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Abstract—The bandwidth utilization of a single channel-based 
wireless networks decreases due to congestion and interference 
from other sources and therefore transmission on multiple 
channels are needed.  In this paper, we propose a distributed 
dynamic channel allocation scheme for wireless networks using 
adaptive learning automata whose nodes are equipped with single 
radio interfaces so that a more suitable channel can be selected. 
The proposed scheme, Adaptive Pursuit Reward-Inaction, runs 
periodically on the nodes, and adaptively finds the suitable 
channel allocation in order to attain a desired performance. A 
novel performance index, which takes into account the 
throughput and the energy consumption, is considered. The 
proposed scheme is adaptive in the sense that probabilities in the 
each step are updated as a function of the error in the 
performance index. The extensive simulation results in static and 
mobile environments provide that using the proposed scheme for 
channel allocation in the multiple channel wireless networks 
significantly improves the throughput, drop rate, energy 
consumption per packet and fairness index. 

Index Terms— adaptive reward-inaction, channel allocation, 
learning automata, wireless ad hoc sensor networks.    

I. INTRODUCTION 

T is widely believed that the wireless networks are being 
limited by the lack of the available spectrum, and at the 

same time the spectrum is not efficiently utilized. Spectrum 
utilization can be improved using spatial techniques, 
frequency, modulation techniques, etc. As a consequence, 
newer concepts such as software-defined radios and cognitive 
radios were made possible [1]. While the cognitive radios are 
not limited to spatial and temporal spectrum utilization, the 
spatial channel reuse approach in wireless networks has been 
vastly investigated [2] - [6].  

The bulk of the research on multiple channel allocation is 
notably done for mesh networks [3], WLANs with 
infrastructure [4], cellular networks [6] and cognitive radio 
networks [5]. The multi-channel allocation problem has been 
investigated for the networks in which the nodes are equipped 
with either multiple-radio interface [7]or single-radio interface 
[2][4][8]. In the single-radio approach, the radios switch 
between the channels frequently in order to minimize 

interference and collision between the simultaneous 
transmissions in the same communication range. Usually in 
this approach, all the nodes periodically switch to a common 
channel for channel co-ordination, and then switch to different 
data channels to conduct the simultaneous transmissions. 
Therefore the switching delay (80-100 µs [2]) becomes one of 
the overheads increasing the network end-to-end delay. 
Additionally, synchronization is required in these schemes.  

In the case of multiple-radio interface approach, usually one 
interface is dedicated to the control signals, and the remaining 
channels are allocated for simultaneous transmission of data 
thus increasing temporal and spatial spectrum utilization and 
not requiring synchronization. Further, utilizing multiple 
radios reduces the need for frequent channel switching, and 
hence the switching overhead is significantly less than that in 
the single-radio approach.  However, the cost of additional 
radios and their energy consumption must be taken into 
account. 

By contrast, in this paper, we propose a distributed dynamic 
channel allocation scheme for wireless networks and in 
particular wireless sensor networks whose nodes are equipped 
with single radio interface due to their low cost requirement. 
Therefore, synchronization is required in this scheme. The 
periodic nature of this algorithm makes it dynamic and enables 
the channel allocation to adapt to the topographic changes, 
possible loss of some channels, mobility of the nodes, and the 
traffic flow changes. The adaptive pursuit reward-inaction 
learning algorithm runs periodically on the nodes, and 
adaptively finds the optimum channel allocation that provides 
the desired performance (or closest to the desired 
performance). Unlike the linear and nonlinear schemes in 
which the reward and penalty values were functions of the 
probabilities, we examine an adaptive updating scheme in 
which the reward and penalty values are functions of the error 
between the desired and the estimated performance of the 
current channel allocation. By selecting realistic desired 
performance metric, the convergence of the algorithm is 
guaranteed. 
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II. METHODOLOGY AND ALGORITHM 

A. Methodology 
In the proposed algorithm, the nodes periodically switch 

between the control stage, Tc, and data transmission stage, Td 
(See Figure 1). Each data transmission period, Td, is 
comprised of the individual time slots, Ts. As an initial 
assumption, we consider peer-to-peer networks in which all 
nodes are equipped with a single radio. We also assume that 
routes have been established by a proactive routing protocol 
such as optimal link state routing (OLSR) [12]or optimal 
energy delay routing (OEDR) [13]. During Tc, all nodes are on 
one common channel to communicate the control signals. It is 
possible that one or more of the channels get highly affected 
by external interference and the network would lose these 
channels temporarily or permanently.  

In order to maintain the network connectivity in the sense of 
exchanging the control signals, we propose having a unique 
sequence of all the channels. In the event of a loss of a control 
channel, the nodes would try the next channel in the sequence 
as the control channel during Tc. The control signal carries 
schedule of the time slots for the links in the subsequent data 
transmission period. During the time scheduling, groups of 
non-intersecting links are scheduled for each Ts time slot. Also 
broadcast communications and route discovery are performed 
during Tc period. After the Tc stage, the data transmission 
stage, Td, begins. During each Ts time slot of Td, channels are 
allocated to the links previously assigned to the Ts. The 
channel allocation algorithm is an iterative algorithm during 
which the channel allocation is refined. Due to the iterative 
nature of the algorithm, each Ts is divided into smaller time 
slots, Tmini, separated by Tg – guard bands. The probabilities 
and parameters of the channel allocation algorithm are updated 
for each link from one Tmini to the next. 

 
Figure 1. Control and data time slots within the data transmission period. 

By periodically repeating the Tc and Td stages, the channel 
allocation becomes dynamic. In addition, the network can 
adapt to the topographic changes, mobility of the nodes, and 
the changes in the traffic flow. Also in the event of control 
channel, Cc, loss the next channel in the sequence will be used 
as the control channel. It must be noted that this sequence is a 

common knowledge among all the nodes in the network. Any 
eligible external node that tries to join the network would send 
out join-request signals periodically and listen in the intervals. 
It would be able to join the network during one of the Tc 
periods, and obtain the sequence and other necessary 
information about the network.  

We also propose using the control channel as one of the 
available channels for data transmission during the Td period. 
By utilizing this additional channel during Td instead of 
dedicating it to the control signals and using it only during Tc, 
the spectrum utilization can be increased. 

B. Algorithm 
During each Ts, the learning algorithm is run on each 

transmitter node, i, separately. We first use the Adaptive 
Pursuit Reward-Inaction (PRI) which is an extended version of 
Distributed PRI [9], [10]. Unlike the DPRI, in the Adaptive 
PRI scheme the update value, )(kθ , of the probabilities is not 
a constant anymore. The update value of the probability is 
now a function of the error, )(kΔ , of the performance metric. 
We chose DPRI algorithm because of the faster convergence 
provided by it [9]. The Adaptive PRI algorithm is presented in 
Section B.1. However, it appears that depending on the 
conditions that determine whether the environment response is 
satisfactory or unsatisfactory, the channel allocation on some 
links might always result unsatisfactory response. This would 
result in ‘left-out’ links, whose channel selection probabilities 
are not updated due to the ‘reward’ property of the algorithm.  

In order to eliminate this issue, we propose the Adaptive 
Pursuit Reward-Penalty (PRP) learning scheme. The ‘reward’ 
behavior of this scheme is the same as the Adaptive PRI. On 
the other hand, in the case of unsatisfactory environment 
response for a channel selection, the probability of selecting 
that channel (if that channel is not the channel with the highest 
performance among the channels) is decreased, and the 
probabilities of selecting the other channels are increased. 
Although this scheme eliminates the ‘left-out’ links problem, 
it has a rather slower convergence because of increasing the 
probabilities of some of the non-optimal channels in the 
‘penalty’ scheme. 

The performance metric of the network used in this paper 
was defined as 

desiredE
H
⎟
⎠
⎞

⎜
⎝
⎛=φ* where H is the desired percentage 

of the successful transmissions and E refers to the desired 
consumed energy per one successful packet transmission. By 
this definition, the unit of the performance metric *φ becomes 
packets/joule. Therefore, by selecting a realistic desired 
performance metric, the objective is to find the optimum 
channel allocation that provides a higher performance in terms 
of throughput defined in terms of a target value. A large value 
of *φ indicates successful transmission of more packets. 
Hence, this performance metric covers both the throughput 
and the energy efficiency of the network. 

The nonlinear pursuit reward-inaction scheme is given by: 

Tc TcTd Td 

Tu Tu 

Ts 

Td 

Ts Ts Ts Ts 

Ts 

Tmini Tmini Tmini Tmini 

Tg Tg Tg Tg 

… 

no two intersecting 
links scheduled on 

the same Ts  

learning automata 
run for each link 

through the 
allocated Ts, 
parameters 

updated each 
Tmini  
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1) Initially, the probability of selecting any of the channels, j, 
on any node, i, )0(j

ip , is set to 1/N, where N is the number of 
available channels. 
2) Select a channel according to the probability distribution, 

)(kp j
i . Transmit packets during the transmission interval. 

3) Based on the measured feedback, update )(nJ j
i , )(kLj

i  and 

)(ke j
i . )(nJ j

i  is the percentage of successful transmissions on 

node i while using channel j, and )(kLj
i  is the number of 

times that channel j was selected for node i  from time 0 till k. 
4) If MkLj

i ≥)( , update )(ˆ kH j
i , )(ˆ kE j

i and )(ˆ kj
iφ  and 

continue on step 5. Otherwise, go to step 7. 
)(ˆ kH j

i is the average estimated throughput over a window of 

M, )(ˆ kE j
i is the average estimated consumed energy over a 

window of M, and )(ˆ kj
iφ  is the estimated performance of 

channel j for node i at time k.  
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where  β ( )j
i k  is environment response for selecting channel j 

by node i at time k. 
if β ( ) 0,  the automaton will be rewarded     
if β ( ) 1,  the automaton will not be rewarded

j
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6) Detect the channel index, im̂ , that provides the best  

estimated performance, )(ˆ kj
iφ . Update the probabilities if the 

environmental response was satisfactory. 
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such that 1)(0 <θ≤ k ) and )(ˆ)( * kk j
iφ−φ=Δ ,           

7) Continue to the next iteration, step 2. 
Next, the proof of convergence of the algorithm is 

presented. The theorems and proofs follow the general method 
used in [9]. Theorem I establishes that for each node that is 
running the algorithm, if after a certain time, the channel 
allocation results in a better performance for one channel 
compared to the other channels,  the probability of selecting 
that channel approaches one. Theorem II establishes that for 
each node and each channel, there exists a time that the 
channel has been selected by the node for at least M times. 
This guarantees having the average values of the throughput, 

delay and consumed energy, which are required for the 
calculation of the performance. 
Theorem I: Suppose there exists an index im  and a time 

instant ∞<0k  such that )(ˆ)(ˆ kk j
i

m
i

i φ>φ  for all j such that 

imj ≠ and all 0kk ≥ . Then there exists 0γ  and 0λ  such that 

for all resolution parameters ( 00 , λ<λγ<γ ), 1)( →kp im
i    

with probability 1 as ∞→k . 
Proof: See Appendix A. 
Theorem II: For each node i and channel j, assume 

0)0( ≠j
ip . Then for any given constant 00 >δ  and ∞<M , 

there exists ∞<γ0 , ∞<λ0  and ∞<0k  such that under the 
discrete pursuit reward-inaction algorithm, for all learning 
parameters 0γ<γ  and 0λ<λ  and all time 0kk > : 

Pr{each channel chosen by node i more than M times at 
time k}  01 δ−≥ . 

Proof: See Appendix A. 

IV. SIMULATION RESULTS AND DISCUSSIONS 
In this section, we present the numerical results of running 

the adaptive PRI learning algorithm on a set of peer-to-peer 
wireless networks with varying traffic, mobility, and number 
of nodes using network simulator NS-2. The networks are 
consisted of 50 single-radio wireless nodes located in an area 
of 100m×100m, while the communication range of the nodes 
are at 250m. As a result, a dense network topology is created 
where a single channel is not able to provide sufficient quality 
of service (QoS). Traffic is generated by a constant bit rate 
(CBR) sources with data rates equal to 2 Mbps and packet size 
equal to 1024 bytes. The simulations considered networks 
with up to 11 orthogonal channels whose bandwidth is set to 
11 Mbps. The objective of the multi-channel protocol is to 
allocate the available channels to the links such that the 
performance converges to a desired value as defined in (0). 
The target value *φ  and the updated parameters were set for 
different scenarios such that the desired performance is 
achievable. The nodes start without preferred channel and 
switch between channels until they find the one that provides 
the desired performance. The width of the moving average 
window, M, was selected to be 5. 

A. Static Scenario 
This simulation scenario considers single time slot duration, 

Ts, where all nodes are contending for the channels. The 
network topology is static for the whole simulation duration in 
order to observe the convergence time of the presented 
schemes.  

Figure 2 illustrates an example of channel switching and 
allocation using the Adaptive PRI for a randomly selected 
simulation with 50 nodes and 10 channels. Initially, the flows 
randomly switch between all available channels since each 
link starts with equal probability of selecting the channels. 
When the nodes collect statistical results from the initial 
iterations, they evaluate the performance for each channel and 
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start updating the channel selection probabilities. Over time 
the nodes learn if the initial channel selection is successful. If 
the desired performance is not achieved, they will switch to 
other channels and evaluate alternative channel allocations. 
Once the desired performance is met the nodes reinforce the 
channel selection by adjusting corresponding probabilities. 
Afterwards, the channel switching stops since nodes find the 
adequate channels thus resulting in collision and packet drop. 
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Figure 2. The converged channel allocation for the 21 links in a network of 
50 peer-to-peer nodes (25 links), using the Pursuit Reward-Inaction learning 
automata. 

The throughput (not shown) is low when the nodes 
frequently switch during convergence phase since often two or 
more nodes will select the same channel thus resulting in 
collision and packet drop. Once the appropriate channel 
allocation is found, the channel switching stops and the 
throughout increases to the maximum level.  

B. Static  Scenario – starting flows at different times 
The learning algorithm was run on the networks of 50 nodes 

with up to 11 orthogonal channels. Three flows start at second 
2, then seven more flows start at second 3 and finally fifteen 
more flows start at second four. The standard 802.11 protocol 
was also run on the networks to compare its performance to 
the performance of the learning algorithms. This was done by 
a) using a single channel, and b) using 10 channels and 
randomly allocating them to the links. For each case, the 
simulation was repeated using 10 random scenarios, and the 
average of the 10 repeated simulations were used in result 
analysis. The achieved throughput by applying the different 
methods is presented in Table I. 

It is noticed that as the number of channels used in the 
Adaptive PRI learning schemes is increased, the throughput is 
significantly increased compared to the single-channel 802.11 
scenario. The increased throughput is provided by the 
additional capacity of the additional channels. For the case of 
25 flows, the Adaptive PRI with 10 data channels provides an 
improvement of 13 times in throughput compared to a single-
channel 802.11. When there are 25 flows in the network and 
only one channel is provided, the network is so congested that 
it provides a throughput of only 3 for the 25 flows.  

However, when the Adaptive PRI is used on 10 channels, it 
provides a higher capacity though not the capacity required to 

eliminate the congestion. The capacity provided by the 10 
channels is almost 10×capacity of each channel. The capacity 
of each channel for data packets in 802.11 is almost half of the 
channel bandwidth. We had chosen a standard channel 
bandwidth of 11Mbps in the simulations. Therefore the total 
throughput of 39.58 Mbps is reasonable compared to the total 
capacity of almost 50 Mbps, since there is a noticeable 
congestion in the network. Also for the same case of 25 flows, 
PRI with 10 data channels provides an improvement of 1.22 
times in throughput over random allocation of 10 channels. 
Using the Adaptive PRI algorithm for the networks of 6 nodes 
and 20 nodes, the maximum possible throughput (6 Mbps and 
20 Mbps, respectively) can be achieved by utilizing 3 and 10 
channels respectively, which will allocate a different channel 
to each link. However, for the network of 50 nodes saturation 
and high drop rate are inevitable, although the throughput is 
improved significantly by increasing the number of channels. 
As the number of nodes in the network increase, the number of 
contending nodes during the time slot, Ts, and mini slot, Tmini, 
increases. This can result in a case that some nodes do not get 
any chance to transmit during Tmini. Hence with a performance 
much smaller than the desired performance (i.e., unsatisfactory 
environment response), due to the “reward” characteristic of 
the learning algorithm, probabilities of channel selection 
would not be updated for them.  

Table I also presents the drop rate and energy consumption 
in the network using the different methods of channel 
allocations, and different number of channels. The results 
show that for the networks of 3 and 10 flows, the drop rate is 
significantly reduced by utilizing the Adaptive PRI learning 
scheme and more number of channels. The drop rate for the 
network of 25 flows is also reduced, but not as much as it was 
for the networks with smaller densities. This is due to the fact 
that the network is so dense and the number of contending 
nodes is so high that the saturation is inevitable. It can be 
noticed by using the Adaptive PRI channel allocation and 10 
data channels, in the worst case scenario (greatest number of 
flows), the drop rate is reduced by 78.38% compared to when 
using a single-channel 802.11. For the same case of 25 flows, 
PRI with 10 data channels provides a 44.78% reduction on 
drop rate over random allocation of 10 channels. 

The results also show that using the PRI learning scheme 
and increasing the number of data channels significantly 
improves the energy consumption per packet. It can be noticed 
that by using PRI channel allocation and 10 data channels, in 
the worst case scenario (greatest number of flows), the energy 
consumption is reduced by 90.25% compared to when using a 
single-channel 802.11. Also using PRI with data channels 
reduces the energy consumption by 12.33%. For the same case 
of 25 flows, PRI with 10 data channels provides a 12.33% 
reduction in energy consumption per packet over random 
allocation of 10 channels. 

Another performance metric that was used for evaluating 
the channel allocation schemes was fairness index [11].Table I 
also presents the fairness index provided by using the different 
methods of channel allocations, and different number of 
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channels. The results show that using the Adaptive PRI 
learning scheme and increasing the number of data channels 
improves the fairness index – especially when there are greater 
number of flows. It can be noticed that by using the Adaptive 
PRI channel allocation and 10 data channels, in the worst case 
scenario (greatest number of flows), the fairness index is 

increased by 3.7 times compared to when using a single-
channel 802.11. Also using the Adaptive PRI with 10 data 
channels increases the fairness index by 1.28%. For the same 
case of 25 flows, the Adaptive PRI with 10 data channels 
provides a 1.28% improvement in fairness over random 
allocation of 10 channels.  

TABLE I. PERFORMANCE OF CHANNEL ALLOCATION SCHEMES. 

 Throughput (Mbps) Drop rate(Mbps) Energy consumption (joules/packet) Fairness index 

3 flows 10 flows 25 flows 3 flows 10 flows 25 flows 3 flows 10 flows 25 flows 3 flows 10 flows 25 flows 
802.11 – single 
data channel 4.20 3.89 3.00 0.77 15.98 47.00 0.00215 0.00807 0.01969 0.8028 0.4443 0.2157 

PRI – 
3 data channels 6.12 12.44 12.19 0 5.82 38.80 0.00125 0.00235 0.00521 0.9716 0.8337 0.5129 

PRI – 
10 data channels 6.15 20.57 39.58 0 0 10.16 0.00109 0.00130 0.00192 0.9824 0.9531 0.8022 

802.11 – 
10 data channels, 
random channel 

allocation 

6.20 18.80 32.53 0 0.65 18.40 0.00105 0.00142 0.00219 0.9811 0.9475 0.7921 

 

C. Mobile Scenario 
TABLE II. PERFORMANCE OF PRI WITH NODE MOBILITY 

 
PRI, 10 data channels 

Static (0 
m/s) 5 m/s 10 m/s 15 m/s 20 m/s 

Throughput 
(Mbps) 

 
84.31 

 
83.68 

 
82.96 81.84 

 
79.44 

Drop rate 
(Mbps) 

 
13.35 

 
14.10 14.62 15.71 17.78 

Energy 
consumption 

(joules/packet) 

 
0.00173 

 
0.00174 

 
0.00174 

 
 
 

0.00176 
 
 
 

0.00181 
 
 
 

Fairness index 0.7066 0.6975 0.6900 
 

0.6868 
 

0.6636 
 

In Section IV.B (static scenario) we mentioned the 
assumption of a static network topology during Ts. In this 
section we examine a case that the network topology 
undergoes changes during the Ts period. We consider a larger 
network (1000mx1000m) and greater number of flows (50 
flows, i.e. 100 peer-to-peer nodes). Then the behavior of the 
single-channel 802.11, randomly allocated 10 channels using 
802.11, and the Adaptive PRI learning scheme in the case of 
mobility of the nodes were examined. For four different values 
of maximum speed (5, 10, 15, and 20 m/s) and also static case 
(0 m/s), 10 random scenarios were generated and the average 
of these repeated simulations were used for comparison. Table 
II presents the results for using the Adaptive PRI and 10 
channels. The speed change does not show a significant effect 
on the performance. However, in general, these larger network 
scenarios with a higher traffic flow show a lower performance 
compared to the static case (Section IV.B). 

 
TABLE III.  PERFORMANCE OF DIFFERENT SCHEMES WITH NODE MOBILITY 

 

10 m/s 

802.11  - single 
channel 

802.11 – 10 data 
channels, randomly 

allocated 

PRI – 10 data 
channels 

Throughput (Mbps)  
15.51 

 
69.97 

 
83.68 

Drop rate (Mbps)  
80.43 26.92 

 
14.10 

Energy consumption 
(joules/packet) 

 
0.008398 

 
0.001940 

 

 
0.001735 

Fairness index  
0.2169 0.6263 

 
0.6975 

By using the Adaptive PRI learning scheme, the throughput, 
drop rate and energy consumption show a significant 
improvement compared to the case that 802.11 is used with 
randomly allocated 10 data channels (Table III). Also 
compared to the single-channel 802.11, both Adaptive PRI and 
802.11 over randomly allocated 10-data channel are 
performing significantly better.  

The throughput is improved by 19.6%, the drop rate is 
reduced by 47.6%, the energy consumption per packet is 
reduced by 10.6% and the fairness index is improved by 
11.4%. Also compared to the single-channel 802.11, both 
Adaptive PRI and 802.11 over randomly allocated 10-data 
channel are performing significantly better.  

V. CONCLUSIONS 
In this paper we propose a distributed dynamic channel 

allocation algorithm for wireless networks whose nodes are 
equipped with single radio interface. The periodic nature of 
the algorithm makes it dynamic and enables the channel 
allocation to adapt to the topographic changes, possible loss of 
some channels, mobility of the nodes, and the traffic flow 
changes. The Adaptive Pursuit learning algorithm runs 
periodically on the nodes, and adaptively finds the optimum 
channel allocation that provides the desired performance while 
the convergence of the algorithm is guaranteed. The 
simulation results for static and mobile networks of different 
densities and data channels demonstrate that a significant 
improvement is achieved in throughput, drop rate, energy 
consumption per packet, fairness index when compared to the 
single-channel. 802.11 and random allocation of the channels.  

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2009 proceedings.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on April 05,2010 at 14:24:17 EDT from IEEE Xplore.  Restrictions apply. 



VI. ACKNOWLEDGMENTS 
The authors would like to thank the AFRL Contract and 

Intelligent Systems Center that supported this research in part. 

Appendix A 
Proof of Theorem I: From the definition for discrete 

pursuit reward-inaction, we know that if im satisfies 
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Therefore we can express the expected value of )1( +kp im
i  

conditioned on the current state of the channel, )(kQ , 
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Since all the previous terms have an upper bound of unity, 
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implying that )(kp im
i  is submartingale. By submartingale 
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Proof of Theorem II:  Omitted.              
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