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Estimation of Rician Fading Channels

Jingxian Wu
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Email: jingxian.wu@sonoma.edu

Chengshan Xiao
Department of Electrical & Computer Engineering

University of Missouri, Columbia
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Abstract—Optimal receiver diversity combining employing
linear channel estimation is examined. Based on the statistical
properties of pilot-assisted least-squares (LS) and minimum
mean square error (MMSE) channel estimation, an optimal
diversity receiver for wireless systems employing practical linear
channel estimation on Rician fading channels is proposed. Exact
analytical expressions for the symbol error rates of LS and
MMSE channel estimation aided optimal diversity combining are
derived. It is shown that an MPSK wireless system with MMSE
channel estimation has the same SER when the MMSE channel
estimation is replaced by LS estimation. This is an interesting
counter-example to the common perception that channel esti-
mation with smaller mean square error leads to smaller SER.
Extensive simulation results validate the theoretical results.

I. INTRODUCTION

Diversity reception is a classical method used in wireless
communication systems for combating the deleterious effects
of multipath fading. Most previous performance analyses of
coherent diversity systems assume that the receiver has perfect
knowledge of the fading channels. However, this assumption
is too idealistic for practical wireless systems. In order to
maximize the efficacy of practical diversity system design,
it is highly desirable to have analytical models for systems
operating with practical channel estimation. Recently, consid-
erable attention has been paid to the study of non-ideal systems
[1]-[9]. In [1], the effect of Gaussian error in maximal ratio
combining (MRC) was studied, but digital modulations and
error probability were not considered. The bit error rate of
conventional MRC receiver in system with channel estimation
error is discussed in [2].

Modified MRC receivers with improved performances were
developed in [6], [7] by taking into consideration the statistics
of channel estimation errors. The receivers in [6], [7] out-
perform the conventional MRC receiver owing to the use of
additional information from channel estimation. The analysis
in all the aforementioned works is based on an assumption
of noisy channel estimation, where the channel estimation
is conveniently modeled as a sum of true channel gain and
independent, Gaussian distributed estimation noises.

In this paper, error probability performance is analyzed for
optimal coherent diversity receivers operating in independent
and identically distributed (i.i.d.) Rician fading channels, with
practical pilot assisted linear channel estimation schemes.

The properties of least-squares (LS) and minimum mean
square error (MMSE) channel estimation are investigated, and
analytical expressions are provided to describe the statistical
relationship between channel estimation error and pilot symbol
power. It is shown that, under certain system configurations,
the conventional MRC receivers is no longer optimum at the
presence of channel estimation error. A new optimal decision
rule for coherent diversity receivers is proposed by taking
into account the effect of channel estimation errors. Exact
error probability expressions for the proposed optimal coherent
diversity receivers employing both LS channel estimation
and MMSE channel estimation in M-ary phase shift keying
(MPSK) systems are derived. Due to the presence of channel
estimation error, the classical moment generating function
(MGF) and characteristic function (CHF) methods cannot be
directly applied in the error performance analysis. Instead, a
complex Gaussian distribution-based functional equivalency is
employed for the evaluation of error probabilities.

Interestingly, both analytical and simulation results show
that the wireless MPSK system with LS channel estimation
has the same error probability as the system with MMSE
channel estimation replacing LS channel estimation, even
though MMSE channel estimation outperforms LS channel
estimation in terms of mean square error.

The rest of this paper is organized as follows. The statistics
of pilot assisted linear channel estimation are investigated in
Section II. Section III derives an optimal decision rule for
diversity receivers operating with linear estimation of i.i.d.
fading channels. The error probabilities of the receivers in
Rician fading channels are derived in Section IV. Numerical
examples are given in Section V, and Section VI concludes
the paper.

II. PILOT ASSISTED LINEAR CHANNEL ESTIMATION

Consider a wireless communication system with one trans-
mitter and N diversity receivers, which employs pilot assisted
linear channel estimators. The equivalent discrete-time base-
band system can be represented in matrix form as

r = h · s + z (1)

where r = [r1, r2, · · · , rN ]T ∈ C
N×1 are the discrete-time

signal samples at the receivers, with AT representing the
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transpose of matrix A, h = [h1, h2, · · · , hN ]T ∈ C
N×1

is the equivalent discrete-time channel gain (CG) vector of
the physical fading, s is the MPSK modulated data or pilot
symbol, and z = [z1, z2, · · · , zN ]T ∈ C

N×1 is a zero-mean
additive white Gaussian noise vector with covariance matrix
N0 ·IN , and IN is the N×N identity matrix. For Rayleigh and
Rician fading, the discrete-time CG vector h contains complex
Gaussian random variables (CGRVs) with mean vector u
and covariance matrix Φhh, i.e., h ∼ N (u,Φhh). For i.i.d
channels, the m-th branch fading hm and the n-th branch
fading hn have the same statistical properties. The mean value
u, variance σ2

h, and average power Ω of hn have the following
relationship

|u| =
√

Kσ2
h =

√
KΩ

K + 1
(2)

where K is the Rice factor defined as the ratio of the powers
of the specular component and the scattering components of
the fading. For Rayleigh fading channels, one has K = 0 and
u = 0.

In a coherent receiver, the data symbols are detected
based on the received samples and the estimated CG vector
ĥ = [ĥ1, ĥ2, · · · , ĥN ]T ∈ C

N×1. The statistical relationship
between ĥ and h in a system with pilot-assisted LS channel
estimation or MMSE channel estimation are described in the
next two subsections.

A. Least-Squares Channel Estimation

The estimated CG vector that minimizes the LS cost func-
tion is [10]

ĥ =
rp

sp
= h + e (3)

where sp is a pilot symbol with energy Ep = E
[|sp|2

]
,

rp = h · sp + z is the received sample vector of the pilot
symbol, and ‖a‖ =

√
aHa is the Euclidean norm of the

column vector a. The vector e = ĥ−h = 1
sp

z is the estimation
error vector, which is zero-mean Gaussian distributed with
covariance matrix Φee = Ω

γp
· IN , with γp = EpΩ

N0
being the

received signal-to-noise ratio (SNR) of the pilot symbol. The
channel estimation error vector e is independent of the true
CG vector h. Therefore, LS channel estimation can be said to
fall in the category of noisy channel estimation.

The estimated CG vector ĥ and h are jointly Gaussian
distributed. The conditional mean, uh|ĥ, and conditional co-
variance matrix, Φh|ĥ, are given by

uh|ĥ = u + ΦhĥΦ
−1

ĥĥ
(ĥ − û) (4a)

Φh|ĥ = Φhh − ΦhĥΦ
−1

ĥĥ
Φĥh (4b)

where û and Φĥĥ are the mean vector and covariance matrix of
the estimated CG vector ĥ, and Φhĥ = ΦH

ĥh
are the covariance

matrices of ĥ and h. Eqn. (4) is readily obtained from the
definition of conditional pdf [12, pp.534-535].

For LS channel estimation, the mean of ĥ is û = E(ĥ) = u.

The covariance matrices Φĥĥ = E

(
ĥĥH

)
= Φhh + Φee and

Φhĥ = E

[
(h−u) (ĥ−u)H

]
= Φhh + Φee. Substituting the

above results into (4), one has

uh|ĥ = u + Φhh(Φhh + Φee)−1(ĥ − u) (5a)

Φh|ĥ = Φhh − Φhh(Φhh + Φee)−1Φhh. (5b)

For a system with i.i.d. fading, uh|ĥ and Φh|ĥ can be further
simplified to

uh|ĥ = u + ρ2(ĥ − u) (6a)

Φh|ĥ = σ2
h(1 − ρ2) · IN (6b)

where ρ is the covariance coefficient between hn and ĥn

ρ �
E

[
(hn − u)(ĥn − u)∗

]
√

σ2
hσ2

ĥ

=
√

γp

γp + K + 1
. (7)

In (7), a∗ denotes the complex conjugate of the complex-
valued number a, σ2

h = E
(|hn − u|2) and σ2

ĥ
=

E

(
|ĥn − u|2

)
are the variance of hn and ĥn, respectively.

The value of ρ is in the interval [0, 1] with ρ = 1 (or γp = ∞)
corresponding to perfect channel information at the receiver.

B. Minimum Mean Square Error Channel Estimation

The MMSE estimation of the CG vector ĥ can be expressed
as [10]

ĥ = W · (rp − sp · u) + u (8)

where u is the mean of h, rp is the receiver sample vector
of the pilot symbol, and W is the MMSE weighting matrix.
Since the pilot symbol sp is known to both the transmitter
and receiver, rp is a CGRV vector with rp ∼ N (sp · u, Ep ·
Φhh + N0 · IN ). The estimated CG vector ĥ is a linear
combination of CGRV vectors. Therefore, ĥ and h are jointly
Gaussian distributed, and û = E(ĥ) = u from (8). The
MMSE weighting matrix, W, can be obtained by utilizing
the orthogonality principle, and the result is

W = Φhh (ΦhhEp + N0IN )−1 · s∗p. (9)

Since h and ĥ are jointly Gaussian distributed, the error vector,
e = ĥ − h is a zero-mean complex Gaussian random vector
with covariance matrix given by [10]

Φee =
(
IN +

γp

Ω
· Φhh

)−1

Φhh. (10)

It is worth noting that, for MMSE channel estimation,
the error vector e is correlated with the true CG vector h.
Thus, an independent noisy estimation assumption does not
hold for MMSE channel estimation. The covariance matrix
Φhe � E

[
(h − u)eH

]
is calculated by

Φhe = E
[
(h − u)eH

]− WH
E
[
(rp − spu)eH

]
= −Φee (11)

where the first equality is based on the orthogonality principle.
From (11), one has Φhĥ = Φĥĥ = Φhh −Φee. Substituting

this result into (4) leads to the conditional mean, uh|ĥ,
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and conditional covariance matrix, Φh|ĥ, for MMSE channel
estimation,

uh|ĥ = ĥ (12a)

Φh|ĥ = Φee. (12b)

For i.i.d. channel fading, the conditional covariance matrix
can be simplified to Φh|ĥ = σ2

h(1 − ρ2)IN . This expression
is the same as eqn. (6b) and the correlation coefficient ρ of
MMSE channel estimation has the same form as that of LS
channel estimation given in (7). However, for MMSE channel
estimation, the variances of hn and ĥn are related by σ2

ĥ
=

ρ2σ2
h, whereas in LS channel estimation they are related by

σ2
h = ρ2σ2

ĥ
.

It is well know MMSE is superior to LS in terms of mean
square errors between h and ĥ. However, the overall system
error performance depends not only on channel estimation,
but also on symbol detection. Therefore, a better channel
estimation may not be sufficient to guarantee a better system
error performance. This is elaborated in the following two
sections.

III. OPTIMAL DIVERSITY RECEIVER WITH LINEAR

CHANNEL ESTIMATION

In this section, optimal decision rules for coherent diversity
reception that minimize the error probability of systems with
LS channel estimation and MMSE channel estimation are
derived.

For pilot assisted linear channel estimation, h conditioned
on ĥ is Gaussian distributed; it follows from (1) that r
conditioned on both ĥ and transmitted data symbol sm is also
Gaussian distributed, i.e., r|(ĥ, sm) ∼ N (ur|ĥ,sm

,Φr|ĥ,sm
),

with the mean vector, ur|ĥ,sm
, and covariance matrix, Φr|ĥ,sm

,
given by

ur|ĥ,sm
= uh|ĥ · sm (13a)

Φr|ĥ,sm
= Φh|ĥ · Es + N0 · IN (13b)

with Es = E(|sm|2) being the energy of the data symbol.
Proposition 1: For diversity receivers operating in an i.i.d.

fading environment with pilot assisted LS channel estimation
or MMSE channel estimation, if the transmitted symbols are
equiprobable, then the detection rule that minimizes the system
error probability is

ŝ = argmin
sm∈S

{|α − sm|2} (14)

where S = {sm =
√

Ese
−j2π m

M |m = 1, 2, · · · ,M} is the
modulation alphabet set, and α is a decision variable whose
value depends on the channel estimation method. The decision
variable for LS channel estimation, α

LS
, and MMSE channel

estimation, α
MMSE

, are expressed as

α
LS

= [ρ2ĥ
LS

+ (1 − ρ2)u]Hr (15a)

α
MMSE

= ĥH
MMSE

r (15b)

where ρ defined in (7) is the covariance coefficient between
the estimated CG and true CG.

Proof: If the transmitted data symbols are equiprobable,
maximum likelihood detection minimizes the error probability.
The optimum decision rule can be written as

ŝ = argmin
sm∈S

{
(r − ur|ĥ,sm

)HΦ−1

r|ĥ,sm
(r − ur|ĥ,sm

)
}

= argmin
sm∈S

{∥∥∥r − uh|ĥ · sm

∥∥∥2} (16)

where the second equality is based on the fact that Φr|ĥ,sm
is

a scaled identity matrix independent of sm for i.i.d. fading.
Expanding the term in (16), and after some straightforward

algebraic manipulations, one have

ŝ = argmax
sm∈S

{
�
(
uH

h|ĥr · s∗m
)}

= argmin
sm∈S

{∥∥∥uH
h|ĥr − sm

∥∥∥2} ,

where �(x) denotes the real part of x. Substituting (6a) for
LS estimation, or (12a) for MMSE estimation, one has the
decision rules given in (14) and (15).

According to Proposition 1, the optimal decision rule for
a coherent diversity receiver employing MMSE channel esti-
mation is the same as the conventional MRC decision rule.
On the other hand, for receivers with LS channel estimation,
the quality of channel estimation, which is embedded in ρ,
is taken into consideration during the detection process. Only
in the ideal case, i.e., ρ = 1, the decision variable for LS
specializes to the conventional MRC diversity receiver.

IV. ERROR PERFORMANCE ANALYSES

A. Conditional Error Probability

The conditional error probability (CEP), P (E|ĥ), is evalu-
ated in this subsection.

If sm is transmitted, the detection variable α = uH
h|ĥr

conditioned on both ĥ and sm is Gaussian distributed, with the
conditional mean, uα|ĥ,sm

, and conditional variance, σ2
α|ĥ,sm

,
given by

uα|ĥ,sm
= ‖uh|ĥ‖2sm (17a)

σ2
α|ĥ,sm

= uH
h|ĥ

(
Φh|ĥ · Es + N0 · IN

)
uh|ĥ. (17b)

The conditional pdf p(α|ĥ, sm) is written in a polar co-
ordinate system to simplify the CEP derivation [11]. The
corresponding pdf written in a polar coordinate system with
origin at uα|ĥ,sm

= ‖uh|ĥ‖2sm is

p(r, θ|ĥ, sm) =
r

πσ2
α|ĥ,sm

exp

(
− r2

σ2
α|ĥ,sm

)
. (18)

Based on the decision rule, the detection region of the
MPSK symbol sm should be a 2π

M angle sector centered around
sm as shown in Fig. 1. Therefore, the CEP P (E|ĥ) can be
computed as

P (E|ĥ) = 2
M∑

m=1

P (sm)
∫ π− π

M

0

∫ +∞

R(θ)

p(r, θ|ĥ, sm)drdθ

=
1
π

∫ π− π
M

0

exp


−

‖uh|ĥ‖4Es sin2( π
M )

σ2
α|ĥ,sm

sin2(φ)


 dφ(19)
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where R(θ) =
‖uh|ĥ‖2·sm·sin(π/M)

sin(θ+π/M) , P (sm) = 1
M for equiprob-

able transmitted symbols, and we have changed the integration
variable to φ = π − (θ + π

M ) in the second equality.

��������

θ

R(θ)

sm‖uh|ĥ‖2sm

π
M

Fig. 1. The decision region for MPSK modulation.

B. Error Probability with LS Channel Estimation

The CEP for a system with LS channel estimation can
be obtained by combining (6), (17), and (19). The result is
expressed in (20) at the top of the next page.

In (20), σ2
ĥ

is the variance of the estimated CG ĥn, K is
the Rice factor, and γ is the average SNR of the data symbol
defined as

γ =
ΩEs

N0
=

(K + 1)σ2
hEs

N0
. (21)

In (20), the presence of channel estimation error prohibits
the direct application of the MGF or CHF method for the
evaluation of the unconditional error probability. A Gaussian
distribution based functional equivalency is employed here for
the error probability derivation.

For i.i.d. fading channels, the pdf of the estimated CG ĥ is
given by

p(ĥ) =
N∏

n=1

1
πσ2

ĥ

exp

[
−|ĥn − u|2

σ2
ĥ

]
. (22)

Combining (20) with (22), we obtain the unconditional error
probability P (E) =

∫
{ĥ} P (E|ĥ)p(ĥ)dĥ in a Rician fading

channel as

P (E) =
1
π

∫ π− π
M

0

[λ
LS

(φ)]N dφ (23)

where

λ
LS

(φ) =
1

πσ2
ĥn

∫
{ĥ}

exp

[
−g|ĥn − au|2+|ĥn − u|2

σ2
ĥ

]
dĥn, (24)

with g, a and the equivalent SNR γ̃ for LS channel estimation

being defined as

g =
γ̃ sin2( π

M )
(K + 1) sin2(φ)

, (25a)

a = (1 − 1
ρ2

), (25b)

γ̃ =
(K + 1)ρ2

γ(1 − ρ2) + K + 1
γ. (25c)

The equivalent SNR, γ̃, is obtained from scaling the average
SNR γ by a factor β = (K+1)ρ2

γ(1−ρ2)+K+1 . Based on the fact that
0 < ρ ≤ 1, it can be easily shown that γ̃ ≤ γ, and equality
holds when ρ = 1.

Since the integrand of (24) is an exponential function of the
square of the integration variable ĥn, we can write it as the
product of a Gaussian pdf and a constant term. Then, using
the properties of Gaussian pdfs, one can get the closed-form
solution of λ

LS
(φ) as

λ
LS

(φ) =
1

g + 1
exp

[
− g(a − 1)2

(g + 1)σ2
ĥ

|u|2
]
×

∫
{ĥn}

1
πσ2

ĥ
/(g + 1)

exp

[
−
|ĥn − ga+1

g+1 u|2
σ2

ĥn
/(g + 1)

]
dĥn

=
1

g + 1
exp

[
− g(a − 1)2

(g + 1)σ2
ĥ

|u|2
]

. (26)

Replacing λ
LS

(φ) in (23) with (26), we obtain the following
results.

Proposition 2: For a wireless system with N diversity
receivers equipped with LS channel estimators, the symbol
error probability of the system over Rician fading channels is
given by

P (E) = e
−N K

ρ2

∫ π− π
M

0

[
1 +

γ̃

K + 1
sin2( π

M )
sin2(φ)

]−N

×

exp


NK

ρ2

[
1 +

γ̃

K + 1
sin2( π

M )
sin2(φ)

]−1

 dφ (27)

where K is the Rice factor, ρ is the covariance coefficient
between the true CG and the estimated CG, and γ̃ is defined
in (25c).

We conclude this subsection with a few remarks.
Remark 1: For a wireless system with BPSK modulation,

M = 2, the error probability of the diversity receivers in
Rayleigh fading channels can be written in closed-form by
changing the integration variable to z = cot(φ),

P (E) =
Γ(N + 1

2 )
2
√

πN !(γ̃ + 1)N
· 2F1(N,

1
2
;N + 1;

1
γ̃ + 1

) (28)

where Γ(x) is the Gamma function, and 2F1(·) is the Gauss
hypergeometric function.

Remark 2: When the system has no diversity, i.e. N = 1,
the error probability for MPSK under Rayleigh fading can be

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

4002



P (E|ĥ) =
1
π

∫ π− π
M

0

N∏
n=1

exp

{
−

ρ2γ|ĥn − u(1 − 1
ρ2 )|2 sin2( π

M )

σ2
ĥ
[γ(1 − ρ2) + K + 1] sin2(φ)

}
dφ (20)

expressed in closed-form by changing the integration variable
to z = cot(φ),

P (E) =
M − 1

M
−
√

γ̃ sin2( π
M )

1 + γ̃ sin2( π
M )

×
[

1
2

+
1
π

arctan

(√
γ̃ sin2( π

M )
1 + γ̃ sin2( π

M )
cot
( π

M

))]
.(29)

For the special case of perfect channel information, we have
γ̃ = γ, and (29) agrees with the result previously obtained in
[4, eqn. (36)] through a different approach.

Remark 3: For diversity systems with M > 2, the symbol
error rate given in (27) must be evaluated numerically. The
expression for the SER in (27) contains a single integration
with small integration limits, and the integrand is constituted
of only elementary functions. Thus, it can be easily evaluated
with simple numerical methods.

C. Error Probability with MMSE Channel Estimation

The CEP for a system with MMSE channel estimation can
be obtained by combining (12), (17), and (19), and the result
is

P (E|ĥ) =
1
π

∫ π− π
M

0

N∏
n=1

exp

{
− γ̃|ĥn|2 sin2( π

M )
(K + 1)σ2

ĥ
sin2(φ)

}
dφ (30)

where the equivalent SNR γ̃ is defined in (25c).
Similarly to (23), the unconditional error probability for a

system with MMSE channel estimation can be expressed as

P (E) =
1
π

∫ π− π
M

0

[λ
MMSE

(φ)]N dφ (31)

with λ
MMSE

defined as

λ
MMSE

(φ) =
1

πσ2
ĥn

∫
{ĥn}

exp

{
−g|ĥn|2+|ĥn−u|2

σ2
ĥ

}
dĥn. (32)

Following the same Gaussian distribution-based function
equivalency method described in Sect. IV-B, and noting that
σ2

ĥ
= ρ2σ2

h for MMSE channel estimation, one can obtain the
symbol error probability for MMSE system.

It can be easily shown that P (E) for MMSE has the
same expression as (27), which is the error probability for
LS channel estimation, given the optimal diversity combining
described in Proposition 1 is used. This result indicates that
even though the MMSE channel estimation outperforms LS
channel estimation in terms of mean square errors of the
estimation, the MMSE algorithm is not necessarily better
than LS algorithm in terms of error probability. Because the
difference between LS channel estimation and MMSE channel
estimation is compensated by the optimal diversity combining
at the receiver for MPSK modulation.

It should be pointed out that Remarks 1-3 stated in Section
IV-B are suitable for the MMSE channel estimation case.

V. NUMERICAL EXAMPLES

Numerical examples are given in this section to illustrate
the influence of channel estimation on the error performances
of diversity receivers in fading channels. Simulation results
are also shown to validate our analytical results.

The first example is used to validate the analytical error
probability expressions derived for systems with LS or MMSE
channel estimation. In Fig. 2, the theoretical symbol error
rates (SER) are compared with the results obtained from
Monte-Carlo simulation for 8PSK modulated systems. In this
example, pilot symbol has the same power as the data symbols.
Excellent agreements are observed between analytical results
and simulation results for various values of Rice factor K
and diversity order N . In addition, the results validate the
claim that, if optimal diversity combining is employed at the
receiver, a system with LS channel estimation can achieve the
same error performance as the system with MMSE channel
estimation.

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

8PSK

K=0,simulation (LS)
K=0,simulation (MMSE)
K=0,analytical
K=5dB,simulation (LS)
K=5dB,simulation (MMSE)
K=5dB,analytical
K=10dB,simulation (LS)
K=10dB,simulation (MMSE)
K=10dB,analytical

N=1

N−4

Fig. 2. The SER performance of systems with LS or MMSE channel
estimations.

Fig. 3 illustrates the performance difference between the
proposed optimal diversity receiver and conventional MRC
receiver for a system with LS channel estimation. There are
N = 4 receive antennas, and the modulation scheme is
BPSK. The performance difference between the two receivers
increases with the increase of the Rice factor K. At the
SER level of 10−4, the proposed optimal diversity receiver
outperforms conventional MRC receiver by approximately 1.5

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

4003



dB and 2 dB for systems with K = 5 dB and K = 10 dB,
respectively.
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Fig. 3. Comparison of conventional MRC receiver and optimal diversity
receiver with LS channel estimation.

Next we investigate the influences of pilot symbol SNR,
γp, on system performances. Fig. 4 shows the SER curves for
different values of γp. The horizontal axis of this figure is the
average SNR of data symbols. The curve labeled as γp = ∞
corresponds to perfect channel estimation. Error floors resulted
from channel estimation errors are observed in this figure for
a system with small values of γp. Considering data symbol
SNR in the range of [0, 10] dB, one can see that γp = 25 dB
leads to almost the same performance as a system with perfect
channel information, for both N = 1 and N = 4.
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Fig. 4. The SER of QPSK systems under different values of pilot symbol
SNR γp.

VI. CONCLUSION

An optimal diversity receiver for system with LS and
MMSE channel estimation was derived. Exact error probability
expression of the optimal receiver were obtained. One interest-
ing result from our theoretical analysis is that a wireless system
with LS channel estimation can have the same symbol error
rate as the system with MMSE channel estimation replacing
LS channel estimation. Simulation results are in excellent
agreement with the theoretical results.
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