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A Closed-Form Expression for Estimating Radiated
Emissions From the Power Planes in a Populated

Printed Circuit Board
Hwan-Woo Shim, Member, IEEE, and Todd H. Hubing, Senior Member, IEEE

Abstract—An expression for the maximum intensity of radiated
emissions from a rectangular power bus structure has been de-
rived based on an analytical cavity-resonator model. The effect of
components mounted on the board is modeled by modifying the
propagation constant of the waves within the power bus struc-
ture. The radiated field intensity is calculated using the equivalent
magnetic current around the edges of the power bus structure to-
gether with the modified propagation constant. Measurements of
a populated test board show that the derived closed-form expres-
sion estimates the level of the maximum radiation intensity with
reasonable accuracy.

Index Terms—Cavity model, decoupling, power bus noise, prop-
agation constant, radiated emissions.

I. INTRODUCTION

TRANSIENT currents drawn by the active devices on a
printed circuit board produce voltage fluctuations on the

power bus. For high-speed digital systems, this power noise
can be the source of significant radiated emissions, particularly
when the power is distributed on planes [1]–[3]. To mitigate
the direct radiation from power bus structures, several methods
have been proposed. At frequencies below a few hundred mega-
hertz, decoupling capacitors mounted to the board can reduce
the power bus noise and the resulting emissions from the power
bus [4]–[10]. At higher frequencies, embedded capacitance can
be employed [11], [12], the planes can be connected together
around their periphery with a resistive termination [13], or power
planes can be located on layers between two ground planes that
are stitched together using many vias [14].

Each of these methods to reduce emissions from a power bus
structure has a cost associated with it in terms of board real
estate, component costs, or manufacturing costs. In many cases,
emissions directly from the power bus will not be high enough to
create a problem. Therefore, measures to reduce power bus emis-
sions should only be applied when the emissions are expected to
be significant. Expressions for estimating the potential radiated
field intensity from a power bus structure can help designers to
anticipate potential problems and avoid unnecessary costs.

Recently, Leone developed a simple closed-form expression
to estimate maximum radiated emissions from a rectangular
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Fig. 1. Rectangular power plane pair.

power bus structure [16]. He used a cavity model [17]–[24] to
get the field distribution along the edges. Then, the radiated fields
were calculated using equivalent magnetic currents. The results
showed that, near resonant frequencies, currents as low as a few
milliamps could result in unacceptable radiated emissions. The
model in [16] assumed a bare board without any components.
In practice, most printed circuit boards are covered with com-
ponents. The components may not be important for boards with
closely spaced planes since the conductive loss of the copper
planes damps resonances significantly [23]. Furthermore, the
radiated emissions are not a concern for most thin boards, since
the intensity of the radiated fields is proportional to the spacing
between planes. However, the components can play an impor-
tant role for thicker boards (e.g., plane spacings greater than a
few hundred microns). For these boards, the effects of the com-
ponents on the quality factor of the resonance must be taken into
account. In this paper, the authors model power bus structures as
cavities and modify the propagation constant within the cavity
to account for the effects of the mounted components. Using
the modified propagation constant, a new closed-form expres-
sion for the maximum radiated field intensity from a rectangular
power bus structure is derived.

II. CAVITY MODEL OF A RECTANGULAR POWER

BUS STRUCTURE

The structure under consideration is illustrated in Fig. 1. The
spacing h between the two planes is assumed to be electrically
small, so the structure supports modes that have only a vertical
component of electric field Ez and tangential components of
magnetic field Hx and Hy . This enables us to model the structure
as a cavity by considering the edges to be perfect magnetic

0018-9375/$20.00 © 2006 IEEE
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conductor (PMC) walls. Two ports are located at (xi, yi) and
(xj , yj ) that have electrically small rectangular cross sections
of (∆xi,∆yi) and (∆xj ,∆yj ), respectively.

Since the magnetic fields are perpendicular to the z-direction,
the fields inside the cavity can be expressed in terms of sum-
mations of modal functions of two-dimensional (2-D) TMz

modes. The transfer impedance between the two ports in Fig. 1
is given by [16]–[23] [see (1) at the bottom of the page], where
kxm = (ma)/(π), kyn = (nb)/(π), and χ2

mn is given by

χ2
mn =

{ 1, m = n = 0
2, m = 0 or n = 0
4, mn �= 0.

(2)

The complex propagation constant γ can be written as [22]

γ = jω
√

εµ

√(
1 − j

(1 + j)δs

h

)
(1 − j tan δ) (3)

where δs is the skin depth in the plane conductors, tan δ is the
loss tangent of the dielectric substrate, and ε is the permittivity of
the dielectric substrate. This expression for γ does not account
for the radiation loss, which has a negligible effect on the fields
between the plane in typical power bus structures [21]–[23]. If
the dielectric material is reasonably low loss, (3) is approxi-
mately given by

γ ≈ jω
√

εµ

(
1 − j

tan δ + δs/h

2

)
. (4)

If the dimensions of the ports are much smaller than those of
the board, (1) can be simplified, as shown in (5) at the bottom
of the page.

The electric field Ez at an arbitrary point (xj , yj ) on the board
can be written in terms of the transfer impedance Zij assuming
a filamentary current source Ii at an arbitrary point (xi, yi).

Ez (xj , yj ) =
1
h

V (xi, yi) =
1
h

Zij × Ii(xi, yi). (6)

The radiated field from the rectangular power bus structure
can be calculated using Huygens’ Principle [25]–[27]. This prin-
ciple says that the radiated fields exterior to a region including

Fig. 2. Equivalent magnetic current on the periphery of the planes.

the sources can be determined by equivalent current sources
on the boundary surface of the source volume. The equivalent
current sources are related to the tangential components of the
electric fields and the magnetic fields. The tangential magnetic
fields can be neglected for a thin board, so the radiated field
is determined by the tangential electric field on the edges. The
corresponding equivalent magnetic current is given by [25]

M̄s = −n̂ × Ēz (7)

where Ēz is the tangential electric field at the edge openings
and n̂ is a normal vector pointing out from of the board. The
equivalent magnetic current is shown in Fig. 2.

Using the equivalent magnetic current as the radiation source,
the far-zone radiated fields can be calculated using the free-space
Green’s function as [16], [25], [26]

Ē =
h

4π
∇×

∫
C

M̄s(r̄′)
e−jk0|r̄−r̄ ′|

|r̄ − r̄′| d�′

≈ j
k0h

4π

e−jk0r

r

∫
C

{r̂ × M̄s(r̄′)}ejk0(r̄
′·r̂)d�′ (8)

where the integral path C extends over the periphery of the board
and r̄and r̄′ are observation and source point vectors, respec-
tively, expressed in spherical coordinates. Combining (5)–(8)

Zij = jωµh

∞∑
m=0

∞∑
n=0

χ2
mn cos(kxm xi) cos(kynyi) cos(kxm xj ) cos(kynyj )

ab
(
k2

xm + k2
yn + γ2

)
× sinc(kxm ∆xi/2π)sinc(kyn∆yi/2π)

× sinc(kxm ∆xj/2π)sinc(kyn∆yj /2π)

≡
∞∑

m=0

∞∑
n=0

Zij,mn (1)

‘

Zij ≈ jωµh

×
∞∑

m=0

∞∑
n=0

χ2
mn cos(kxm xi) cos(kynyi) cos(kxm xj ) cos(kynyj )

ab
(
k2

xm + k2
yn + γ2

) . (5)
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and evaluating the integral, the radiated field can be written as

ĒMx
≈ k2

o ηohIie
−jko r

4πr
(r̂ × x̂)

·
∞∑

m−0

∞∑
n−0

{
χ2

mn cos(kxm xi) cos(kynyi)
ab

(
k2

xm + k2
ym + γ2

)
· jk0 sin θ cos φ

k2
xm − k2

0 sin2 θ cos2 φ

· [1 − (−1)m ejko a sin θ cosφ ]

· [1 + (−1)n · ejko b sin θ sinφ ]

}
(9)

and

ĒMy
≈ k2

o ηohIie
−jko r

4πr
(r̂ × ŷ)

·
∞∑

m=0

∞∑
n=0

{
χ2

mn cos(kxm xi) cos(kym yi)
ab

(
k2

xm + k2
yn + γ2

)
· −jk0 sin θ sinφ

k2
yn − k2

0 sin2 θ sin2 φ

· [1 − (−1)nejk0b sin θ sinφ ]

· [1 + (−1)m ejk0a sin θ cosφ ]

}
(10)

where ĒMx
and ĒMy

are far-zone electric fields due to the x and
y components of the equivalent magnetic currents, respectively.
Eθ and Eφ can be obtained by expanding the (r̂ × x̂) and (r̂ ×
ŷ) terms in purely spherical coordinates and combining (9) and
(10). The expressions for the radiated fields then become (11)
and (12), shown at the bottom of page. Finally, the magnitude
of the maximum radiated field is given by

|E| =
√
|Eθ |2 + |Eφ |2. (13)

III. RADIATION INTENSITY FROM A BARE BOARD

The radiated field is proportional to the impedance Zij , which
has local maximum values at resonant frequencies. These local
maximum values are proportional to the Q factor of the reso-
nance [23]. The Q factor is determined by various losses inside
the structure. In general, the sources of loss in a bare board
are conductive loss, dielectric loss, radiation loss, and surface
wave loss. But the surface wave loss and radiation loss can be
neglected for the purposes of estimating the interior fields, since
they are usually small relative to the other losses for typical
printed circuit board geometries [22]. The conductive loss dom-
inates in power buses with closely spaced planes and the dielec-
tric loss dominates when the dielectric layers are thicker [23].
In general, the dielectric material for a power bus structure is a
relatively good insulator and has a low loss tangent. So, thicker
boards without any components have relatively high quality fac-
tors. For example, the quality factor of a 0.5-mm-thick board
made with FR-4 is about 40 at resonant frequencies [23]. For
thicker boards without components, the Q factor approaches

Eθ ≈ j
k3

o ηohIie
−jk0r

4πr

·
∞∑

m=0

∞∑
n=0

{
χ2

mn cos(kxm xi) cos(kynyi)
ab

(
k2

xm + k2
yn + γ2

) · sin θ sin φ cos φ

·
(

[1 − (−1)m ejk0a sin θ cosφ ][1 − (−1)n · ejk0b sin θ sinφ ]
k2

xm − k2
0 sin2 θ cos2 φ

+
[1 − (−1)nejk0b sin θ sinφ ][1 − (−1)m · ejk0a sin θ cosφ ]

k2
yn − k2

0 sin2 θ sin2 φ

)}
(11)

and

Eφ ≈ j
k3

o ηohIie
−jko r

4πr

·
∞∑

m=0

∞∑
n=0

{
χ2

mn cos kxm xi) cos(kynyi)
ab

(
k2

xm + k2
yn + γ2

) · sin θ cos θ

·
(

[1 − (−1)m ejk0a sin θ cosφ ][1 − (−1)n · ejk0b sin θ sinφ ] cos2 φ

k2
xm − k2

0 sin2 θ cos2 φ

− [1 − (−1)nejk0b sin θ sinφ ][1 − (−1)m · ejk0a sin θ cosφ ] sin2 φ

k2
yn − k2

0 sin2 θ sin2 φ

)}
. (12)
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the inverse of the dielectric loss tangent and can be 50–100 or
higher for common circuit board dielectrics.

If the separation between the two planes is very thin (i.e.,
comparable to the skin depth in the planes), the radiation in-
tensity may generally be neglected since the field strength is
proportional to the separation [16] and resonances will be effi-
ciently damped [22], [23]. Therefore, the power bus radiation
from a board with a plane spacing on the order of several mi-
crons can normally be neglected. In this paper, the thickness of
the dielectric layer is considered to be much greater than the
skin depth of the conductor such that conductive loss can be
neglected.

For a high-Q resonances (e.g., Q > 10), the maximum ra-
diated field is determined primarily by one mode if the source
is located where that mode is excited. For TMm0 modes, the
two equivalent magnetic current sources are located parallel to
the y axis at x = 0 and x = a. The maximum E-field is Eθ on
the x–z plane. The maximum intensity for TMm0 modes can
be found by taking the limit as φ → 0 in (11) and combining
the result with (4) yielding

|ETMm0|max =
η0hIi

2πεrar
·
∣∣∣cos

(mπxi

a

)∣∣∣ · Qbare(f)

· |1 − (−1)m ejk0a sin θ |

≤ η0hIi

πεrar
·
∣∣∣cos

(mπxi

a

)∣∣∣ · Qbare(f) (14)

where Qbare(f) = (Q−1
c + Q−1

d )−1. Qc and Qd are the quality
factors due to the conductive loss and dielectric loss, respectively
and are given by [23], [25]

Qd =
1

tan δ
, Qc =

h

δs
. (15)

Equation (14) is similar to (40) in [16], which was derived
for the TM10 mode. This simple expression is valid not only
for the first resonant frequency but also for the higher mode
resonances. Similarly, the maximum field for TM0n modes can
be expressed as

|ETM0n |max ≤ η0hIi

πεr b r
·
∣∣∣cos

(nπyi

b

)∣∣∣ · Qbare(f). (16)

For TMmn modes with m �= 0 and n �= 0, the phase of the
equivalent magnetic current source alternates along each edge
resulting in some cancellation of the radiated field components.
This implies that the maximum field intensity of the TMmn

modes is less than that of the TMm0 or TM0n modes.
Fig. 3 shows the calculated maximum field from a sample

board. The input current is 1.0 mA and the source is located
at the corner of the planes so that all modes are excited. The
solid line shows the maximum radiated field strength at 10.0 m
obtained from the complete expression in (13). The dashed line
indicates the maximum estimate using (16). For this test board,
the maximum level is expected to be determined by TM0n

modes because b is shorter than a. The results show that the
maximum field intensity is determined by the TM01 and TM02

modes as expected and the estimate in (16) provides an upper
bound for the maximum radiation.

Combining (14) and (16), a general expression for the max-
imum radiated field intensity from a power bus with a high Q

Fig. 3. Maximum radiation and corresponding modes at r = 10 m.

resonance is given by

|E|max ≤ 120hIi

εr r
· Qbare(f)
min(a, b)

. (17)

IV. RADIATION INTENSITY FROM A POPULATED BOARD

Equation (17) provides a simple closed-form estimate for
the maximum radiated emissions from the power bus of a low
loss board with high-Q resonances. If the board is heavily pop-
ulated, the components introduce additional loss and the ex-
pression in (3) does not hold any more. In order to model the
effects of components on a heavily populated board, we start
by assuming the component loss is distributed uniformly over
the board. The component loss is then accounted for by intro-
ducing an equivalent propagation constant. The new propaga-
tion constant, in turn, is used to get a closed-form expression
for the maximum radiation from heavily populated power bus
structures.

A. Modifying the Propagation Constant

If the spacing between the two planes is much smaller than the
dimensions of the board, the electromagnetic fields propagate in
a radial direction outward from the source. Based on this idea,
an equivalent propagation constant within a power bus structure
has been successfully obtained using a radial transmission line
model [22], [28]. Fig. 4 illustrates the radial transmission line.
As the wave propagates in the radial direction, the per-unit-
length parameters vary with the distance ρ and are given by [22]

L(r) =
µ0h

2πρ
(18)

C(r) =
2πεrε0ρ

h
(19)

Rr (r) =
(1 + j)
πσδsρ

(20)

Gd(r) =
2πρ

h
ωεrε0 tan δ (21)
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Fig. 4. (a) Geometry of the radial transmission line structure and (b) one
segment of the radial transmission line model.

Fig. 5. High-frequency series and shunt models for a component.

Components connected to the two planes are in parallel with
the shunt components of the model. A reasonable model for a
component connected to the power planes of a printed circuit
board is a series R–L–C as shown in Fig. 5. This could represent
a passive linear component such as a lossy decoupling capacitor
or the power input impedance of an active device. For a given
series Rc,Cc , and Lc , a parallel connection that gives the same
admittance is given by

Gc =
Rc

R2
c +

(
ωLc − 1

ωCc

)2 (22)

jBc = −j

(
ωLc − 1

ωCc

)
R2

c +
(
ωLc − 1

ωCc

)2 . (23)

Assuming that the number of the uniformly distributed com-
ponents is Nc , the radial transmission line model can be modified
as shown in Fig. 6. The per-unit length shunt parameters due to
the connection of the components are given by

Gc(ρ) =
2πρ

A
· NcRc

R2
c +

(
ωLc − 1

ωCc

)2 (24)

jBc(ρ) = −j
2πρ

A
·

Nc

(
ωLc − 1

ωCc

)
R2

c +
(
ωLc − 1

ωCc

)2 (25)

Fig. 6. Modified radial transmission line model including components.

where A is the area of the board. Using the above equations,
a new propagation constant for the waves inside the cavity in
the presence of components can be calculated from the series
inductance and shunt admittance in Fig. 6, [22], [29] and is
given by

γ =
√

{Rr (ρ) + jωL(ρ)}

×
√

{Gd(ρ) + Gc(ρ) + jωC(ρ) + jBc(ρ)}. (26)

Substituting (18)–(21), (24), and (25) into (26) yields (27),
shown at the bottom of the page, where Xc(ω) = ωLc −
(ωCc)−1 and C0 is the inter-plane capacitance of the power
bus structure. Notice that (27) is identical to (3) if Nc = 0. For
high-frequency signals, a resistor looks like a series R–L con-
nection and a capacitor can be modeled as an equivalent R–L–C
circuit. For typical printed circuit boards, decoupling capacitors
resonate at tens of megahertz while the board resonances occur
at hundreds of megahertz. At frequencies well above the de-
coupling capacitor resonant frequencies, transient currents are
drawn primarily from the interplane capacitance [9]. At these
frequencies, the trace inductance dominates and the capacitors
look like resistances in series with inductances. Since the radi-
ation from a power bus structure is usually only significant at
frequencies near or above the first board resonance, the com-
ponents can often be modeled using series R–L circuits for the
purposes of power bus radiation estimation and Xc(ω) can be
replaced simply by ωLc . The radiated emissions from power
bus structures are approximately proportional to the spacing be-
tween planes as indicated in (17) and significant only for thick
boards, where the spacing h between the planes is much greater
than the skin depth δs . In this case, (27) can be simplified as

γ2 ≈ −ω2µ0ε

([
1 +

δs

h
− NcLc

C0 (R2
c + ω2L2

c )

]

− j

[
tan δ +

δs

h
+

NcRc

ωC0 (R2
c + ω2L2

c )

])
. (28)

γ = jω
√

µ0ε ×
√(

1 − j
(1 + j)δs

h

)

×
√[(

1 − NcXc(ω)
ωC0|Rc + jXc(ω)|2

)
− j

(
tan δ +

NcRc

ωC0|Rc + jXc(ω)|2
)]

(27)
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Fig. 7. Test board.

The complex propagation constant in (28) can be used in the
cavity model to calculate the power bus impedance of a heavily
populated board.

In order to validate this approach, the input impedance of a
test board was measured and compared with the cavity model
calculation. The test board was 15.6 cm× 10.6 cm. It was a six-
layer board with planes on layers 3 and 4 for power distribution.
The planes were separated by a 0.22-mm dielectric material with
an effective relative dielectric constant of 5.35 and a loss tan-
gent of approximately 0.02 over the frequency range of interest.
Fig. 7 shows the test board. Surface mount 39-Ω resistors were
connected to the two power planes through traces with a para-
sitic inductance of 1.4 nH. Fifty-two resistors were uniformly
distributed over the board. The power bus impedance was mea-
sured at the SMA port with an HP4291A impedance analyzer.

The power bus input impedance was calculated by setting
i = j in (1). The wave propagation constant in (28) was used
to account for the effect of the components. The calculated
and measured results are shown in Fig. 8. The measured values
agree well with the calculation indicating that the modified wave
propagation constant did a good job of accounting for the effects
of the distributed components.

B. Estimation of the Maximum Emissions

Substituting (28) into (11) and (12), the radiated field can be
calculated. As described in the previous section, the maximum
field intensity is determined by the TMm0 or TM0n modes.
Considering the worst-case radiation, the maximum radiated
field from a populated board can be written as

|E| ≤ 120hIi

εr r min(a, b)
·
(

tan δ +
δs

h
+

NcRc

ωC0 (R2
c + ω2L2

c )

)−1

=
120hIi

εr r
· Q(f)
min(a, b)

. (29)

The estimates calculated using (29) are shown in Fig. 9 along
with the simulated results using (13). The configuration of the
test board was the same as that of the test board used for the
impedance measurement earlier. The radiated field was calcu-
lated using the cavity model with 22 resistors connected between
the planes. A filamentary 10-mA current source was placed at
(4.7, 8.2) cm. The simulations show that the quality factor of

Fig. 8. Power bus impedance of the test board populated by 52 lumped resistors
of 39 Ω with 1.4 nH of connection inductance.

Fig. 9. Effect of component resistance on the radiated emissions (Nc =
22, Lc = 1.4 nH, h = 0.22 mm).

the resonance is relatively high when the resistor value is 39 Ω.
The quality factor is also high when the resistor value is 0.39 Ω.
However, with a resistance of 3.9 Ω, the quality factor is lower
and the resonances are dampened more efficiently. This is be-
cause maximum power is delivered to the resistors when their
resistance is equal to the inductive reactance of their connection
to the board [30]. At frequencies in the hundreds of megahertz, a
connection inductance of 1.4 nH has a reactance on the order of
several ohms. Since the power bus impedance is also in the range
of several ohms, the 3.9-Ω resistors are able to damp the power
bus resonances effectively. The relatively high-impedance 39-Ω
resistors and the relatively low-impedance 0.39-Ω resistors do
not readily absorb power from the board.

Maximum levels of estimated radiation calculated using (29)
are also illustrated in Fig. 9. The results indicate that this ex-
pression successfully estimates the maximum strength of the
radiated emissions.
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Fig. 10. Setup for measuring radiated emissions.

V. EXPERIMENTAL VALIDATION

In order to determine how well the simple expression in (29)
estimates the maximum emissions from an actual printed circuit
board, radiated emissions from the test board shown in Fig. 7
were measured in various configurations. Fig. 10 shows the
measurement setup. The board was placed on a 1-m high table
inside an anechoic chamber. The signal source was connected
to the SMA port through a coaxial cable and the radiated fields
were measured using a wide-band antenna. Several ferrite cores
were placed on the coaxial cable to minimize the common-
mode current induced on the cable. The maximum intensity of
the electric field was measured as the table was rotated and
the antenna height was varied. The board was measured both
parallel and perpendicular to the plane of the table. The distance
between antenna and the DUT was 3.0 m.

The measured radiated emissions from the bare board (with-
out any components) are shown in Fig. 11 along with calculated
emissions using the cavity model (13) and the estimated maxi-
mum emissions (29). The measured results show a small peak
near 40 MHz that was associated with a cable resonance and
appeared only when the antenna was oriented vertically. The
results show that the cavity model predicts the intensity of the
radiated emissions with reasonable accuracy and the closed-
form expression for maximum radiation in (17) successfully
estimates the envelope of the emissions. The fact that none of
the peaks actually reach the maximum estimate can be attributed
to the fact that the source location is not in a perfect position to
strongly excite any of the resonances.

The radiated emissions from a populated board are shown in
Fig. 12. Surface mount resistors with a nominal value of 39 Ω
were connected to the power bus. The connection inductance
was 1.4 nH and the resistors were distributed across the board.

Fig. 12(a) shows the results obtained with 22 resistors and
Fig. 12(b) shows results obtained with 52 resistors mounted to
the board. In both cases, the estimate given by (29) provides
a reasonable upper-bound for the maximum radiation intensity.
Note that the peaks are closer to the upper bound when there
is significant loss. This is because the source location is less
critical in a lossy cavity.

VI. CONCLUSION

A simple expression for the maximum radiated emissions
from a populated parallel plane power bus structure was de-
rived. In order to consider the effects of components on the

Fig. 11. Radiated emissions from a bare board.

Fig. 12. Radiated emissions from a board populated with (a) 22 and (b) 52
39-Ω resistors.
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board, rectangular power bus structures were analyzed using
a cavity model and the complex wave propagation constant
within the cavity was modified to take into account the effect of
components. Measurements of the power bus impedance for a
sample board populated with resistors to represent the ESR of
active devices and decoupling capacitors showed good agree-
ment with calculated results supporting the effectiveness of the
model.
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