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Abstract 

Complex computer systems and electric power grids share many properties of how they behave and how they are 
structured. A microgrid is a smaller electric grid that contains several homes, energy storage units, and distributed 
generators. The main idea behind microgrids is the ability to work even if the main grid is not supplying power. That 
is, the energy storage unit and distributed generation will supply power in that case, and if there is excess in power 
production from renewable energy sources, it will go to the energy storage unit. Therefore, the electric grid becomes 
decentralized in terms of control and production. To deal with this change, one needs to interpret the electrical grid 
as a system of systems (SoS) and build new models that capture the dynamic behavior of the microgrid. In this 
paper, different models of electric components in a microgrid are presented. These models use complex system 
modeling techniques such as agent-based methods and system dynamics, or a combination of different methods to 
represent various electric elements. Examples show the simulation of the solar microgrid is presented to show the 
emergent properties of the interconnected system. Results and waveforms are discussed. 
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1. Introduction 

The current electric power grid suffers aging in both the developing and the developed world. The results of 
aging grid and old infrastructures become more pronounced as the number of power outages increases. Old 
equipment is prone to failures, and old engineering planning and operation methods are ineffective in tackling 
current challenges. To better deal with current challenges, a paradigm shift is needed. Recently, concepts from 
system engineering have been adapted to upgrade the electric power. That is, the electric grid can be treated as a 
complex system. A complex system is a large collection of interacting elements that act together to perform an 
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overall nonlinear activity or task. A complex system is not centralized but distributed and self-organized. This paper 
investigates various models of microgrid components and treats them as a complex system.  

2. System of Systems (SoSs) Definition 

A system of systems is a relatively new concept in system engineering and is becoming a hot topic for researchers 
in different fields. Despite the fact that this concept is in its early stages, this concept has achieved widespread use, 
such as real-time systems and hardware-in-loop simulations [1]. It was restricted to two main domains: defense and 
information technology. Nowadays, it has entered a wide variety of different domains. Although there are different 
definitions of SoSs, the most general one That a SoSs are large-scale integrated systems that are diverse and 
autonomous, but are working together to achieve a common goal [2]. The main reason for initiating this concept is to 
improve either economy or performance. SoSs consist of employable heterogeneous subsystems. The subsystems 
can work independently and each one has no power over the other. However, subsystems are connected to 
communicate and transmit tasks and achieve an overall mission. Some characteristics distinguish SoSs from a 
complex monolithic system, and they are listed in table 1. 

Table 1: Characteristics of SoSs 
Characteristic Definition

Operational independence All subsystems work independently and have no interference with other subsystems 

Evolutionary development The overall system is not monolithic. Instead, it is flexible to adding new subsystems 

Emergent behavior All subsystems work as collective unit to accomplish a big task 

Geographic distribution The subsystems are sequentially distributed to facilitate the flow of information 

Managerial independence The subsystems are in control for their own operation 

3. Microgrid as SoSs 

Figure 1 shows an example of a microgrid contains renewable energy sources. The renewable energy sources are 
integrated to a dc bus through power electronic interfaces [3-6].One the most important goals of a microgrid is to be 
able to work with various types of renewable sources and meet the load demand in case of outages. The subsystems 
can communicate with each other to achieve the desired goal [7].  

PV

Wind 
Power

Other 
sources

DC/DC
interface

AC/DC
interface

Interface

Load

Energy 
Storage 

Unit

Main Grid

Dc Bus

Subsystems 1

Subsystems 2

Subsystems N

Subsystems 3

Fig.1. Example of a microgrid    

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.09.053&domain=pdf


	 Ahmad Alzahrani  et al. / Procedia Computer Science 114 (2017) 392–400� 393
 

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000  

www.elsevier.com/locate/procedia 

 

1877-0509 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Complex Adaptive Systems Conference with Theme: 
Engineering Cyber Physical Systems.

Complex Adaptive Systems Conference with Theme: Engineering Cyber Physical Systems, CAS 
October 30 – November 1, 2017, Chicago, Illinois, USA  

Modeling and Simulation of Microgrid 

Ahmad Alzahrania, Mehdi Ferdowsia, Pourya Shamsia, and Cihan H. Daglib

aElectrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401 
bSystem Engineering, Missouri University of Science and Technology, Rolla, MO 65401  

Abstract 

Complex computer systems and electric power grids share many properties of how they behave and how they are 
structured. A microgrid is a smaller electric grid that contains several homes, energy storage units, and distributed 
generators. The main idea behind microgrids is the ability to work even if the main grid is not supplying power. That 
is, the energy storage unit and distributed generation will supply power in that case, and if there is excess in power 
production from renewable energy sources, it will go to the energy storage unit. Therefore, the electric grid becomes 
decentralized in terms of control and production. To deal with this change, one needs to interpret the electrical grid 
as a system of systems (SoS) and build new models that capture the dynamic behavior of the microgrid. In this 
paper, different models of electric components in a microgrid are presented. These models use complex system 
modeling techniques such as agent-based methods and system dynamics, or a combination of different methods to 
represent various electric elements. Examples show the simulation of the solar microgrid is presented to show the 
emergent properties of the interconnected system. Results and waveforms are discussed. 

© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Complex Adaptive Systems Conference with Theme: 
Engineering Cyber Physical Systems. 

Keywords: Microgrid; SoSs; Wind; Solar; Energy storage; neural networks; modeling; simulation; intelligence 

1. Introduction 

The current electric power grid suffers aging in both the developing and the developed world. The results of 
aging grid and old infrastructures become more pronounced as the number of power outages increases. Old 
equipment is prone to failures, and old engineering planning and operation methods are ineffective in tackling 
current challenges. To better deal with current challenges, a paradigm shift is needed. Recently, concepts from 
system engineering have been adapted to upgrade the electric power. That is, the electric grid can be treated as a 
complex system. A complex system is a large collection of interacting elements that act together to perform an 

 Alzahrani, Ahmad / Procedia Computer Science 00 (2017) 000–000

overall nonlinear activity or task. A complex system is not centralized but distributed and self-organized. This paper 
investigates various models of microgrid components and treats them as a complex system.  

2. System of Systems (SoSs) Definition 

A system of systems is a relatively new concept in system engineering and is becoming a hot topic for researchers 
in different fields. Despite the fact that this concept is in its early stages, this concept has achieved widespread use, 
such as real-time systems and hardware-in-loop simulations [1]. It was restricted to two main domains: defense and 
information technology. Nowadays, it has entered a wide variety of different domains. Although there are different 
definitions of SoSs, the most general one That a SoSs are large-scale integrated systems that are diverse and 
autonomous, but are working together to achieve a common goal [2]. The main reason for initiating this concept is to 
improve either economy or performance. SoSs consist of employable heterogeneous subsystems. The subsystems 
can work independently and each one has no power over the other. However, subsystems are connected to 
communicate and transmit tasks and achieve an overall mission. Some characteristics distinguish SoSs from a 
complex monolithic system, and they are listed in table 1. 

Table 1: Characteristics of SoSs 
Characteristic Definition

Operational independence All subsystems work independently and have no interference with other subsystems 

Evolutionary development The overall system is not monolithic. Instead, it is flexible to adding new subsystems 

Emergent behavior All subsystems work as collective unit to accomplish a big task 

Geographic distribution The subsystems are sequentially distributed to facilitate the flow of information 

Managerial independence The subsystems are in control for their own operation 

3. Microgrid as SoSs 

Figure 1 shows an example of a microgrid contains renewable energy sources. The renewable energy sources are 
integrated to a dc bus through power electronic interfaces [3-6].One the most important goals of a microgrid is to be 
able to work with various types of renewable sources and meet the load demand in case of outages. The subsystems 
can communicate with each other to achieve the desired goal [7].  

PV

Wind 
Power

Other 
sources

DC/DC
interface

AC/DC
interface

Interface

Load

Energy 
Storage 

Unit

Main Grid

Dc Bus

Subsystems 1

Subsystems 2

Subsystems N

Subsystems 3

Fig.1. Example of a microgrid    



394	 Ahmad Alzahrani  et al. / Procedia Computer Science 114 (2017) 392–400
 Alzahrani, Ahmad / Procedia Computer Science 00 (2017) 000–000   

4. Microgrid System Modeling 

    A complex system can be any system that contains a large number of elements that has distinguishing features 
such as a large number of interacting agents, self-organizing collective behavior, decentralization, openness, and 
nonlinearity between input and output. The central properties of complex systems are elements and their number, 
interactions and their strength, time scale of operations, variability, environment and its demand, and activities and 
their objectives. Attributes of complex systems are interdependent, independent, distributed, cooperative, 
competitive, and adaptive. Many examples of large-scale systems are built from components, such as internet 
networks, global satellite networks, enterprise information systems, and the electric power grid. There are many 
similarities between electric grids and complex computer systems so that microgrids can be treated as SoSs   

4.1. Battery System modeling 

A storage system is a vital element in the microgrid. It operates in the case of an electricity blackout, and it mitigates 
the variability of renewable energy sources. Therefore, it is usually placed between the renewable sources and the 
load to help the generation match the load demand at any moment, and by doing that, the stability of the system is 
assured. The size of battery storage is important, and detailed calculations should be made to meet the demand when 
the power from the electric grid is not available. The required battery capacity is given by 

           load off
size

max temp

DaysE
B

DoD 



                              (1) 

where Eload is the load that needs to be supplied during unavailability of power in ampere hour, Daysoff  is the storage 
days (the days that power from the electric grid is unavailable), DoDmax is the maximum depth of discharge of the 
battery, and ηtemp is the temperature corrector factor. At high penetration rate, fluctuating sources such as wind 
generation can cause a problem with balancing the system. These sources cannot be dispatchable and cannot be seen 
as a negative consumer. The control in this case might become very challenging. Knowing the charge quantity and 
setting it as a control input can mitigate the challenges associated with renewable energy integration. The charge 
quantity of the storage system is given by  

( ) ( 1) (1 ) ( ( ) ( ) / )B B GA L inv BattE t E t E t E t                                  (2) 

where ζ, ηinv and ηbatt are the hourly self-discharge factor, efficiency of inverter, and efficiency of the battery, 
respectively; EB(t) and EB(t-1) are the charge quantity of storage system at time t  and t-1, correspondingly; and EGA
and EL are the renewable energy power and load demand, respectively. The charge quantity is constrained by 
maximum and minimum charge quantities EBmax and EBmin [8], respectively. 

4.2. Load Modeling 

Modeling electric load is a very challenging task. The behavior of electric load depends on energy consumption of 
various devices that are turned on and off either automatically like air conditioning devices or manually like hair 
dryer. Often, electric load is modeled using a constant electric impedance for the sake of simplicity. However, the 
load can be modeled using machine learning algorithms or artificial neural networks if more accuracy is required. 
There are usually some demand peaks at various times of the day. The peaks are sharp during weekdays, because of 
air-conditioning and other high-power devices. Modeling load demand can be simplified as active and reactive 
power. The values of apparent power components P and Q are usually pre-set for the sake of simplicity. In this 
paper, the load  was modeled and considered stochastic. Therefore, load profiles were generated using a feedforward 
neural network, as explained in section 5.   

4.3. Modeling of Photovoltaic System 

The physical model of solar irradiance on an inclined surface is given by  
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( )T b b d d b d rI I I IR R RI         (3) 

where Ib is normal solar irradiance and Id is diffused solar irradiance. Parameters Rd and Rr are the tilt factors for the 
diffused and reflected part of the solar irradiance. The sun position in the sky is the main factor that total solar 
irradiance depends on [9]. There are many models for hourly output PV power, which is given by 
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where ηr is the reference efficiency of the module, ηpc is the efficiency of smoothing and conditioning power, γ is the 
factor of density of a cell in module (also called packing factor), κ is the temperature coefficient of the array, APV is 
the photovoltaic area, Ta is the instantaneous ambient temperature, Tr is the reference temperature, Tc is the monthly 
temperature, and NOCT is the normal operating cell temperature, which Ta,NOCT is 20°C and irradiance is 800W/m2

for a wind speed of 1 m/s. The equivalent circuit of the solar panel is shown in Fig. 2. The solar irradiance can be 
forecasted by statistical methods such as autoregressive moving average, or machine learning algorithms such as 
support vector machine. In this paper, solar irradiance was modeled using feedforward neural network.  
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4.4. Modeling of Wind Energy system 

Wind speed is a renewable source of energy. Using aerodynamic techniques, one can design a rotor that converts 
wind speed into electric power. Although wind speed has some advantages like energy density and an excellent 
return on investment, it has some disadvantages like required periodic maintenance, the difficulty of installation, and 
intermittency. That is, it has a significantly variable output that is difficult to predict and might cause instability of 
the grid operation. To model such a source, we need to model the electric behavior of the wind turbine generator, as 
well as characterize of wind speed to capture the fluctuation.  

a- Wind turbine model 

Ref [4] gives the model of power energy of wind turbine. The height and speed characterization of the wind turbine 
are the main factors of the output power. The relationships are given by the power-law equation: 
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where Vz, Vi, Z, and Zi, are the wind speed at the hub, wind speed at reference, hub height, and reference height, 
respectively. The output power of the turbine generator is given by 

3
3

3 3

          0                                                       

                            

                                               

ci

cir
r ci r

W r ci r ci

r

V V

VP V V V
P

V P
V VV V

P

   
   

   







               

                           
               0                                                              

r

co

coV V V
V V





  
 

   (6) 



	 Ahmad Alzahrani  et al. / Procedia Computer Science 114 (2017) 392–400� 395
 Alzahrani, Ahmad / Procedia Computer Science 00 (2017) 000–000   

4. Microgrid System Modeling 

    A complex system can be any system that contains a large number of elements that has distinguishing features 
such as a large number of interacting agents, self-organizing collective behavior, decentralization, openness, and 
nonlinearity between input and output. The central properties of complex systems are elements and their number, 
interactions and their strength, time scale of operations, variability, environment and its demand, and activities and 
their objectives. Attributes of complex systems are interdependent, independent, distributed, cooperative, 
competitive, and adaptive. Many examples of large-scale systems are built from components, such as internet 
networks, global satellite networks, enterprise information systems, and the electric power grid. There are many 
similarities between electric grids and complex computer systems so that microgrids can be treated as SoSs   

4.1. Battery System modeling 

A storage system is a vital element in the microgrid. It operates in the case of an electricity blackout, and it mitigates 
the variability of renewable energy sources. Therefore, it is usually placed between the renewable sources and the 
load to help the generation match the load demand at any moment, and by doing that, the stability of the system is 
assured. The size of battery storage is important, and detailed calculations should be made to meet the demand when 
the power from the electric grid is not available. The required battery capacity is given by 

           load off
size

max temp

DaysE
B

DoD 



                              (1) 

where Eload is the load that needs to be supplied during unavailability of power in ampere hour, Daysoff  is the storage 
days (the days that power from the electric grid is unavailable), DoDmax is the maximum depth of discharge of the 
battery, and ηtemp is the temperature corrector factor. At high penetration rate, fluctuating sources such as wind 
generation can cause a problem with balancing the system. These sources cannot be dispatchable and cannot be seen 
as a negative consumer. The control in this case might become very challenging. Knowing the charge quantity and 
setting it as a control input can mitigate the challenges associated with renewable energy integration. The charge 
quantity of the storage system is given by  

( ) ( 1) (1 ) ( ( ) ( ) / )B B GA L inv BattE t E t E t E t                                  (2) 

where ζ, ηinv and ηbatt are the hourly self-discharge factor, efficiency of inverter, and efficiency of the battery, 
respectively; EB(t) and EB(t-1) are the charge quantity of storage system at time t  and t-1, correspondingly; and EGA
and EL are the renewable energy power and load demand, respectively. The charge quantity is constrained by 
maximum and minimum charge quantities EBmax and EBmin [8], respectively. 

4.2. Load Modeling 

Modeling electric load is a very challenging task. The behavior of electric load depends on energy consumption of 
various devices that are turned on and off either automatically like air conditioning devices or manually like hair 
dryer. Often, electric load is modeled using a constant electric impedance for the sake of simplicity. However, the 
load can be modeled using machine learning algorithms or artificial neural networks if more accuracy is required. 
There are usually some demand peaks at various times of the day. The peaks are sharp during weekdays, because of 
air-conditioning and other high-power devices. Modeling load demand can be simplified as active and reactive 
power. The values of apparent power components P and Q are usually pre-set for the sake of simplicity. In this 
paper, the load  was modeled and considered stochastic. Therefore, load profiles were generated using a feedforward 
neural network, as explained in section 5.   

4.3. Modeling of Photovoltaic System 

The physical model of solar irradiance on an inclined surface is given by  

 Alzahrani, Ahmad / Procedia Computer Science 00 (2017) 000–000

( )T b b d d b d rI I I IR R RI         (3) 

where Ib is normal solar irradiance and Id is diffused solar irradiance. Parameters Rd and Rr are the tilt factors for the 
diffused and reflected part of the solar irradiance. The sun position in the sky is the main factor that total solar 
irradiance depends on [9]. There are many models for hourly output PV power, which is given by 

          ,

,(
1 T NOCT

sj r pc PV Tj a T r
a NOCT

I
A I T I T

NOCT T
P    

  
      

 
 
 
   

                                   (4) 

where ηr is the reference efficiency of the module, ηpc is the efficiency of smoothing and conditioning power, γ is the 
factor of density of a cell in module (also called packing factor), κ is the temperature coefficient of the array, APV is 
the photovoltaic area, Ta is the instantaneous ambient temperature, Tr is the reference temperature, Tc is the monthly 
temperature, and NOCT is the normal operating cell temperature, which Ta,NOCT is 20°C and irradiance is 800W/m2

for a wind speed of 1 m/s. The equivalent circuit of the solar panel is shown in Fig. 2. The solar irradiance can be 
forecasted by statistical methods such as autoregressive moving average, or machine learning algorithms such as 
support vector machine. In this paper, solar irradiance was modeled using feedforward neural network.  

I0

Id

Vd Rsh

Rs

Fig. 2. PV equivalent electric circuit 

4.4. Modeling of Wind Energy system 

Wind speed is a renewable source of energy. Using aerodynamic techniques, one can design a rotor that converts 
wind speed into electric power. Although wind speed has some advantages like energy density and an excellent 
return on investment, it has some disadvantages like required periodic maintenance, the difficulty of installation, and 
intermittency. That is, it has a significantly variable output that is difficult to predict and might cause instability of 
the grid operation. To model such a source, we need to model the electric behavior of the wind turbine generator, as 
well as characterize of wind speed to capture the fluctuation.  

a- Wind turbine model 

Ref [4] gives the model of power energy of wind turbine. The height and speed characterization of the wind turbine 
are the main factors of the output power. The relationships are given by the power-law equation: 

                    
z i

i

x
ZV V
Z

 
  

 
                                                                    (5) 

where Vz, Vi, Z, and Zi, are the wind speed at the hub, wind speed at reference, hub height, and reference height, 
respectively. The output power of the turbine generator is given by 

3
3

3 3

          0                                                       

                            

                                               

ci

cir
r ci r

W r ci r ci

r

V V

VP V V V
P

V P
V VV V

P

   
   

   







               

                           
               0                                                              

r

co

coV V V
V V





  
 

   (6) 



396	 Ahmad Alzahrani  et al. / Procedia Computer Science 114 (2017) 392–400

 Alzahrani, Ahmad / Procedia Computer Science 00 (2017) 000–000   

where Vr is the rated speed at which the wind turbine generates maximum power, Vci is the cut-in speed at which the 
wind turbine generates minimum power, coV  is cut-out speed, and rP  is the rated power. Fig. 3 shows the wind 
turbine characterization.  

Fig. 3. Wind Power vs Speed modeling 

The actual output power of wind turbine after considering the loss and the total swept area is given by 

w wP P A        (7) 

where η is the efficiency of the wind turbine and Aw is the total swept area [10]. 

b- Wind speed model 

There are many wind speed modeling tools, such as autoregressive moving average (ARMA), hidden Markov 
models (HMM), and support vector machine (SVM), and many more. In this paper, a feedforward neural network is 
used to model the wind speed. More details about implementation can be found in section 5 

5. General Modelling Using Neural Networks 

Figure 4 shows the overall system modeled using time series neural networks. Each neural network was trained 
with labeled data before plugging it into the system. All networks are feedforward networks trained using the back-
propagation algorithm. The solar power was trained using a feedforward neural network with 12 input neurons, 21 
hidden neurons, and 1 output, which corresponds to the solar power. The input variables are the solar irradiance, the 
corresponding time, the humidity, and the temperature. The previous values of solar irradiance were taken into 
account. Choosing the best window size was based on trial and error. The best window size is three. The model was 
trained using the Levenberg-Marquardt backpropagation algorithm to update the weight vector.  The wind power 
was trained using a similar neural network with 15 input neurons, 18 hidden neurons, and 1 output neuron, which is 
the wind power. The input to this network is the wind speed and direction, and the corresponding time. Previous 
values of wind speed and direction were taken into account to predict the next value of wind power. The wind power 
model was trained using the Levenberg-Marquardt backpropagation algorithm, as in solar power modeling. 
Modeling the load demand was the most difficult task because load demand contains human behavior of turning on 
and off devices which is highly unpredictable, and feature extraction can be a tedious task. However, a feedforward 
neural network with more neurons can represent the data. The inputs of the neural networks are power demand, 
weather, and corresponding time. The network architecture has 15 input neuron, 25 hidden neurons, and one output 
neuron, which is load demand. The best window size is also 3. The storage elements were modeled using a neural 
network with 6 input neurons, 12 hidden neurons, and an output neuron, which is the state of charge of the storage 
element. The best window size is 2. All of the previous models were trained using labeled data that were 
preprocessed and cleaned. Then, this data was divided as follows: 70% of the dataset is for training, 30% for test, 
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where Vr is the rated speed at which the wind turbine generates maximum power, Vci is the cut-in speed at which the 
wind turbine generates minimum power, coV  is cut-out speed, and rP  is the rated power. Fig. 3 shows the wind 
turbine characterization.  

Fig. 3. Wind Power vs Speed modeling 
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w wP P A        (7) 
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and off devices which is highly unpredictable, and feature extraction can be a tedious task. However, a feedforward 
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and 15% was for validation. All of the hidden neurons are a hyper tangent activation function, which has a value 
between -1 and 1. This is helpful because some variables have two directions such as the battery current, where the 
negative current means the battery is charging and positive means the battery is discharging. The activation function 
of the output layer is linear function. The training was stopped early to prevent overfitting, and to make the model 
have a better generalization. Simulating the microgrid with neural network can make it treated as an SoS, where 
each source is an independent and the system is capable of adding extra sources. All sources perform the big task 
which is power balance between generation and load demand. Other tasks such as increasing the economic benefits 
can also be achieved by controlling these renewable sources.  
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6. Control 

Several different types of controllers can be found in literature, as shown in Fig. 5.  These control techniques are 
suitable for working in SoSs. Hierarchical control uses different layers to control the grid. Typically, it consists of 
three layers: the primary layer, secondary layer, and tertiary layer. The primary layer is responsible for load sharing 
where droop control is used. Also, it is in charge of stabilizing the voltage and frequency. The secondary is in charge 
of checking the primary control errors. The tertiary layer monitors the flow from utility to the grid and vice versa 
[7]. In this paper, a primary control was implemented to balance the power between generation and load demand.  
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7. Case Study 

This section illustrates a practical example of a microgrid. Missouri S&T solar village is a small-scale microgrid 
which is consisted of four solar homes tied to the grid. These homes are also backed up by a storage system of two 
960 V batteries and a fuel cell. The main aim of this project is to better utilize the energy locally rather than sending 
it to the main grid.  The overall microgrid is a possession of Missouri S&T and the energy supplier is Rolla 
Municipal Utilities (RMU). Currently, Missouri S&T is responsible for the payment the electricity usage, and the 
village is occupied by tenants. More information about the smart grid components is listed in Table 2 [11-12]. These 
components include a natural gas fuel cell, solar generation, lithium ion battery, and automated smart switchgear 
[13]. Figure 6 shows the picture of the microgrid, and Fig. 7 shows the simulation diagram. The solar village is 
simulated using Simulink with the same parameters listed in Table 2. Different PV data sources were obtained from 
[14-16]. The RMU was considered an ideal source with 13.8 kV and 60 Hz. The transmission line was simulated 
using PI section line with non-ideal components. The rest of the system was considered a constant load with active 
and reactive power equal to 1 MW and 1 kVAR, respectively. The solar village is connected to the transmission line 
using a distribution transformer. The distribution transformer is connected to phase A of the transmission line, and it 
is rated for 50 kVA power. The secondary side of the transformer is center tapped, which there are two phases at the 
secondary side with the 120V magnitude and opposite polarity. The load profile is the output of a neural network 
that was trained using data from [17]. The time resolution of the load profile is one minute.  

Table 2: Parameters of the S&T microgrid 

Load Rating
Battery storage 60kWh 

Bidirectional Inverter 50kW 
Fuel cell 5kW 

Photovoltaic Panels 2.4kW 

Fig. 6. Missouri S&T microgrid 
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7. Simulation Results 

This section presents Missouri S&T microgrid simulation. Figure 8 shows the power consumption of each house, 
solar power, and generation from RMU. The usual goal is to control the battery and maximize the performance of 
the system. However, the battery in this simulation was eliminated so that the system is grid connected without 
battery storage. The goal, then, is to reduce the consumption from power grid by using available power from the 
solar panels as follows: 
       utility load PVP P P                 (8) 

The simulation setup in the previous section was run for 24 hours. The output waveforms after completion are 
shown in Fig. 9. The voltage of phase A and phase B is 120 V, equal in magnitude and opposite in polarity. It also 
shows the current passing through the distribution transformer, where IA, IB, and IN are the phase A current, phase B
current , and neutral current, respectively. The power consumption seen by the grid at each house is also shown in 
Fig. 9., as well as the power loss in the transformer Ptransformer. From the waveforms, one can see that the system is 
balanced, and each house utilizes the renewable energy effectively. The voltages are constant and steady, and the 
currents are within transformer limits.  
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960 V batteries and a fuel cell. The main aim of this project is to better utilize the energy locally rather than sending 
it to the main grid.  The overall microgrid is a possession of Missouri S&T and the energy supplier is Rolla 
Municipal Utilities (RMU). Currently, Missouri S&T is responsible for the payment the electricity usage, and the 
village is occupied by tenants. More information about the smart grid components is listed in Table 2 [11-12]. These 
components include a natural gas fuel cell, solar generation, lithium ion battery, and automated smart switchgear 
[13]. Figure 6 shows the picture of the microgrid, and Fig. 7 shows the simulation diagram. The solar village is 
simulated using Simulink with the same parameters listed in Table 2. Different PV data sources were obtained from 
[14-16]. The RMU was considered an ideal source with 13.8 kV and 60 Hz. The transmission line was simulated 
using PI section line with non-ideal components. The rest of the system was considered a constant load with active 
and reactive power equal to 1 MW and 1 kVAR, respectively. The solar village is connected to the transmission line 
using a distribution transformer. The distribution transformer is connected to phase A of the transmission line, and it 
is rated for 50 kVA power. The secondary side of the transformer is center tapped, which there are two phases at the 
secondary side with the 120V magnitude and opposite polarity. The load profile is the output of a neural network 
that was trained using data from [17]. The time resolution of the load profile is one minute.  

Table 2: Parameters of the S&T microgrid 
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Fuel cell 5kW 
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7. Simulation Results 

This section presents Missouri S&T microgrid simulation. Figure 8 shows the power consumption of each house, 
solar power, and generation from RMU. The usual goal is to control the battery and maximize the performance of 
the system. However, the battery in this simulation was eliminated so that the system is grid connected without 
battery storage. The goal, then, is to reduce the consumption from power grid by using available power from the 
solar panels as follows: 
       utility load PVP P P                 (8) 

The simulation setup in the previous section was run for 24 hours. The output waveforms after completion are 
shown in Fig. 9. The voltage of phase A and phase B is 120 V, equal in magnitude and opposite in polarity. It also 
shows the current passing through the distribution transformer, where IA, IB, and IN are the phase A current, phase B
current , and neutral current, respectively. The power consumption seen by the grid at each house is also shown in 
Fig. 9., as well as the power loss in the transformer Ptransformer. From the waveforms, one can see that the system is 
balanced, and each house utilizes the renewable energy effectively. The voltages are constant and steady, and the 
currents are within transformer limits.  
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Conclusion 

This paper presented modeling and simulation of microgrid. This microgrid was treated as an SoSs and controlled to 
be able to utilize different energy sources. A practical example from Missouri S&T was implemented and simulated. 
The results were presented and to see that it utilized the renewable energy coming from the solar panels and 
optimally distributed it between homes. The neural networks were used to model the output power of microgrid 
components. Each component was treated as an autonomous system. These autonomous components were 
collaborating to achieve the overall goal, which is supplying the electric load.  Simulink model and results are 
discussed for grid tied microgrid with no storage element. Future work includes simulating Missouri S&T with the 
battery storage elements and implementing battery control algorithm.   
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