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Abstract--- Multilayer perceptron and radial basis function 

neural networks have been traditionally used for plant 
identification in power systems applications of neural 
networks. While being efficient in tracking the plant dynamics 
in a relatively small system, their performance degrades as 
the dimensions of the plant to be identified are increased, for 
example in supervisory level identification of a multimachine 
power system for Wide Area Control purposes. Recurrent 
neural networks can deal with such a problem by modeling 
the system as a set of differential equations and with less 
order of complexity. Such a recurrent neural network 
identifier is designed and implemented for supervisory level 
identification of a multimachine power system with a FACTS 
device. Simulation results are provided to show that the 
neuroidentifier can track the system dynamics with sufficient 
accuracy. 

Index Terms— Multimachine power system, Recurrent 
neural networks, Static Compensator, Supervisory level 
identification, System modeling, Wide area control. 

I.  INTRODUCTION 
POWER system consists of components such as 
generators, lines, transformers, loads, switches and 
compensators. The compensators are shunt or series 

elements such as capacitors and inductors or converter 
controlled Flexible AC Transmission System (FACTS) 
devices. 
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All the internal control schemes, whether for the synchronous 

generator or FACTS devices, focus on controlling each 
component from an internal point of view, i.e., providing 
appropriate signals for the device in order to control some local 
quantity such as voltage or line power flow. However, with a 
number of these controlled devices close to one another in a 
power network, the issue of interaction between them arises. 
Moreover, each one attempts to be a good local controller, but 
has no information on the overall control objective of the entire 
system. Interactions between these local controllers (agents) 
might therefore at times lead to adverse effects causing 
inappropriate control effort by different controllers.  

This interaction between agents could be avoided by using a 
coordinated control strategy, also referred to here as supervisory 
level control or Wide Area Control (WAC) which has prior 
knowledge of each agent’s effect on the network.  The WAC 
coordinates the actions of the agents by for example using 
SCADA or other available data. The WAC would receive data 
from the power system and based on the defined objective 
functions, would send appropriate control signals to the agents in 
the power network, in order to optimize the overall system 
performance. 

In order to achieve this, the WAC needs some knowledge of 
the dynamics of the system, in terms of knowing how variables 
throughout the entire system will react to the actions of the 
different agents (individual local controllers). Clearly a 
mathematical solution, such as a set of differential equations is 
not easy to obtain and requires extensive computer resources. In 
order to overcome this, the WAC objectives could be 
implemented by neural networks which are well suited to 
identify a highly nonlinear non-stationary plant, in a noisy 
environment with uncertainties [1]. Such a neural network based 
identifier (neuroidentifier) will exchange information with the 
WAC module (Fig. 1). 

Several papers have focused on designing multilayer 
perceptron (MLP) neural networks based identifiers for learning 
the dynamics of power system components for local control 
purposes [2],[3]. In an earlier paper, the authors have also 
investigated the efficiency of such a structure for identification of 
a small power system from the supervisory level [4]. While all 
these designs prove efficient in a relatively small power system 
with limited number of plant inputs/outputs, their performance 
degrades as the size of the network and/or the number of the 
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inputs and outputs are increased. Furthermore, the 
traditional MLP structure loses accuracy when required to 
learn the dynamics of a non-stationary system with fast 
changing dynamics. 

Dynamic recurrent neural networks can be a solution to 
these problems. Recurrent networks are neural networks 
with one or more feedback loops. The application of 
feedback enables recurrent networks to acquire state 
representations, which make them suitable architectures for 
adaptive nonlinear prediction [5],[6].  

 

Fig. 1. Wide area control schematic diagram. 
 
This paper deals with designing a recurrent neural 

network as a Wide Area Identifier of a multimachine 
power system with a shunt FACTS device. Simulation 
results are presented to show that the proposed design is 
efficient in learning the dynamics of the plant. 

 
II. STATCOM IN A MULTIMACHINE POWER SYSTEM 
 

Figure 2 shows a STATCOM connected to a 
multimachine power system. The system is a 10 bus, 500 
kV, 5000 MVA power network and is simulated in the 
PSCAD environment. The generators are modeled together 
with their automatic voltage regulator (AVR), exciter, 
governor and turbine dynamics taken into account. 
Detailed parameters of the network can be found in [7]. 

A STATCOM is a shunt FACTS device which is 
connected in parallel to the transmission line and can 

control the line voltage by injecting reactive power into the 
network [8]. Generally speaking the local internal controller of 
the STATCOM consists of two control loops, one for controlling 
the line voltage and another for the DC link voltage regulation. 
The details of the conventional STATCOM controllers 
implemented in this study can be found in [9].  

 
III. DYNAMIC IDENTIFICATION OF A PLANT 

 
Nonlinear control considers a dynamical system S that can be 

described by the state equations: 
)],(),([)1(: kukxfkxS =+  

)],([)( kxhky =  
where mRu ∈ , nRx ∈ and rRy ∈ are the input, state and output 
vectors respectively. Various techniques exist in the literature for 
controlling such a system when its state vector is fully or partly 
accessible [10]. However, this is not the case for most of the 
practical applications, where the input and output measurements 
are the only pieces of information available. These are the class 
of problems where the well established control designs cannot be 
directly applied. The first step in control of such systems is to 
identify their dynamics using the available signal measurements. 

In general for a nonlinear system shown in (1) with relative 
degree of d, the output at time step )( dk + can be determined as a 
nonlinear function of the past values of inputs and outputs: 

 
)],1(),...,(),1(),...,([)( +−+−=+ nkukunkykyFdky  

 
where n is the order of the nonlinear system. Such a model is 
called the nonlinear autoregressive moving average (NARMA) 
representation of the plant.  

Neural networks are among the most efficient techniques for 
identifying a nonlinear system with unknown dynamics. Given 
the set of measured inputs and outputs of the nonlinear plant, a 
neural network can be effectively trained in order to learn its 
NARMA equation [1]. Static feedforward neural networks have 
been widely applied for I/O representation of nonlinear plants 
[1]-[4]. 

 
                                                   Fig. 2. Multimachine power system with a STATCOM. 

(2) 

(1) 
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The neural network based NARMA model, although 
efficient in certain applications, has several deficiencies 
associated with it: 
 
A. Order of the System 

The NARMA model is derived under the assumption 
that the linearized model of the nonlinear system is 
observable [1]. It has been shown that almost any system of 
the form (1) is observable if 12 +n measurements of the 
output are taken [11]. However, most of the times, the 
information about the nonlinear plant and the order of the 
system are not known beforehand. Hence, the correct 
number of time delayed inputs/outputs is not easy to obtain 
and are mostly found by trial and error. While a small 
number of measurements might lead to insufficient data 
and therefore failure in identification, a large number of 
data samples will cause extensive computational effort.  

 
B. Static Modeling 

As long as the underlying input-output mapping is 
static, and the training data set is sufficiently large and 
representative of the normal operation of the system under 
study, it is commonly believed that the Multilayer 
Perceptron Neural Network (MLPN) is good and simple to 
use. However, there are many problems occurring in 
nature, science, or engineering, which are more suitably 
modeled using a dynamic model, i.e., one which takes into 
account any possible temporal correlation of the data. [6] 

 
C. Size of the Neural Network 

The size of a static neural network, such as a MLPN 
will drastically increase as the number of plant 
inputs/outputs is increased in order to provide sufficient 
identification accuracy. For a system of order n, any 
additional measurement will add n input nodes and even 
more hidden nodes to the structure of the neural network. 

 
D. Trivial Solution 

A NARMA model neuroidentifier with a relatively 
small sampling time might give the misconception of 
satisfactory performance. This is due to the fact that the 
trivial solution )()( kydky =+ might seem reasonable, yet 
in actual fact it is meaningless. 

 
Dynamic Recurrent Neural Networks (DRNN) can be 

an alternative solution to the above problems. These are 
networks consisting of dynamic neurons with forward and 
backward connections. A dynamic neuron is one whose 
output can be described by a differential equation (or a 
difference equation in the case of discrete systems). 
Various models of a dynamic neuron are explained in [12].  

DRNN’s are powerful neural structures that can model 
the nonlinear plant as a set of differential equations. Figure 
3 shows a typical diagram of a DRNN. The hidden layer 
outputs that are fed back to the input layer are the states of 

the system. The number of these states determines the order of 
the model. Because of the beneficial effects of the global 
feedback, DRNN’s may be better than feedforward structures in 
control, prediction and identification applications [5],[15].  

 

 
Fig. 3. Schematic diagram of a dynamic recurrent neural network. 

 
The dynamic behavior of the DRNN can be written as: 

]
)(
)(

).([)1( ⎟⎟
⎠

⎞
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=+

ku
kx

kWkx φ , 

),(.)( kxCky =  
where W is the input layer synaptic weight matrix, and NRx ∈  
is the state vector of the plant, i.e. the output of the hidden layer 
neurons. (.)φ  is the nonlinear activation function of the hidden 
neurons, which in this study is considered to be a hyperbolic 
tangent function: 

=(.)φ tanh(.) 
It can be shown that a dynamic recurrent neural network of 

the form (3) can approximate the nonlinear system (1) with the 
number of states nN ≥ [13]. 

  
IV. WIDE AREA NEUROIDENTIFIER 

 
A. Neuroidentifier Structure 

The “Plant” in Fig. 2 consists of the synchronous generators, 
transmission lines, STATCOM and their corresponding local 
internal controllers or agents. These agents are left as integral 
components of the plant, but the following reference signals to 
the agents are considered as the inputs to the plant as shown in 
Fig. 4. These are: 

 
• refV ; Line voltage reference at the point where the 

STATCOM is connected to the network, 
• 32 , refref PP ;  Power reference values at the inputs of the 

generator turbines , 

(3) 

(4) 

217



 

• 32 , reftreft VV −− ; Terminal voltage reference values at the 

inputs of the generator AVRs. 
 

In turn the plant outputs in this study are the following 
five measured wide area quantities:  the active power 
output and terminal voltage values of the synchronous 
generators, as well as the transmission line losses. If 
necessary, more measurements from the plant could be 
used in order to control more variables than only the four 
listed above.  

A DRNN with Backpropagation Through Time (BPTT) 
method as the training algorithm, is used for wide area 
identification of the power network in Fig. 2 [5],[14]. The 
plant inputs are fed into the neuroidentifier along with the 
previous values of the actual plant outputs. In turn the 
neuroidentifier predicts the values of the plant outputs at 
one step ahead, i.e., at time step t+1 (Fig. 4).  

The number of neurons in the hidden layer is 
heuristically chosen as twenty five, with a learning gain of 
0.01. The hidden layer outputs are fed back to the input 
layer as the states of the dynamical system. All the inputs 
to the neuroidentifier are normalized, i.e., they are in per 
unit value, so that all input signals have the same weight in 
training the neural network.  

 

 
Fig. 4.  Wide Area Neuroidentifier schematic diagram. 

 
The actual values of the plant outputs are compared 

with the estimated values generated by the neural network, 
to form an error vector, which is applied to modify the 
weight matrices using BPTT training algorithm.  

 
 
 

B. BPTT  Training Procedure 
The main difficulty in training recurrent networks lies in the 

fact that the output of the network and the weight modifications 
depend on the values of the network inputs since the beginning 
of the training as well as the initial state [16]. This makes the 
training of DRNN more difficult than the static MLP and RBF 
neural networks for online training purposes. 

The BPTT algorithm for training a recurrent neural network is 
an extension of the standard backpropagation algorithm. It may 
be derived by unfolding the temporal operation of the network 
into a layered feedforward network whose topology grows by 
one layer at every time step [5].  

In order to apply this method in real time applications, a 
truncated BPTT can be implemented which looks at the history 
of the network input and state data for a fixed number of time 
steps, called the truncation depth h. The truncation depth h 
defines the size of the moving window by which the temporal 
behavior of the network is analyzed. Selecting an appropriate 
number is critical for achieving desirable performance. Figure 5 
shows the schematic diagram of BPTT with the truncation depth 
h.  

At any time step the DRNN estimated output is subtracted 
from the desired output, forming an error vector. The error is 
then backpropagated through the neural network without 
updating its synaptic weight matrices. This backpropagated error 
is now added to the error vector at one step before, forming the 
next error vector to be backpropagated through the neural 
network. This process is repeated h times, and the final error 
vector is used for updating the synaptic weights of the neural 
network using ordinary backpropagation algorithm (Fig. 5). All 
the neural networks in the BPTT algorithm shown in Fig. 5 have 
the same input/output synaptic weights, but have different 
input/target vectors at various time steps. Each of these networks 
represents the neural network at a specific time step. The 
truncation depth of two is selected in this study. 

 
V. SIMULATION RESULTS 

 
The neuroidentifier goes through a forced training stage, 

during which time the plant inputs are manually perturbed all at 
the same time, by adding small pseudorandom binary signals 
(PRBS) to each one. Such deviations in the inputs of the plant 
cause small changes/deviations in the plant outputs. The 
neuroidentifier is then trained, with its weight matrix being 
updated based on the BPTT algorithm, in order to learn the 
dynamics between the plant inputs and outputs. 

 
                                Fig. 5. Backpropagation through time learning algorithm. 
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The system in Fig. 2 is first simulated until it reaches 
steady state. At this point the PRBS signals are added to 
the plant inputs X from an external source and the 
neuroidentifier training begins.  

Due to the slower dynamic nature of the supervisory 
level controller compared to the dynamics of the local 
internal controllers or agents, the frequencies of the PRBS 
signals are heuristically chosen to be 0.1, 0.2 and 0.5 Hz, 
while their magnitudes are limited to %5±  of the 
corresponding plant reference signals. Figure 6 shows a 
typical PRBS disturbance applied to the plant inputs.  

 
Fig. 6. PRBS applied to the turbine power reference of the generator 3. 

 
Figures 7-9 show some sample training results. It can 

be seen that the neuroidentifier can track the system 
dynamics with high precision. This happens because the 
training never stops. 

 
Fig. 7. Generator 2 terminal voltage deviations during forced training. 

 
However, in a real power system, applying PRBS 

perturbations to the network might not be desirable or 
practical. An alternative solution in such a case is to apply 
smaller PRBS signals, or to train the identifier for a longer 
time during the normal operation of the continuously 
stochastic changing power system. However, when training 
the neuroidentifier under normal operating conditions (with 
no PRBS disturbance), steps should be taken in order to 
compensate for the fact that the frequency of stochastic 
changes during the normal performance of the power 
system might be low. Therefore, training might need to be 

continued for a much longer period.  Moreover, it is possible to 
define an adaptive learning gain for the identifier [4]. 

 
Fig 8. Generator 2 active power output deviations during forced training. 

 

 
Fig. 9. Transmission line losses during forced training. 

 
After being forced trained, the PRBS is removed and the 

neuroidentifier performance is tested by applying various 
dynamic and transient tests to the power system. During the 
testing stage the neuroidentifier learning gain is reduced to a very 
small number to prevent the network from forgetting the 
previously learned information.  

In the first test, one of the load branches is disconnected at 5 
second, during the steady state performance of the system, and 
switched back on after 2 seconds. Figure 10 shows the actual and 
estimated values of the generator 3 terminal voltage. 

 
Fig. 10. Actual and estimated values of the generator 3 active power 
output deviations when a shunt load is switched off and back on. 
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The system is also tested by applying natural 
disturbances, such as a three phase short circuit. Figure 11 
shows the estimated and the actual values of the generator 
3 active power output when a 100 ms three phase short 
circuit occurs at its terminals. 

 
Fig. 11. Generator 3 active power output during a 100 ms three phase 
short circuit. 

 
VI. CONCLUSION 

 
Feedforward neural networks are predominantly used in 

the literature for NARMA modeling of components in the 
power network. Although these techniques are efficient in 
small systems and for local agents in a network, their 
efficiency is degraded by an increase in the size of the 
plant/agent to be modeled. Moreover, the input-output 
mapping might fail in a highly dynamic system. 

Dynamic recurrent neural networks are alternative 
solutions to the above problems. They can model any 
nonlinear dynamic system with enough number of global 
feedbacks. Due to the state space modeling structure, they 
never get trapped in the trivial solution, and they use 
smaller structure with less number of neurons compared to 
the conventional MLPN. 

Controlling a power network from a supervisory level 
requires a model of the system which is dynamic and 
capable of analyzing large amounts of data. A 
multimachine power system is considered in this paper 
along with a shunt FACTS device which together form a 
highly nonlinear system. The authors tried implementing a 
neuroidentifier for such a system using MLPN structure. 
However, simulation results showed that the MLPN based 
neuroidentifier failed to converge even after extensive 
online training.  

A dynamic recurrent neural network is therefore used 
with backpropagation through time training algorithm for 

learning the dynamics of such multimachine power system. 
Simulation results are provided that indicate the DRNN is 
capable of modeling such a system efficiently in terms of state 
space dynamics.  

Such a dynamic neural structure can serve as a plant model in 
a neural network based Wide Area (supervisory level) control 
scheme of a multimachine power system. 
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