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supervised Color I age Segmentation 

etecting boundaries in images is a fun- D damental problem in computer vision 
as well as a necessary preliminary step for 
further image understanding. Our re- 
search was developed to serve as a front- 
end for a computer vision system for skin 
cancer diagnosis. The most predictive fea- 
tures for various skin cancers will be tar- 
geted by the computer vision systerh, 
allowing automatic induction software to 
classify the tumor [SI. The problem of 
interest in this article is identifying skin 
tumor boundaries; the border is the first 
and most critical feature to identify. Ob- 
ject boundaries and surface contours are 
fairly easily detected by the human ob- 
server, but automatic border detection is a 
difficult problem. The images may con- 
tain reflections, shadows or extraneous 
artifacts that make the process of finding 
the border more difficult. The images used 
in this research were digitized from 35- 
mm color photographic slides obtained 
from a private dermatology practice and 
from New York University [SI. 

Border Finding Algorithm - -  
A skin tumor may be distinguished 

from surrounding skin by features such as 
color, brightness or luminance, texture 
and shape, and any combination thereof. 
The use of color as a means to identify the 
tumor border is of particular importance, 
since in some cases, it is difficult to iden- 
tify the tumor border in a monochrome 
image. The border finding algorithm pre- 
sented here involves a series of preproc- 
essing steps to remove noise from the 
image, followed by color image segmen- 
tation, data reduction, object localization, 
and contour encoding. This process is de- 
picted in Fig. l. 

Noise Removal 
The input image may contain noise that 

will make the segmentation process less 
accurate. For example, skin tumor images 
often contain extraneous artifacts such as 
rulers and hair that make it more difficult 
to localize the tumor border (see Fig. 4). 
In addition, the images may contain unde- 
sirable color variations such as shadows 
and reflections that tend to bias the color 
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map when performing color segmenta- 
tion. In order to reduce the effects of such 
noise, the images are first processed with 
a pseudomedian filter (Fig. 5 )  and then a 
nonskin detecting algorithm (Fig. 2) is 
applied to mask out the unwanted arti- 
facts. As seen in Fig. 6, the majority of the 
reflections and ruler artifacts have been 
masked out be this algorithm; the masked 
out pixels axe set to black. 

Pseudomedian Filter 
Median filtering is computationally inten- 
sive, and thus a simpler operator, called 
the pseudomedian filter [l], which pos- 
sesses many of the same desirable proper- 
ties of the median filter, was used. The 
median of an L-element sequence can be 
expressed as the MAX (or MIN) of the 
MIN (or MAX) of all L!/[M!l[(L - M)!] 
subsequences, where M = (L+1)/2 and L! 

The pseudomedian of length five is 
= L(L- 1) (L-2). . . (2). 

defined as: 
PMED(a,b,c,d,e)= 
=( 1/2)MAX[MIIV(a,b,c),MTN(b,c,d), 
MIN(c,d,e)+ 
(1/2MIN[MAX(a,b,c),MAX(b,c,d), 
MAX(c,d,e)l 

The MIN followed by MAX contribu- 
tions of the fxst part of the equation al- 
ways result in the actual median or a value 
smaller, while the MAX followed by the 
MIN contributions result in the actual me- 
dian or a value larger. The average of the 
two contributions tends to cancel out the 
biases. The pseudomedian definition can 
be generalized as follows: 
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PMED{ SL} = (1/2)MAXIMIN( SL) + 
(1/2)MINIMAX{ SL} 

where { SL] denotes a sequence of ele- 
ments sl,s2,. ..,st 

Nonskin Masking 
An algorithm for masking out nonskin is 
used after the median filter to reduce the 
effects of having artifacts such as rulers 
and flash points (bright spots due to reflec- 
tions) in the image [2]. The algorithm is 
based on a set of heuristics to determine 
whether a color is likely to be skin or 
nonskin. The algorithm compares the 
brightness level of pixel samples in the 
green and blue planes to that of the red, 
and uses predetermined thresholds to de- 
cide if the pixel is likely to be nonskin 
(Fig. 2). 

Color Segmentation 
The first step in finding the correct 

border is to segment the image. The border 
finding algorithm presented here uses 
color as the basis for segmenting the tu- 
mor images into meaningful regions. Six 
different color segmentation algorithms 

I 
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1. Border finding algorithm. 

0739-51 75/96/$4.0001996 January/February 1996 



2. Flow chart for determining if a color resembles skin. 
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3. The spherical transform. 

4. Original tumor image no. 316. 

5. Pseudomedian filtered image. 

6. Nonskin masked image. 

are explored here; adaptive thresholding 
[3], fuzzy c-means [4], SCTIcenter split 
[SI, PCT/median cut [ 5 ]  [6], split and 
merge [7] and multiresolution segmenta- 
tion [7]. 

For all methods, the number of colors 
for segmentation was kept constant at 
three, an empirically determined optimum 
based on error criteria for tumor images 
[8], with the exception of the spherical 
transform segmentation method [SI 
which, by algorithmic definition, seg- 
mented the image into four distinct colors. 
It should be noted that if the image is 
segmented into too many colors, it may 
significantly complicate the border find- 
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The resulting description, or finger- L=JRz+c'+B" 
print, is interpreted by relating pairs of 
zero-crossings to modes in the histogram, 
where each mode is modeled after a nor- 
mal distribution. After histogram analy- 
sis, valid classes are determined from the 
modes of the histogram and mapped ac- 
cordingly. Each class represents a differ- 
ent object within the image. 

Fuzzy c-Means 
Color image segmentation based on the 

AngleA = acos - [:I @ 

[ L X sin( , R  AngZeA) 
AngleB = acos 

$ 
8 

The two-dim&sional color ' space is 
then divided using a center split [5] ,  which 
simply finds the mid-point between the 
minimum and maximum along each di- 
mension. In this case, the image is split 

7. Adaptive thresholding segmented im- 
age. 

ing task, while too few colors may result 
in border information being lost. The idea 
is thus to find the minimal number of 
colors while still retaining the maximum 
amount of border information [ 5 ] .  

Adaptive Thresholding 
In performing adaptive thresholding ( 
Fig. 7), the majority of the color informa- 
tion is first mapped into a single image 
plane using the principal components 
transform (PCT) [5]. This plane is then 
used to generate a multiscale description 
[4] of a histogram by convolving it with a 
series of Gaussian kernels of gradually 
increasing width (standard deviation), and 
marking the location and direction of the 
sign change of zero-crossings in the sec- 
ond derivative. This process is known as 
scale-space filtering. 

The convolution is given by: 

where "*" denotes a 1-D convolution. 
The parameter (t, Z) -space [4] is 

known to be the scale-space, where z is the 
scale constant. The scale-space depends 
both on the independent variable, c, and 
the Gaussian deviation or scale constant, 
Z. The scale constant is inversely propor- 
tional to the number of peaks and valleys 
that can be extracted from the histograms. 
The importance of this fact is that if a 
priori knowledge is available about a par- 
ticular type of image, z can be set to be a 
constant to obtain the desired number of 
peaks and valleys, and the process can be 
made unsupervised. The z value that gives 
a satisfactory result in most of the color 
spaces used is 5. 

- -  
thresholding and fuzzy c-means (see Fig. 
8) can basically be divided into two 
stages: coarse and fine segmentation [4]. 
The coarse segmentation is intended to 
reduce the computational burden required 
for the fine segmentation, i.e., the fuzzy 
c-means. 

In coarse segmentation, a scale-space 
filter, as described above, is used to ana- 
lyze the histograms of the three RGB color 
bands. It determines the number of valid 
classes and assigns classified pixels to 
these classes according to the threshold 
value (safety margins). 

The fine segmentation uses fuzzy c- 
means to assign the remaining unclass- 
ified pixels to the closest class. After 
histogram analysis, valid classes are de- 
termined according to the safety margin 
(usually 5% - 20%) specified by the user. 
Classified pixels will be assigned to a 
valid class, and the other pixels will be 
tagged as unclassified. The larger the 
safety margin, the more accurate the result 
of the segmentation will be, and the more 
computational effort will be needed when 
using the fuzzy c-means fine segmenta- 
tion stage. In the fme segmentation stage, 
the fuzzy membership [4] of the unclass- 
ified pixels are calculated and assigned to 
the class with maximum membership 
value. 

Spherical Coordinates 
TvansforrdCenter Split 
This algorithm, SCTkenter 2-D split [IO], 
was initially developed for the identifica- 
tion of variegated coloring [lo]. This al- 
gorithm consists of transforming the 
original RGB data into the spherical trans- 
form domain, which maps the image into 
a color space represented by two angles, 
A and B below, and a one-dimensional 
intensity (brightness) space L (Fig. 3). The 
equations to convert from RGB (rectangu- 
lar) coordinates to spherical coordinates 
are as follows: 
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into 4 colors to be able to distinguish the 
tumof border (Fig. 9). 

Principal Components 
TransfordMedian Cut 
This algorithm is also based on the princi- 
pal components transform (PCT). In this 
transform, the eigenvectors of the covari- 
ance matrix are used as a linear transform 
matrix on the original [RGB] vectors, so 
that the resulting vectors have compo- 
nents that are uncorrelated. Geometri- 
cally, this means that the primary axis has 
been aligned where the variance in the 
data IS maximal. The new vectors, here 
called [XI  Xz &IT, are obtained by the 
following equation: 

where [Eli  E12E131, [E21 E22 E231 and [E31 
E32 E331 are the eigenvectors of the three- 
dimensional (RGB) color covariance ma- 
trix of the image [5] .  

The median cut [6] component of the 
segmentation method is based on an algo- 
rithm that was developed for color com- 
press ion;  spec i f ica l ly ,  to map 
24-bit-per-pixel color images into images 
requiring an average of 2 bits per pixel. 
The motivation behind this algorithm is to 
be able to display high-quality reproduc- 

8. Fuzzy c-Means segmented image. 
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9. SCTKenter Split segmented image. 

tions of color images with small frame 
buffers. In this experiment, supported by 
previous research results [8], it was deter- 
mined that segmentation into three colors 
was generally enough to allow for auto- 
matic determination of the tumor border 
(see Fig. lo). 

The color quantization task includes 
four phases: 

1. Sampling the original image for 
color statistics 

2. Choosing a colormap based on the 
color statistics 

3. Mapping original colors to their 
nearest neighbors in the colormap 

4. Quantizing and redrawing the origi- 
nal image 

Split and Merge Segmentation 
Split and merge segmentation techniques 
are based upon a quad tree data repre- 
sentation, whereby a square image seg- 
ment is broken (split) into four quadrants 
if the original image segment is nonuni- 
form in attribute, as determined by a pre- 
defined homogeneity criteria based 
predicate test. If four neighboring squares 
are found to be uniform, then they are 
replaced (merge) by a single square com- 
posed of the four regions. The predicate 
test used to determine region uniformity 

was defined as follows-a region is con- 
sidered to be uniform if the local variance 
of the region is less than or equal to the 
global variance of the image. Thus, a re- 
gion is considered to be nonuniform and 
subject to splitting if the local variance is 
greater than the global. Individual pixels 
not satisfying the criteria are assigned a 
zero value. 

In principle, the split and merge proc- 
ess could start at the full image level, and 
initiate split operations. This approach 
tends to be computationally intensive 
when the predicate test (homogeneity cri- 
terion) involved cannot be easily satisfied 
with a gross information-first approach. 
Conversely, beginning at the individual 
pixel and making initial merges has the 
drawback that region homogeneity meas- 
ures are limited at the single pixel level. 
Initializing the split and merge process at 
an intermediate level enables the use of 
more powerful homogeneity tests, with- 
out excessive computation. 

The algorithm calls for the basic tra- 
versal procedure of a 2" x 2" image starting 
at level q, which contains 22q squares of 
size 2"-y x 2"-q each. (Thus, the entire 
image corresponds to level 0, and the sin- 
gle pixel level is n.) The algorithm does 
not create the whole tree, but only the 
needed parts. It maintains a list, L, whose 
entries correspond to nodes of the quad 
tree, initially arranged in such a way that 
four successive nodes have a common 
parent in the tree. 

Before performing the split and merge 
segmentation, the color information is 
first mapped onto a single image plane 
using the PCT. Once mapped, the average 
brightness level is determined for the 
plane and used in the predicate test of the 
split and merge procedure. The predicate 
test utilized here determines the standard 
deviation of each region to determine uni- 
formity, and compares uniform regions 
with the average brightness level to deter- 
mine to which class the region belongs, 
the background or the object. The algo- 
rithm continues to split regions until all 
regions satisfy the homogeneity criterion 
(Fig. 11). 

Multiresolution Segmentation 
The multiresolution segmentation [7] 
method is similar to the split and merge 
segmentation, except that there is no 
merging, and splitting begins at the top 
level. The same predicate test used for the 
split and merge algorithm is used here as 

Data Reduction 
Once the image has been segmented, it 

contains many objects of varying sizes 
represented by a small range of colors. 
Many of the objects are not of interest and 
can be eliminated from the image. The 
objects are also often connected together 
by narrow isthmuses and contain jagged 
protrusions. The next step is to label and 
be able to distinguish among all of the 
objects present in the image. This is a 
computationally intensive process, and it 
is advantageous to reduce the number of 
objects being labelled as well as to sepa- 
rate them from each other. At this point, 
the morphological attributes of objects 
within the image are of the importance, 
and for simplicity the segmented color 
images can be represented in terms of 
grayscale, where each color is mapped to 
a different grayscale pixel value. 

A grayscale morphological opening 
procedure [8] was performed first to 
smooth the contours of the object, break 
narrow isthmuses, and eliminate thin pro- 
trusions and small objects. The opening of 
set A by a structuring element [9] B, as 
defined below, says that the opening of A 
by B is the erosion of A by B, followed by 
a dilation of the result by B, where the 
dilation of an image simply expands it and 
erosion shrinks it. 

AOB=(A@B)OB 

Following the opening procedure, 
grayscale morphological closing was per- 
formed to fill gaps in the contour and 
eliminate small holes. The closing of set 
A by structuring element B, defined be- 
low, says that the closing of A by B is the 
dilation of A by B, followed by the erosion 
of the result by B. 

A B = (A 0 B)@B 

The result of applying this morpho- 
logical opening-closing procedure to Fig. 
13 is shown in Fig. 14. 

Object Localization 
Once the object data has been reduced 

and smoothed, it is necessary to label all 
of the objects present in the image and 
determine which object is most likely to 
be the tumor object. A sequential labeling 
algorithm is used to label the objects. If no 
objects are found, the image is represented 
empirically as an empty, set and all pixel 
values are set to 1, which represents an 
image containing background only and no 
tumor. Once the objects are labeled then 

10. PCT/Median Cut segmented image. the zero, first, and second order moments 
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11. Split and Merge segmented image. 

12. Multiresolution segmented image. 

[ 11 of each object are calculated. Next, the 
moments are used to determine the area, 
centroid and eigenvalue ratio of each ob- 
ject, which are used to trim the list of 
objects and leave only those that are pos- 
sible tumor candidates. This selection s 
based on the assumption that the tumor 
should exhibit some degree of circularity 
[ 11 and also be of significant size relative 
to the image. The ratio: 

h R =N 
A AIM 

(XN = eigenvalue for minor axis, XM = 
eigenvalue for major axis) of the minor- 
to-major axes for the moments of inertia 
comprise the eigenvalue ratio of an object, 
which is a useful shape feature as a meas- 
ure of circularity. It was empirically deter- 
mined that objects smaller than 0.5% and 
larger than 90% of the image size could be 
discarded, and objects with an eigenvalue 
ratio of less than 0.1 could also be elimi- 
nated from consideration. From this list of 
objects, a border candidate is selected 
which has its centroid closest to that of a 
manually determined point that is ap- 
proximately the centroid of the original 
tumor. ln the final application this step 

1 OS 

13. SCTKenter Split segmented image 
with noise. 

14. Segmented image after morphologi- 
cal data reduction. 

will not be necessary, as the tumor will be 
in the center of the image. 

The process of object localization con- 
sists of four phases: 

1. object labeling 
2. calculating object properties (area 

3. trimming the object fist 
4. choosing the best tumor object can- 

and circularity) 

didate 

Contour Encoding 
Once the tumor object candidate has 

been selected, it is necessary to encode the 
object contour. This is accomplished by 
using Freeman chain coding [ 11 to fdlOW 
and vectorize the contour. Once the border 
contour has been vectorized (Fig. 15), the 
contour is smoothed by subsampling the 
vector data and using a B-spline to con- 
nect the points (Fig. 16). A seed fill algo- 
rithm is then used to fill in the border 
contour (Figs. 17 and 18). 

Experimental Results 
The following error metric was used to 

determine the success of the border seg- 
mentation relative to the true border. The 
true border for each tumor was determined 
manually by a dermatologist. 

IEEE ENGINEERING IN MEDICINE AND BIOLOGY 

Let A, be the data set representing ~e 

Let Bij be the data set representing the 

A, and B, are both binary images, 0 = 

Border Error Metric = 

actual (manual) border. 

segmented border. 

tumor, 1 = background: 
are4i iJ  @ B,) 

area(4,) ’ 
where 63 is the exclusive-or operation 

Using this metric, a value of 0 will 
result if both the manual and segmented 
border are exactly the same, and a value 
of 1 will results if the segmented border is 
the empty set, as would occur with an 
algorithm that found no information. 
Thus, the useful range of values will be in 
the range (0.0 to 1.0). The Table presents 
the average error and standard deviation 
of the border finding process with respect 
to each color segmentation algorithm. 

Figure 19 illustrates a comparison of 
the result of the border finding algorithm 
for each of the six color segmentation 
methods. Each image in Fig. 19 depicts 
the original skin tumor image number 
365, with an overlay of the detected border 
for the respective segmentation method 
implemented. The PCT/median cut seg- 
mentation method shown in Fig. 19d re- 
sulted in the most accurate border for this 
tumor, with an error metric of 0.105. The 
constraint of an upper limit of 1 .O has been 
incorporated into tabulating the data. The 
results show that the best color segmenta- 
tion algorithm used in conjunction with 
the border finding process is the PCT/me- 
dian cut. In addition to the employment of 
each individual segmentation algorithm 
as part of the border finding process, a 
method for combining the segmentation 
algorithms was explored. This combined 
method involves simply merging infor- 
mation from each of the six segmentation 
methods at the object localization stage of 
the border finding algorithm. The border 
objects resulting from each of the segmen- 
tations are compared. and the object that 
most accurately conforms to the criteria 
for an ideal border candidate IS chosen. 
Although this combined segmentation is 
more computationally expensive, it is triv- 
ial to implement once the indiSidua1 seg- 
mentat ion algori thms have  been 
developed. It inherently increases the like- 
lihood of correctly iden&fymg the tumor 
border. 

The error distributions are illustrated in 
Fig, 20. 

Conclusion 
This article compared six different 
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15. Freeman chain encoded border con- 
tour. 

16. Splined border contour. 

e 
17. Filled contour. 

18. Original image with splined border. 
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color segmentation methods and their ef- 
fectiveness as part of an overall border 
finding algorithm. The PCT/ median cut 
and adaptive thresholding algorithms pro- 
vided the lowest average error and show 
the most promise for further individual 
algorithm development. Combining the 
different methods resulted in further im- 
provement in the number of correctly 
identified tumor borders, and by incorpo- 

rating additional heuristics in merging the 
segmented object information, one could 
potentially further increase the success rate. 

The algorithm is broad-based and sug- 
gests several areas for further research. One 
possible area of exploration is to incorpo- 
rate an intelligent decision making process 
as to the number of colors that should be 
used for segmentation [SI in the PCT/ me- 
dian cut and adaptive thresholding algo- 

(4 (f) 

19. Comparison of resulting border contours using six different segmentation meth- 
ods, error measure in parentheses: (a) adaptive thresholding (0.113), (b) SCTKen- 
ter Split (0.292), (c) Fuzzy c-Means 0.109), (d) PCTMedian Cut (0.105), (e) 
Multiresolution segmentation (0.238), (f) Split and Merge (0.238). 
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rithins. For comparison purposes, the 
number of colors was kept constant at 
three in our application. Other areas that 
can be explored are noise removal and 
object classification to determine the cor- 
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