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Neuro Emission Controller for Minimizing Cyclic Dispersion in Spark Ignition Engines' 

Pingan He and S .  Jagannathan 
Department of Electrical and Computer Engineering, 

The University of Missouri -Rolls, 1870 Miner Circle 
Rolla, Missouri 65409. 

Abstract: A novel neural network m) controller is 
developed to control Spark Ignition (SI) engines at 
extreme lean conditions. The purpose of neurocontroller is 
to reduce the cyclic dispersion at lean operation even when 
the engine dynamics are unknown. The stability analysis 
of the closed-loop control system is given and the 
boundedness of all the signals is ensured. Results 
demonstrate that the cyclic dispersion is reduced 
significantly using the proposed controller. The neuro 
controller can also be extended to minimize engine 
emissions with high EGR levels, where similar complex 
cyclic dynamics are observed. Further, the proposed 
approach can be applied to control nonlinear systems that 
have a similar structure as that of the engine dynamics. 

I. INTRODUCTlON 

Today's automobiles utilize sophisticated 
microprocessor-based engine control system to meet 
stringent Federal regulations governing fuel economy and 
the emission of carbon monoxide (CO), oxides of nitrogen 
(NO,) and hydrocarbons (HC). The control efforts are 
tailored to decrease the total amount of emissions and to 
minimize the fuel consumption. To address these two 
requirements, lean combustion control technology receives 
increased prefcrcnce [7]. The major difficulty of lean 
engine operation is cyclic dispersion [4] of heat release, 
which causes significant performance deterioration. 

Inoue et al. [7] designed a lean combustion engine 
control system using a combustion pressure sensor. 
However, pressure sensors are expensive and not reliable. 
Davis et al. [2] developed a feedback control approach to 
reduce the cyclic dispersion at lean conditions. However, 
only the fuel system is controlled and the air system is not. 
Consequently, significant cyclic dispersion is still left. He 
et al. [6] proposed a nonlinear backstepping controller to 
keep a stable operation of the SI engine at lean conditions 
by altering the fuel intake (control variable) based on the 
air intake. All of these methods require the precise 
mathematical model of the cyclic dispersion and engine 
dynamics. Moreover, the cyclic dispersion process is 
sensitive to the variations in the delivery of air and fuel 
into the cylinder, the fluid dynamics effects during engine 
intake, residual gas fraction, which are typically uncertain. 
Differences between model and real engine dynamics 
could jeopardize the controller performance. 

In this paper, a direct adaptive NN controller is 
proposed for stable operation of the SI engine at extreme 
lean conditions. A nonlinear system of the form 
x , ( k + O =  f;(x,(k), x & ) ) + g M k ) ,  X&))XAk)+dlk)  , 
x2 (k + 1) = f,(x, *2 ai,,+ g, (XI x2 (k))u(k)+ 4 (4 (see 
Section 3.1) can be used to describe the engine dynamics 
at lean operation, where f ; (x , (k ) ,x , (k ) ) ,  g, (~ , (k) ,~ , (k) ) ,  
f,(x,(k), x,(k))  and g , ( ~ , ( k ) ,  x&)) are u d m w n  nonlinear 
functions. The control objective is to reduce the cyclic 
dispersion in heat release by minimizing variations in 
equivalence ratio (,&) = Lx,(k), where R is a constant). 

Controlling such a class of non strict feedback nonlinear 
systems is extremely difficult because the control input 
cannot directly influence both the statesx,(k) andx,(k). 
Moreover, unlike standard backstepping control scheme 
[ 5 ] ,  the objective here is to show the boundedness of both 
the states close to their respective targets so that the actual 
equivalence ratio is close to its target and bounded tightly, 
then the cyclic dispersion can he reduced significantly. 

Two iVNs are employed to learn the unknown 
nonlinear dynamics since the residual gas and combustion 
efficiency are unknown. Backstepping approach is utilized 
to design the control input (injected fuel) to the total fuel 
system. The total fuel is then treated as the virtual control 
signal to the air system so that both the states are bounded 
tightly to their respective targets. Consequently, the 
equivalence ratio error can be bounded tightly and its 
variations are minimized. As a result, the cyclic dispersion 
is reduced and the engine is stable. The stability analysis 
of the closed-loop control system is given and the 
boundedness of the closed-loop signals is shown. 

The proposed NN controller design is even applicable 
to a class of nonlinear systems that have a similar structure 
as that of the engine dynamics. Compared with standard 
backstepping schemes [ 5 ] ,  our approach is not limited to 
the control of strict feedback nonlinear systems since the 
engine dynamics during lean operation are only expressed 
as non-strict feedback nonlinear system. 

The paper is organized as follows. Section 2 discusses 
background on neural network, and engine dynamics at 
lean conditions. The proposed NN controller is presented 
in Section 3. Section 4 describes the simulations and 
Section 5 carries the conclusions. 

R x,(k) 
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11. BACKGROUND 
2.1 Properties of the NN Systems 

using the two-layer neural network as 
A general function f ( x ) e  C(') can be approximated 

/W)) = w52(v5qx(k) ) ) t  4) (1) 

j ( x ( k ) )  = +T42 (x (k ) ) )+  4) (2) 

where W and V are constant weights and 
q 2 ( v r ( k ~ , ( x ( k ) )  rp, (x(k))  denote the vectors of activation 

functions at the instant k, with ~ ( k )  an NN functional 
reconstruction error vector. The net output is dzfined as 

From now on @,(x(k))  is denoted as $ , ( k )  and 

$2((V'4(x(k)))isdenotedas & ( k ) .  Itis wellknown [ I ]  
that if the inputs to the hidden layer weights are selected at 
random and held constant, g(k )  forms a basis, then any 
smooth nonlinear function can be approximated to a 
sufficient degree. 

2.2 Single Cylinder Combustion Model 
Daw et al. [4] developed a mathematical representation, 

which has a striking resemblance to experimental data, to 
investigate nonlinear cycle dynamics in SI engines under 
lean conditions. The engine model is expressed as 

1 -  I 
n(k t I) = F ( k ) x  [ a(k) - z x  CE(k)x m(k )  t (I F(k) )x  (AF)+ ~ f ; ( k ) ' ( ~ )  

44 = . l k ) ~ l - c ~ ) ) x F ( k ) ~ l - F l k ) ) ~ ~ ~ ~ ~ ) ) + ~ ( k ) ,  (4) 

where m(k) is the mass of he1 before kth bum, a(k) is the 
mass of air before kth bum, 6 MFF) is the small changes 
in mass of fresh fuel per cycle, MF is the mass of fresh 
fuel per cycle, AF is the mass of fresh air fed per cycle, F 
is the fraction of cylinder gas remaining, R is the 
stoichiometric air- fuel ratio, -14.6, CEF) is the 
combustion efficiency, (Om, 47, , (OK are system parameters, 

and d;(k) and 4 ( k )  are unknown but hounded 
disturbances. From the above equations, it is clear that the 
dynamics are highly nonlinear with combustion efficiency 
and residual gas fraction being unknown. 

111. NN CONTROLLER DESIGN 

The overall goal is to minimize the cyclic dispersion, 
i.e., to minimize the heat release variations at lean 
conditions, without needing to know its dynamics. The 
heat release, Q(k)= m(k)xCE(k)  , is proportional to the 
mass of the fuel bumt and the combustion efficiency. 
From (5), the CEF) is a function of equivalence ratio 

( P(k)  = -- m(k)  ) alone. So, to reduce the heat release 

variations and to keep a constant mass of the fuel injected 
mfi), the equivalence ratio variations must be decreased. 
In other words, the objective is to attain, a constant mfi), 
and to reduce the variations in dk) . This objective is 
accomplished by driving the mass of total fuel and air 
approach close to their respective targets simultaneously. 

Here a NN backstepping type approach is employed to 
design the controller. A virtual control signal is designed 
to control the air intake system and the actual control input 
is selected to control the fuel intake system. When both 
the total fuel and air are tightly controlled, the equivalence 
ratio and the heat release variations are reduced, the engine 
dynamics is kept stable and the engine can operate 
smoothly at lean conditions. 

3.1 Controller Design 
Since it is difficult to force both the states to approach 

their respective targets in the presence of disturbances and 
uncertainties, the control objective is accomplished when 
the two states x , (k )  and X2 ( k )  are bounded close (tightly) 

to their respective targets XI, and X,, , where x , ( k )  and 

x 2 ( k )  represent respectively, before kth bum, as 

x, (k )  = a@), (6) 

R 4 k )  

x , ( k )  = m(k), (7) 
Step I :  State space model of the system 
Let us denote 

Substituting (6), (7) and (8) in (3), (4) and (5) results in 
x,(k + I )  = F(k)xx,(k)t(I-F(k))xAF-(F(k)lR)xCE(k)xx,(k)td;(k)(9) 

6 MF(k) = u(k) . (8) 

x , (k+  1) = F ( k ) X ( l  -CE(k ) )xx , (k )+  (1 - F ( k ) ) x M F  

+ (1 - F ( k ) ) X U ( k ) +  d;(k)  (10) 
and 
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where f ; ( k ) = f ; ( x , ( k ) , x , ( k ) ) ,  g , (k)=g, (x , (k) ,x , (k) ) ,  
f*(k) = f,(% (k) ,  3 (k ) )  and g , ( k )  = g2 b, ( k ) A  (k)) ' 

Since the residual gas fraction F e )  and combustion 
efficiency CE(k) are typically not known beforehand, 
hence f;(k),  g , (k) ,  f , (k ) ,  and g,(k) are unknown. Here, 
NNs are employed to approximate these nonlinear 
functions. Further, existing controller designs, for strict 
feedback nonlinear systems encounter singularity problem 
whereas the proposed design overcomes this issue. 
Sfep 2: Virtual controller design. 

In this step, a virtual controller is presented to bound 
x , ( k )  close to Its targetX,,, which is selected carefully 
for the lean operation. The following is needed to proceed. 
Assumption 1: Since g, (k),  i = 1, 2 are smooth 
functions, they are bounded within some compact set, 
whose bounds are g , ,  > 1g,(k] > 0 andg,, > Ig,(k] > 0 ,  
respectively. 

Define the error between actual and desired air as 

where X,d is the desired constant value of the mass of the 
air. Hence (20) is rewritten as 

By viewing x , (k )  as a virtual control input to (21) there 
exists a desired virtual control input given by 

e l ( k ) = x l ( k ) - X l d ,  (20) 

e,@ +I) = x, (k  +I)- x,, = /$)+ g,(k)x,(k)- x,, + d;(k) 0 1 )  

where k, is a design constant, such that the error, e, ( k )  , 
is bounded. 

Since f ; ( k )  and g , ( k )  are unknown smooth functions, 

the desired feedback control + ( k )  cannot be 
implemented in practice.. From (22), it can be seen that the 
unknown part ( l / g , (k ) ) ( - f ; (k )+  X , d )  is a smooth 

function of xI(k), x2(k ) ,  and x,, . By utilizing NN, 

XZd ( k )  can be expressed as 

x,&) = wT (k)&) + E, ( k ) +  k,e, ( k ) .  (23) 
where w, ( k )  denotes the matrix of constant weights, and 

E, ( k )  is the h" approximation error. Now, choosing the 

virtual control input, .i.,, ( k )  , as 

%d ( k )  = $"(k)dk)+ ( k )  (24) 

where G,(k)  is the matrix of actual weights, @ ( k )  is the 
vector of activation function for the first NN. 

Let the error in weights during estimation be 

Define the system error between x2 ( k )  and i z d ( k )  as 
GI (k )  = 6, (k )  - wi ( k )  . (25) 

e, (k) = x 2 ( k ) -  P,,(k) . . (26) 
Equation (21 j becomes 
e,(k + 1) = A&)+ gl ( k k ,  @)+ i z d ( k ) ) -  Xtd + 4 k )  I 

= gl(kxkl4 (k)+ e,@)+ 51 ( k ) +  dl(k)). (27) 

(28) 

(29) 

where 

and 

Step 3: Design of the control input u(k) 
In the following procedure, the actual control input U@) 

is designed to bound x,(k) close to its target x,, . Writing 
the error in the total mass of the fuel in the cylinder from 
(19) as 
e,(k + 1) = x2(k + 1)- ~ , ~ ( k  + 1) 

5, ( k )  = G; ( k k w .  

4 ( k )  = 4 k ) / g ,  (k) - E S k ) .  

= f, ( k ) +  g2(k)u(k)-12,d(k + ' ) +  d;(k) '  (30) 
Similarly, choosing the desired control input by using 

the second NN to approximate the unknown dynamics as' 
0/82 ( k ) ) ( - f 2  (k)+ 22d(k + I))+ k2e2 

= wl(k)a(k)+ E,@)+ k,e,(k). (31) 
where w,(k) represent the target weights, f f ( k )  denotes 
the activation function vector for the second NN. The 
actual control input is selected as 

whereiu,(k) represent the actual weights for the second 
NN. 

u(k)  = $(k)a(k)+ k2e2(k).  (32) 

Substituting (32) and (31) into (30) yields 
e,  (k  + 1 )  = g ,  (kXk,e,(k)+ 5,(k)+ d, (k)). (33) 

where 

and 

Equation (27) and (33) represent the closed-loop error 
system. The structure of proposed controller is shown on 
Figure 1. In order to prove the stability of the closed loop 
system, suitable NN weight are presented next. 

43k) = G; ( k ) o ( k )  2 (34) 

d2(k) = i ( k ) / g , ( k ) -  E 2 ( k ) .  (35) 

U 
Fig. 3: Neuro emission controller structure 
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3.2 Nonlinear Stability Analysis 
It is required to show the errors e , (k)and e2(k)  and 

the NN weights Gl(k) and G 2 ( k )  are bounded in order 
to ensure that the cyclic dispersion is reduced. First, we 
present bounds on the ideal weights and activation 
functions. Second, a , discrete-time weight tuning 
algorithms is given so that closed-loop stability is inferred. 
Assumption 2: Both the ideal weights and the activation 
functions for all NNs are bounded by known positive 
values so that 

llw1Ils Y m a x  , IIw2Il~ w2max 3 11d~11~ @,ax 

and Il4.11~ a m a x  ' (36) 
Theorem 3.1: Consider the system given by equations 
(18) and (19). Assume that the Assumption 1 and 2 hold. 
Let the disturbance and Nh' approximation errors be 
bounded. Take the first NN weight tuning be 

with the second NN weight tuning be provided by 
+ I )= ~,(k)- a , ~ ( k X i c i r ( k ~ ( k ) + k , e , ( k ) ) .  (37) 

Gz(k + 1) = G* ( k )  -? a(k)(G; ( ! f b ( k )  + k,e,(k)). (38) 

where a,, a,, k,, and k, are design parameters. The 

error e, (k) and e , (k) ,  the NN weights estimates, G,(k) 
and G2(k)  are bounded, with the bounds specifically 
given by (A.8) through (A.l l )  provide the design 
parameters are selected as: 

(39) 

- 

(1) 0 < a,l\d.]12 < 1, 

(2) 0 < a2ll~(.]I2 < k2 

(3) 0 < Ik,l< l/&,J, 

(40) 

(41) 

( 4 ) O < k ,  < ( - 1 + 4 m ) / ( 6 g 2 , )  (42) 
Moreover, the equivalence ratio error is bounded and the 
actual equivalence ratio is bounded. 
Proof: See Appendix. 
Remark 1: Controller singularity problem (i(.)+ 0 )  that 
is commonly noticed in other works is avoided. 
Remark 2: It is important to note that in this theorem there 
is no certainty equivalence (CE) assumption or the need 
for persistency of excitation condition. 
Remark 3: Our control scheme requires the need for the 
measurement of the total mass of the fuel, x2 (k) and the 
air, x , ( k ) ,  There are several sensors (oxygen sensor and 
Universal Exhaust Gas Oxygen (UEGO) sensor) available 
to measure the equivalence ratio of the exhaust. For 
details see [3]. The information available from an air 
intake sensor is the mass of the new air. The mass of the 
new fuel injected is also available. Using this information 
and by perfanning certain experiments on an engine, one 
can infer the values of x , ( k )  and x, (k) . 

IV. SIMULATION 

The purpose of simulation is to verify that the cyclic 
dispersion of a SI engine using the proposed closed-loop 
controller is indeed small at very lean operation conditions. 
The simulation parameters are selected as the following: 
1000 cycles are considered at equivalence ratio of 0.71 
with R =14.6, F = 0.14, mass ofnew air = 1.0, the standard 
deviation of mass of new fuel is 0.007, 
4" = 0.685, 4, = 0.665, the desired mass of air is taken 
as XI, = 0.9058 and the desired mass of fuel is calculated 
as x,, = Rx0.7lxX, ,  =9.3895. A 5% unknown noise is 
added to the residual gas fraction as a way to emulate 
stochastic perturbation. The gains of controllers are 
selected as kl = k, = 0.1, respectively. Both NNs, NN1 

Gr@(k) and NN2 G:g(k) are configured to possess 15 
nodes in the bidden layer. For weight updating, the 
leaming rate is selected as a, = 0.01 anda, = 0.001. The 

inputs to the NNs, NN1 G;&) and NN2 GrjT,(k) are 

taken as [x , (k) ,  x2(k) ,  x,,P and[x,(k), x,(k);G,(k),  el@)] 
respectively. The initial weights are selected uniformly 
within an interval of [0, I] and all the activation functions 
are selected as hyperbolic tangent sigmoid functions. The 
NN weights are initialized at random. 

The cyclic dispersion observed at a lean equivalence 
ratio of 0.71 is presented in Figure 2 when no control 
scheme is employed. It is clear that without any control, 
the engine is unstable due to unacceptable amount of 
dispersion. Figure 3 illustrates that the performance of the 
NN controller where the heat release appears to exhibit 
some dispersion. The dispersion is small and bounded and 
may be tolerable. Figure 4 shows that the error between 
actual and desired equivalence ratio is bounded with the 
NN controller. For comparison, PD controller alone is 
used with the same simulation parameters and from Figure 
5 ,  it is clear that the unacceptable amount of dispersion 
still exists. 

Eq"r.le"rr l l i B = o . 7 1  mhm CDnlrDI 
10, , , , , , . , . , 

Fig. 2: Cyclic dispersion without control. 
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Fig. 5: Heat release with PD controller alone. 

V. CONCLUSION 

A novel NN controller scheme is presented to reduce 
the cyclic dispersion in engine combustion at lean 
conditions. The proposed control scheme utilizes both NN 
approximation property and the backstepping approach for 
maintaining certain air to fuel ratio by altering the fuel 

injected into the cylinder as the control input. The stability 
analysis of the closed-loop control system was proven and 
the boundedness of the closed-loop Signals was shown. 
Results show that the performance of the proposed 
controller is highly satisfactory while meeting the closed 
loop stability eventhough the dynamics are not known 
beforehand. Since the dynamics of an engine with high 
EGR levels exhibits similar behavior as that of a lean 
operation, the proposed controller can he easily extended 
to EGR operation to achieve further reduction in 
emissions. 
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candidate 

J ( k ) = e : ( k ) / 4 g ? ~  +e:(k) /3k2g2~ + 
2 

(l/a,)GT(k)G,(k)+ (I/az)Gl(k)G*(k) (A.1) 
whose first difference is 

The first difference ~ , ( k )  is obtained using (27) 
U ( k )  = U , ( k ) +  U 2 ( k ) +  U,@)+ AJ4(k) (A.2) 

A’, ( k )  = (1 /4dM h , ( k k ,  ( k ) +  e, ( k ) +  C, (k )+  d, (k))? - d ( k ) )  
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- or 

or 

or 

(A. 11) 

where 

According to a standard Lyapunov extension theorem, this 
demonstrates that the system errors and the errors in 

D i  =d: (k)+di (k ) /k ,  +2w:,,4:,, +w;-o:,/k2(A.12) 

weight estimates are bounded. 

hounded, or equivalently the weight estimates i , ( k )  and 

&, (k) are bounded. 

From (A.8) and (A.9), e, (k) and e2 (k) are bounded. 

Using (20) and (30), xI (k) and x2 (k) are bounded to 

XI, and f,, (k) , respectively. However, to minimize 

equivalence ratio variations, x , ( k )  and x 2 ( k )  have to be 

bounded tightly to their respective targets XI, and x,, . 
Then the equivalent ratio will be close to its target 
( 4  -is), and the combustion efficiency CE(k)  is 

held constant. Consequently, heat release 
Q ( ~ ) = ~ , ( ~ ) x c E ( ~ ) ,  will be bounded and its variations are 
reduced provided the error bounds are small and tight. 
Since the error bounds are a function of the design 
parameters k,, k,, a, and a,, by suitably selecting these, 
the equivalence variations can be reduced. 

So far, it has been shown that xI (k) is bounded close 

to XI, and x, (k) is bounded close to f,, (k) . In order 

to prove X, (k) is bounded close to x,, , the difference 

between f,, (k) and x,, ( k )  has to be considered as 

Since 5;(k)  and &,(k )  are bounded, i l d ( k )  is bounded 

close to xZd (k). Since q(k) is bounded, and x, (k)  is 

bounded close to P,, (k) , and f,, (k) is bounded close to 

x,, ( k )  , it can be concluded that x2 (k) is bounded close 

to x , , ( k )  . By suitably selecting XI, according the 
following equation 

1 

The boundedness of 
II(,(k)ll and \l<2(k]\ implies that llG,(k]I and I\E2(k]\ are 

R x,, d -  

izd(+ X 2 d ( k )  = (6, ( k ) -  w, (k)ye(k)- E, (k) = ~ , (k ) -  E, ( k ) .  (A. 14) 

x l d ( k ) =  - ( - A  ( k ) + x l d  )+k,el (k)' 
g d k )  

= X,, + 6 ( k ) =  R X @ d  xX, ,  + 6 ( k )  (A. 15) 

where S ( k )  is a small and known bounded value and 

x Z d ( k )  is forced to be close to X,,  at steady state. 

Then, it follows that x, (k) is bounded close to x,, . 
Since both xI (k) and x, (k) are bounded tightly to 

their targets XI, and X,,  respectively, the equivalence 
ratio is hounded close to its desired value. Consequently, 
the combustion efficiency, c ~ ( k ) ,  is held constant, the heat 
release is close to its target and the heat release dispersion 
is reduced provided the design parameters are selected 
appropriately to result in tight error hounds. 
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