membership functions that define the degree of the input and 
output variables. And lastly, it has a knowledge base or a set 
of rules that define the input-output relationships. These rules 
are developed by heuristics and the performance of the system 
mostly depends on the expert defining the rules and the 
membership functions. Therefore, there is a need to find 
optimal rules and membership functions for improved 
performance of the system and this is also addressed in this 
paper. 

Fig. 3 shows the block diagram of a typical fuzzy system. 
The fuzzification process is an interface between the real 
world parameters and the fuzzy system. It performs a mapping 
that transfers the input data into linguistic variables and the 
range of these input data forms the fuzzy sets.  The inference 
engine uses the rules defined and it develops fuzzy outputs 
from the inputs. The defuzzification is a reverse process of 
fuzzification. It maps the fuzzy output variables to the real 
world variables that can be used in the controlling a real world 
application. 

 
V.    IMPLEMENTATION AND RESULTS 

As shown in Fig. 1, the mobile sensors are randomly 
deployed on the ground. The area/zone is assumed to have an 
unknown number of targets that needs to be located by sensor 
nodes. For simulation purposes, a sensing area of 300 by 200 
(60000 sq units) is considered. Fig. 4 shows the distribution of 
the sensors (represented by the blue asterisk) and targets 
(represented by the red circles) in the sensing area. The 

sensing area is the same for both PSO and fuzzy logic based 
mobile sensor navigation approaches. The targets are chosen 
to be light sensors of different intensities (I1, I2, I3, I4, etc.). 

 

 
Figure 3. Block diagram of a fuzzy system. 

 
Figure 4. Division of the search space with four targets into six 

neighborhoods. 
 
Apart from solving the above mentioned problem by the 

two methods, this paper also looks at the effect different 
parameters on the performance of the system. The parameters 
for PSO are the constants the inertial weight, w and the 
cognitive and social acceleration constants, c1 & c2. The 
parameters for fuzzy logic are the input and output 
membership functions, and the rules. The system performance 
is measured in terms of time, number of iterations taken for all 
the sensor nodes to converge at the targets and the rate of 
convergence on a given number of trials. Convergence refers 
to the success of the swarm in finding all the targets within the 
given sensing area.  

 
A. Application of PSO  

The simulation was carried out considering two separate 
scenarios, namely:  
• The sensor nodes have single intensity readings. 
• The sensor nodes have four directional intensity readings. 
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1)  Sensor nodes with single intensity readings: The sensor 
nodes are assumed to be able to pick up intensity readings 
from all directions. The intensity of a target read by a sensor is 
given by (3). Fig. 5 shows a graphical representation of a 
sensor node reading the intensities from two target sources. 

Table I shows how the variations of w, c1 and c2 in the PSO 
algorithm affect the performance of the swarm search for 
targets. The average number of iterations and time taken for 
the search is computed over 100 trials. The convergence 
expressed in percentage shows the number of times over 100 
trials the swarm of mobile sensors converge at the targets. 

 
   Intensity reading at the sensor node = I1/d1

2 + I2/d2
2          (3) 

 
Target with 
Intensity I2 

Sensor 
d 1 

d 2 

Target withTarget with 

Sensor 
d 1 

d 2 

Target with
Intensity I1 

 
 

Figure 5. Intensity of the targets seen at a sensor node with a single directional 
reading. 

TABLE I 

 EFFECT  OF W, C1 AND C2 ON THE SINGLE DIRECTIONAL SENSOR NODES 

w c1 c2 Number of 
iterations  

Time (sec) Convergenc
e 

2 2 1200.00 3.31 0% 
0.5 2 1200.00 2.90 0% 
2 0.5 1190.69 2.90 10% 0.8 

0.5 0.5 1098.33 2.42 76% 
2 2 1100.49 2.36 83% 

0.5 2 1056.82 2.18 98% 
2 0.5 1194.40 2.88 4% 0.6 

0.5 0.5 1193.90 2.91 4% 
 

2) Sensor nodes with four directional readings: The sensor 
nodes have four directional sensors located in the: ‘North’, 
‘East’, ‘South’ and ‘West’. Fig. 6 shows a graphical 
representation of the sensor and two targets. Equations (4), (5), 
(6) and (7) give the relative intensities read at the East, the 
North, West and South sensors respectively.    
 
Intensity reading in the East direction = I1/d1

2 * (Cosθ1)     (4) 
 
  Intensity reading in the North direction = I1/d2

2* (Cosθ2) 
                  + I2/d3

2* (Cosθ3)           (5) 
 
 Intensity reading in the West direction = I2/d4

2* (Cosθ4)     (6) 
 

              Intensity reading in the South direction = 0            (7) 

 

 Target 
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d 1 
  

N

W E 
  

S

Target 
Intensity  I 2

θ 1 
  

θ 2 
  θ3

θ4

d 2 
  

d3d4

 
 

Figure 6. Intensity of the targets read by the four-directional sensor node (d1 ≅ 
d2 and d3 ≅ d4). 

     
Table II shows how the variations of w, c1 and c2 in the 

PSO algorithm affect the performance of the swarm search for 
targets.  

TABLE II 

EFFECT  OF W, C1 AND C2 ON THE FOUR DIRECTIONAL SENSOR NODES 

w c1 c2 Number of 
iterations  

Time 
(sec) 

Convergence 

2 2 1181.58 6.35 0% 
0.5 2 1106.09 5.88 0% 
2 0.5 985.39 4.98 26% 0.8 

0.5 0.5 924.10 3.99 93% 
2 2 910.60 4.90 94% 

0.5 2 859.40 4.79 99% 
2 0.5 889.36 5.07 32% 0.6 

0.5 0.5 841.85 5.24 8% 
 
As can be seen from Tables I and II, the performance of the 

swarm is better in the case where four-directional sensors are 
used. But for the specific values of the constants, for example 
w=0.6, c1=0.5 and c2=2, there isn’t much difference in the 
performance of the two cases. More the number of sensors 
better will be the performance of the swarm, but at the expense 
of increased cost.  

The swarm network performs a faster and better search for 
with inertia ‘w’ of 0.6 than 0.8. The number of iterations for 
convergence is lower in the case of w=0.6 and the percentage 
of convergence is also higher in the same case. The w, c1 and 
c2 parameters of the PSO can be optimized using another PSO 
as described by the authors’ previous work [10]. 

 
B. Application of Fuzzy Logic 

A swarm of fuzzy logic controllers have been used for the 
target location problem for guiding the swarm of the sensor 
nodes to the target.  

Mobile sensor navigation has been dealt with by two 
methods. The first method is conventional fuzzy logic method 
where the membership functions and the rule base are 
developed based on heuristics and the second method is using 
optimal FLCs.  When designing an optimal fuzzy controller, 
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there are two primary considerations: finding optimal 
membership functions for input and output variables; and 
finding an optimal set of rules between input and output 
variables. Herein, PSO is used to find the optimal membership 
functions and rules.  

The FLC approaches have been implemented for the target 
location problem in Fig. 4 just like with the PSO explained 
above but now the position of the mobile sensors are given by 
(8). 

 
Pi = (Xi +∆Xi , Yi +∆Yi )           (8) 

where 
       ∆Xi =f(Ii, Gdx)           (9) 

 
        ∆Yi =f(Ii, Gdy)         (10) 

 
Here, Gdx=Lbestx - Px and Gdy=Lbesty – Py where Px and 

Py are the x and y coordinates of the sensors current position 
respectively and, Lbestx and Lbesty are the x and y coordinates 
of the Lbest of the swarm respectively. The Lbest is calculated in 
the same way as in the PSO implementation discussed above. 

In the fuzzy logic application, the sensors have been 
considered to read a single intensity values as shown in Fig. 5. 
The inference engine used for this simulation is Mamdani’s 
product inference engine and the defuzzification is based on 
the center average. 

There are three input variables to the fuzzy system namely: 
• The intensity reading at the sensor nodes (Ii). This 

variable has four triangular membership functions - zero 
(Z), small (S), medium (M) and large (L). 

• The difference of the x coordinates of the current position 
of the sensor node with respect to the sensor node having 
the best position in the swarm given by ‘Gdx’. This 
variable has five triangular membership functions - zero, 
very small (VS), small (S), medium (M) and large (L). 

• The difference of the y coordinates of the current position 
of the sensor node with respect to the sensor node having 
the best position in the swarm given by ‘Gdy’. This 
variable has five triangular membership functions - zero, 
very small, small, medium and large. 

 
There are two output variables from the fuzzy system 

namely: 
• The displacement amount to be added to the x coordinate 

∆Xi which has four triangular membership functions - 
very small, small, medium and large.  

• The displacement amount to be added to the y coordinate 
∆Yi which has four triangular membership functions - 
very small, small, medium and large.  

The membership functions for the input and the output 
variables developed by heuristics are given in Figs. 7 and 8. 

In the both FLC approaches, there are two different sets of 
the rules as shown in Fig. 9. The first set of rules referred to as 
the coarse set, causes the sensor nodes to take larger steps. 
This helps in exploration of the sensing area for possible 
targets and once a target has been identified, the second set of 
rules referred to as the fine rule set is used that causes the 

sensor nodes to take smaller steps towards the target(s). This 
brings about precision in the movement of the sensor nodes. 

 

 
 

Figure 7. Input membership functions developed by heuristics (not optimized). 

 

 
 

Figure 8. Output membership functions developed by heuristics (not 
optimized). 

 
Equations (11) and (12) give an example of the IF-THEN 

statement used in the conventional fuzzy logic. As can be 
seen, the antecedent of both (11) and (12) are the same but the 
consequents are different. Equation (11) is from the coarse 
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rule set whereas (12) is from the fine rule set. As can be seen 
the coarse rule set gives a larger step as the output as 
compared to the fine rule set, for the same input conditions. 

 
IF ‘Intensity’ is Small and ‘Gdx’ is Large 
 THEN ∆Xi is Large         (11) 

 
IF ‘Intensity’ is Small and ‘Gdx’ is Large 

 THEN ∆Xi is Medium         (12) 
 

 

A target is 
identified? Fine Rules 

Coarse 
 Rules 

Fuzzy  
inputs 

Fuzzy  
outputs 

Yes 

No 

 
Figure 9. Switching logic between the coarse and fine rules. 

 
Table III shows the performance of the swarm of sensor 

nodes when the membership functions and rules are optimized 
independent of each other. It also shows the time taken and the 
number of iterations required by the sensor nodes to find the 
target. The simulation was carried out on a range of [0, 100] in 
both x and y directions, which is a single cluster from the 
whole space as shown in Fig. 4. The simulation covered all the 
clusters successively. The results shown above are obtained 
over 100 trials.  As can be seen the time and number of 
iterations taken by the swarm of fuzzy controllers using all the 
optimized parameters has been reduced. PSO was used to find 
the optimal parameters for the fuzzy logic controllers.  Figs. 
10 and 11 show the optimal membership functions obtained 
with PSO.  

TABLE  III 

RESULTS OF OPTIMIIZING THE FUZZY LOGIC CONTROLLER PARAMETERS 
(MEMBERSHIP FUNCTIONS, COARSE AND FINE RULE SETS) SEPARATELY  

Case 
Study 

Membership 
Function 

Coarse 
Rules 

Fine 
Rules 

Itera-
tions 

Time 
(sec) 

1 Unoptimized Unoptimized Unoptimized 355.80 349.97 
2 Optimized Unoptimized Unoptimized 308.41 328.24 
3 Unoptimized Optimized Unoptimized 356.96 356.18 
4 Unoptimized Unoptimized Optimized 307.44 325.65 
5 Optimized Optimized Optimized 306.15 326.78 

 
As can be seen from Figs. 8 and 11, the membership 

functions are different before and after optimization. In Fig 8, 
the membership functions have been assigned names 
according to the author’s initialization. When PSO was used, it 
came up with its own membership functions starting from 
random initial values. Though the terminology (VS, S, M, and 
L) has been kept the same, PSO found membership functions 
independent of the terminology. Therefore, looking at the 
membership functions in Figs. 10 and 11, it can be observed 
that PSO finds an optimal set by swapping around the 
memberships irrespective of the names of each. The optimal 

parameters, membership functions and the rules are problem 
dependent and need to be recalculated every time the 
application changes. 

 
 

  
 

Figure 10. Optimized input membership functions with PSO. 
 

 
 

Figure 11. Optimized output membership functions with PSO. 
 

Table IV shows the difference in the performance before 
and after optimization of the fuzzy membership functions and 
rules for the target location problem of Fig. 4 with six clusters. 
From Table IV, it can be observed that the time taken and the 
number of iterations required by the controllers are reduced 
with optimal swarm of fuzzy logic controllers. 
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TABLE IV 

COMPARISON OF  PERFORMANCE OF SWARM OF FUZZY CONTROLLERS WITH 
UNOPTIMIZED AND OPTIMIZED FUZZY MEMBERSHIP FUNCTIONS AND RULES  

 Without 
Optimization 

With 
Optimization 

Time (sec) 349.97 326.78 
Iterations 355.80 306.15 

Convergence 100 % 100% 
 
 

C. Comparison of PSO and Fuzzy Logic 
Tables I, II, III and IV show that the PSO and fuzzy logic 

control methods have been successfully implemented on the 
for the target location problem of Fig. 4. Results show that 
though the rate of convergence is slightly higher in the case 
where fuzzy logic has been implemented, the time taken for 
convergence is much less in the case with PSO. The time 
taken for convergence with PSO implementation is ten times 
faster than the time taken by fuzzy logic. The PSO algorithm 
comprises of random functions which causes convergence of 
sensor nodes uncertain unless all the parameters (w, c1 and c2) 
are chosen carefully [10]. With the swarm of fuzzy logic 
controllers, this uncertainty is removed at the expense of more 
search time. 

 
VI. CONCLUSION 

This paper has presented two novel structures for optimal 
navigation of a swarm of mobile sensors to achieve local and 
global tasks such as firefighting, landmine, radioactive 
detection, etc. These structures are based on collective 
intelligence implemented using the PSO algorithm and a 
swarm of fuzzy logic controllers. Three-tier hierarchical 
navigation architecture has been presented. This paper has also 
shown that it is possible to optimize the input and output 
membership functions and the rules of fuzzy systems using 
particle swarm optimization. The results in this paper show it 
is possible to carry out optimal navigation of mobile sensors 
based using these strategies in an efficient, economic and 
reliable manner.  
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