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Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

Parameter Optimization of PSS Based on Estimated Hessian Matrix
from Trajectory Sensitivities

Seung-Mook Baek, Jung-Wook Park, and Ganesh K. Venayagamoorthy

Abstract-This paper describes the optimal tuning for the
output limits of the power system stabilizer (PSS), which can
improve the system damping performance immediately
following a large disturbance. The non-smooth nonlinear
parameters such as the saturation limits of the PSS cannot be
tuned by the conventional methods based on linear approaches.
To implement the systematic optimal tuning for the output
limits of the PSS, a feedforward neural network (FFNN) is
applied to the hybrid system model based on the
differential-algebraic- impulsive-switched (DAIS) structure.
The FFNN is firstly designed to identify the trajectory
sensitivities obtained from the DAIS structure. Thereafter, it
estimates the second-order derivatives of an objective function J,
which is used during iterations of optimization process. The
performance of the optimal output limits tuned by the proposed
method is evaluated by applying a large disturbance to a power
system.

I. INTRODUCTION

T HE dynamic behaviors of the power system stabilizer
(PSS) are affected by the linear parameters (gain and time

constant of phase compensator) with smoothness and the
constrained parameter (output limits) with non-smooth
nonlinearities. The appropriate selection of linear parameters
has been usually made by using the conventional tuning
techniques [1]-[4] based on the small signal stability analysis.
However, by focusing only on small signal conditions, the
dynamic damping performance immediately following a
large disturbance is often degraded. The PSS output limits
(which cannot be determined by the linear approach) can
provide the solution to balance theses competing effects. In
particular, these limit values attempt to prevent the machine
terminal voltage from falling below the exciter reference
level while speed is also falling, which means that it can
improve the reduced transient recovery after disturbance
(faster recovery to its initial steady state points, therefore, it
allows to save system energy), especially in multi-machine
power system [1].
On the other hands, power systems frequently exhibit
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interactions between continuous-time dynamics,
discrete-time, discrete-event dynamics, switching action, and
jump phenomenon. Such systems are known generically as
hybrid systems [5]-[6], which can be modeled by a set of
differential-algebraic-impulsive-switched (DAIS) structure
[7]. Especially, this hybrid system model provides the
effective and insightful analysis of the PSS with non-smooth
nonlinear dynamics due to saturation limits.

For the systematic optimal tuning ofthe output limits ofthe
PSS, a feedforward neural network (FFNN) is applied to the
hybrid system model based on the DAIS structure. It is
designed to adaptively identify the first-order derivatives of
an objective function J (which are available from the DAIS
structure) with respect to the saturation limits. Then, the
FFNN estimates the second-order derivatives by using the
backpropagation algorithm [8] to form the approximated
Hessian matrix, which is used during optimization process.

The performances of nonlinear parameters optimized by
the proposed method are evaluated on a single-machine
infinite bus (SMIB) power system by the time-domain
simulation.

II. HYBRID SYSTEM PRESENTATION

As mentioned in Section I, the hybrid systems, which
include power systems, are characterized by the continuous
and discrete states, continuous dynamics, discrete events or
triggers, and mappings that define the evolution of discrete
states at events.

In other words, the hybrid system is a mathematical model
of physical process consisting of an interacting continuous
and discrete event system [7], [9]. A formal presentation of
the hybrid system is given in [9], where a general hybrid
dynamical system is defined as H = [Q, X, A, G] and

*Q is the set of discrete states;
* = {2q}qeQ is the collection of dynamical systems Yq

[Xq, Fq, fq] where each Xq is an arbitrary topological
space forming the continuous state space of Yq, Fq is a
semigroup over which the states evolve, andfq generates
the continuous state dynamics;

* A = {Aq}qeQ, Aq c Xq for each qe Q, is the collection of
autonomous jump sets, i.e., the conditions which trigger
jumps;

* C {Gq}qEQ, where Gq: Aq + S = UqEQ(Xq x {q}) is the
autonomous jump transition map. The hybrid
state-space ofH is given by S.
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The above level of abstraction ofthe general hybrid system
does not suit the implementation of numerical optimization
method described in this study, for which the trajectory
sensitivities can be exploited efficiently. A hybrid model with
the DAIS structure, which is more conductive to such
analysis, can be presented without loss of generalities as
follows.

X= f(X,Y)
0= g(x,y),

O = fgli (x,y)
0 {(x,y)

x + = hj(x -,y-)
where:

Yd,i < 0,
Yd,i > 0,

(1)

(2)

i 1,= ,d

Ye,j =0, jE{1,E ,e},

(3)

(4)

and i = 1. This model can be written in the DAIS form in (1)
- (4) as

x

z 21z
o IXI-X2 - 3Y, Y <

UX2 -2X1 - Z3 Y, Y > O

Z + = when y = 0.2

1 I,Z3 Z3

where xO [xo zo A] =[11 -100 10 1 2.75 0.32]' (xo
[1 l]t, zo [-100 10 l]t,2=[2.75 0.32]t)andyo= -1. The
phase portrait and the time-domain response are shown in
Fig. 1.

L1 Ff1 FL2
f0x

x E X C
n
n, y E y c- 1m, z Z C 91 XIcLc 1

and x are the continuous dynamic states, for example
generator angles, speed, and fluxes; z are discrete dynamic
states such as transformer tap positions and protection relay
logic states; y are algebraic states, e.g. load bus voltage
magnitudes and angles; are parameters such as generator
reactance, controller gains, switching times, and limit values.

The reset equations hi in (4) ensure that x and remain

constant at reset events, but the dynamics states z are reset to
new values according to z+ = h (x-,y-) The algebraic

function g in (2) is composed of g(°) together with appropriate
choices of g(i-) or g(i+), depending on the signs of the
corresponding elements ofYd in (3). An event is triggered by
an element ofYd changing sign and/or an element OfYe in (4)
passing through zero. In other words, at an event, the
composition ofg changes and/or elements ofz are reset. Then,
the system flows 0 are defined accordingly as

0 (-x0 t)= 0"-(1°t0= Fx(t)0 (5)

More detailed explanation and associated mathematical
equations of the DAIS model (especially for the switching
and impulse effects) are given in [7] with the comprehensive
studies of the hybrid system.

Example-I (A switched hybrid system)
This example is taken from [7]. The system description is
x Aix,

where A
I 1 ' A I 101

The index i (of matrix Ai) changes from 1 to 2 when x2

2.75 x1 and from 2 to 1 when x2 =0.36 x1. Initially, xo [1 1]t

x 0

-1

-2
-4

2

U)

(D0 o

O -2al)

-4
0

-3 -2 -1
(a) Phase portraits

0.05 0.1

(b) Time-domain response

0 1X1

_____. X

I X2

0.15 0.2
Time [s]

Fig. 1. A switched hybrid system.

The change between A1 and A2 in the above example is
achieved by resetting the matrix elements z1 and Z2 whenever
a switch is saturated. The switching saturations are given by
the algebraic constraints. In other words, the alternating
between active switching saturations corresponds to flipping
the sign of Z3. This example gives a good illustration for the
fact that the two unstable sub-systems (the eigenvalues of
both A1 and A2 are equal to X= +jco where 00 = 6i7 ) can

make the overall system stable through the proper switching
action by the hybrid system modeling, independently of
initial states (which means that this hybrid system is
guaranteed to be asymptotically stable).

III. NONLINEAR CONTROLLER OPTIMIZATION

A. Trajectory Sensitivities
Trajectory sensitivity provides a way of quantifying the

changes in the flow (5) that result from (small) changes to
parameters and/or initial conditions. The development of
these sensitivity concepts will be based on the DAIS model in
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(1)-(4). Trajectory sensitivities follow from the Taylor series
expansion (neglecting higher order terms) of the flows

0, and %s5 in (5), which can be expressed as

Ax(t)= A%,(xo,t) Ox
Ax° rxo(t)Ax0

,:Z~Ax0 F(XOt)A
Ay(t) = A5y(xo,t)Y Ox Axo-,ry(t)xo

(6)

(7)

where r E=,nxn and r E $mxn are partial derivatives

matrices of system flows and known as the trajectory
sensitivities. Recall that x0 incorporates parameters A,
therefore, the sensitivities to initial conditions xo include
parameter sensitivities.

B. The FFNNIdentifierfor Hessian Matrix Estimation
As shown in Fig. 2, the FFNN identifier is applied to

accurately identify the dynamics of the hybrid system, which
are the trajectory sensitivities in (6) and (7). Thereafter, it
validates the system model with its converged weights and
estimates the second-order derivatives of a user-defined
objective function J with respect to the nonlinear parameters
A to be optimized. The FFNN (with the multilayer perceptron
structure [8]) consists of three-layers of neurons (which are
the input, hidden, and output layer) interconnected by the
weight matrices W, and WL (see the Fig. 2 in [8]), and it is
first trained to identify the dynamics of the plant until its
weights are converged with sufficient accuracy. In other
words, the FFNN starts with random initial values for its
weights, and then, computes a one-pass backpropagation
algorithm at each time step k, which consists of a forward
pass propagating the input vector through the network layer
by layer, and a backward pass to update the weights with the
error between [a aj/OA, aj /aOA ] and [aX-

I-]
shown in Fig. 2.

x

Fig. 2. FFNN applied to the hybrid system.

The objective function J required during the optimization
process is normally defined as a positive and quadratic form,
therefore, its derivative exists. With the identified gradient
VJ in Fig. 2, one component of the second-order derivatives

V2j can be estimated by the one-step backpropagation
computation in (8). In the similar manner, the associated
Hessian matrix H is expressed by (9).

a2J
axi axj

avJi p, 8q, 8pl 8ql
8PL 8q, 8pl 8ql 82A (8)

Is{(q, )(I1- s(q, ))WI (iAj)} V Ji WL
j=l

where ml is the number ofneurons in the hidden layer;p is the
output of the activation function for a neuron; q is the
regression vector as the activity of a neuron; W is the weight
matrix; L and I denote the output and hidden layer,
respectively; V J is the value identified by FFNN; the
function s in (8) is the sigmoidal function given as
s(x) = 1/{1 + exp(- x)}-

a 2 / 0,12
-a2/AjaAz

2 1

I~n
(9)

Example-2 (Estimation ofHessian by the FFNN)
For the hybrid system in Example- I (see Section HI ), it is

assumed that the FFNN identifier is designed to identify the
objective function J =(x + x' + 4x x2) and its partial
derivatives with respect to states x1 and x2, which are
8J / ox, = (4x2 + 4x2) and 8J / OX2 = (3x2 + 4xI).
After taking the necessary steps (training-*testing-*fixed

weights), the identification performance of the first-order
derivatives by the FFNN with sufficient accuracy is shown in
Fig. 3. Thereafter, it estimates the second-order derivatives,
which are a2jlx2 = 12x2 and a2j/X2 = 6x2 by using
(8). The results are shown in Fig. 4. The FFNN approximates
the second-order partial derivatives ofthis hybrid system with
the acceptable accuracy, which can be used to apply the
numerical optimization technique described in the next
sub-section.

'yo
aJ aJ

[caA acA9ICA, JA-
-50\ ___TreE/x

Identification by the FFNN
-200

0 0 02 0.04 0.06 0.08 0.1 0 12 0.14 0.16 0.18 0 2
(a) Identification of aJ/Ixd Time [s]

10 ----- True OJ/Ox2
Identification by the FFNN

15
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

(b) Identification of OJ/Ox2 Time [s]

Fig. 3. Performance of identification by the FFNN.

n~
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200
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c5 100

50

0

5

0

-5-

------ True , 2J/Ox2
Estimation by the FFNN

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

(a) Estimation of 02J/Ox2 Time [s]

------True a2J/Ox2

Estimation by the FFNN

-
---

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

(b) Estimation of a2J/Ix2 Time [s]

Fig. 4. Performance of estimation by the FFNN.

C. Implementation ofOptimal Tuning Applied to PSS
Design
The Hessian matrix estimated by the FFNN identifier is

now applied to implement the optimal tuning of the PSS
output limits (Vmax and Vmin shown in Fig. 5), which are the
non-smooth nonlinear parameters. The generator (G) of the
SMIB system in Fig. 6 is accurately represented by a
six-order machine model, viz., a two axis (d-q) model with
two damper windings in each axis [10]. Figure 5 shows the
control block diagram of the PSS and automatic voltage
regulator (AVR)/Exciter.

PSS

Washouit Php-:R-lppd Output limits

not tunable) on the field voltage Efd in Fig. 5 introduce events
that can be captured by the DAIS model. In other words, the
event occurs when a controller signal saturates in the
response to the large inputs (Ao and V,) due to the
disturbance. This indicated phenomenon is implemented by
the DAIS structure as given in (10) for the PSS clipping
limits.

Yi =Vmax Vout;
Y2 =Vout -Vmin;

(10)

I gi QX,y) =VpSS-Vmax Yi<°,
0g=jt g Qi-X,y)=VpsS-Vmin Y2 <0,

g( ()gxy)g(jX)y)=VPSS-Vout Y1 >0,Y2 >0

Many practical optimization problems can be formulated
by using a Bolza form of the objective function J

min J(x,y,A,tf)
i, tf

(1 1)

subject to Lx(t) y(t)]T = i5xo,t) in (5), and

J =(p((tf ),y(tf ), i,tf ) (() () ,td.(2

where A are the optimized parameters (output limits of the
PSS), which are adjusted to minimize the value of objective
function J, and tf is the final time. Also, y is the cost or
penalty associated with the error in the terminal state at time tf,
and qr is the cost function associated with transient state
errors. The objective of the PSS is to mitigate system
damping and force the system to recover to the
post-disturbance stable operating point as quickly as possible.
The speed deviation (Ao) and terminal voltage deviation
(A V) of the generator in Fig. 6 are considered as good
assessments of the damping and recovery [1]. Therefore, the
objective function J in (12) can be re-formulated for the
optimal tuning of the PSS with specific final time tf as the
following

J(>) =
t9F(X, t) a,t)- ldt
°) HLVt , Vi-V S t(2 t)- t JI

(13)

Fig. 5. AVR/PSS block representation.

Fig. 6. Single-machine infinite bus (SMIB) system.

The output (clipping) tunable limits on the PSS output VpSs
and the anti-windup limits (these are physical limits, so are

where V is the diagonal matrix with weighting factors.
The cos and Vts are the post-fault steady state values of

c and Vt, respectively. Minimization of the value of J in
(13) is straightforward even though the cost is obtained by
integrating over the system flows (trajectories). The simplest
way of obtaining J is to introduce a new state variable xcOst,
with xcost equal to the integrand of (13). Thereafter,

xcost(tf ) = J. The trajectory sensitivities in (6) with respect
to A directly provide the gradient by

VJ = FXcs (tf )(14)

1-
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With the use of VJ obtained from (14) as the inputs, the
FFNN consists of the total 7 inputs (threshold input of 1, At,
AVt, Vmax, Vminl, aJaVmax, aJ/aVmin) and 10 neurons in the
hidden layer. Then, it generates (identifies) two outputs

J/0 Vmax and aJ/ Vmin as shown in Fig. 2. Thereafter, it

computes the estimated HessianH by using (8) and (9) for
the nonlinear parameters 2, which are the upper and lower
limits of the PSS, with its converged weights. During the
optimization process, these parameters 2 are updated by
using (15) at each iteration k.

1k+1 = Ak + a *H (A) VJ(A) (15)

where a is the step-length to ensure that the optimal path
(search) is the descent direction vector.

IV. SIMULATION RESULTS

A. Hessian Matrix Estimation by the FFNN
To evaluate the performance of identification and

estimation by the FFNN, the SMIB system in Fig. 6 is
disturbed by applying a 200 ms three-phase short circuit fault
with the fault-impedance of 0.05 pu to the generator terminal
bus at 0.05 s. The results in Fig. 7 show the very good
identification performances of the FFNN identifier for the
OJ / 3Vmax and aJ / aVmin, at the particular iteration (which is
the tenth iteration) with the time duration of 0 s to 5 s (tf) in
the optimization process. Also, Fig. 8 shows the results ofthe
corresponding second-order derivatives estimation,
02J/v2 and 02j / V2 , which are the diagonal
components of the estimated Hessian matrix H in (9) at the
tenth iteration. The off-diagonal components of H are
obtained by the same manner.

B. Performances ofConvergence
During the optimization process, the convergence

performances of the proposed method are shown in Fig. 9
with comparison of those by the steepest descent algorithm
[11] for the value of the objective function J and maximum
relative gradientf gradient in (16).

|| relative rate of change in J VJ(Xk) *
frgradient ||relative rate of change in x J(xk)

(16)

It is clearly shown from Fig. 9 that the proposed method by
the estimated Hessian improves the convergence speed very
effectively. In other words, the values of both J andfr-gradient
are almost converged with only 5 iterations when the tuning
process is implemented by the proposed method. The
nonlinear parameters A by the steepest descent method are
updated by using (17). For the fair comparison, the same
value of the fixed step-length a (= 0.22) is used in both
methods.

Ak+l = Ak + a * VJ(1 )

it
-0.2

-0.4

-0.6
o

(17)

.Trajectory sensitivities aJ/0Vmax
Identification by the FFNN

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(a) Identification of MJ/aV Time [s]

0.5

0

-1- -----~~ ~~Trajectory sensitivities c?Jlc?Vmi
Identification by the FFNN

-1.5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(b) Identification of J/Vmin Time [s]

Fig. 7. Performance of the identification by the FFNN.

1.376 F 1.68

1.67

1.3744
N

0

c

X 1.373
E

Lu

1.3711
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

Fig. 8. The second-order derivatives estimated by the FFNN.

1.66 `

N

w0
.0

-1.65 m
E

1.64

1.63

--*- with steepest descent
6 \s °e with estimated Hessian by FFNN

5.8

5.6

5.4-

5.2
0 1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8

(b) Maximum relative gradient variations

Iterations

Iterations

Fig. 9. Comparisons of performances (convergence property).

C. Damping Performance by Optimized Parameters
The damping performance of the output limits (which are

[0. 1 152 -0.3135] for [Vmax Vmin]) of the PSS optimized after
5 iterations is compared with that of the initial output limits

(a) Objective function J variations
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([0.1 -0.1]) and other possible limits ([0.2 -0.2]) in Figs. 10
and 11.

2.2

2

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2 -

0

1.3

1.2

1.1

0.9

0.8

0.7

0.6

0.5

0.4

0.2

0.1

0

0

0~
( -O

-0.2

-0.:

Initial limits [0.1 -0.1]
----- Other possible limits [0.2 -0.2]

Optimal limits [0.1 152 -0.3135]

1 2 3 4
Time [s]

Fig. 10. Generator rotor angle response [rad].

1 2 3 4
Time [s]

Fig. 11. Generator terminal voltage response [rad].

IL L L Initial limits [0.1 -0.1]
3 LIJ----- Other possible limits [0.2 -0.2]

Optimal limits [0.1152-0.3135]

0 1 2 3 4
Time [s]

Fig. 12. PSS output response.

5

It is clearly verified that the optimal saturation limits
determined by the proposed method improve the
low-frequency oscillation damping and transient terminal
voltage response effectively. The value of Vmax has been
changed a litter from 0.1 to 0.1 152, but the value of Vminhas
moved significantly from -0.1 to -0.3135. Note that the
manual tuning would likely not even search in that direction

for improved response. The effect of optimal tuning for these
saturation limits is rather dramatic and quite evident for a
large disturbance (such as a three-phase short circuit) applied
to a power system. The corresponding PSS output response
(Vpss in Fig. 5) in Fig. 12 exhibits the non-smooth nonlinear
dynamic behaviors. The effectiveness of the proposed
method for the systematic optimal tuning has been validated
on the IEEE benchmark four-machines, two-area test system.
Due to page limitation, the results will be shown in the
authors' other paper.

V. CONCLUSIONS

This paper made the new contribution by applying the
feedforward neural network (FFNN) to the hybrid system
modeling with the differential-algebraic-impulsive-switched
(DAIS) structure to estimate the Hessian matrix used for the
nonlinear parameter optimization of the power system
stabilizer (PSS). Trajectory sensitivities obtained from the
DAIS structure were used to estimate the second-order
derivatives by the FFNN. The optimized output limits of the
PSS, which are the non-smooth nonlinear parameters,
improved the damping performance of low-frequency
oscillations effectively. The proposed method based on the
estimated Hessian matrix provides the much faster
convergence properties in the systematic optimal tuning
problem especially when compared to the steepest descent
method using only the first-order derivatives information.
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