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Abstract— Spark ignition (SI) engines running at very lean 
conditions demonstrate significant nonlinear behavior by 
exhibiting cycle-to-cycle dispersion of heat release even though 
such operation can significantly reduce NOx emissions and 
improve fuel efficiency by as much as 5-10%. A suite of neural 
network (NN) controller without and with reinforcement 
learning employing output feedback has shown ability to 
reduce the nonlinear cyclic dispersion observed under lean 
operating conditions. The neural network controllers consists 
of three NN: a) A NN observer to estimate the states of the 
engine such as total fuel and air; b) a second NN for generating 
virtual input; and c) a third NN for generating actual control 
input.  For reinforcement learning, an additional NN is used as 
the critic.  The uniform ultimate boundedness of all closed-loop 
signals is demonstrated by using Lyapunov analysis without 
using the separation principle.  Experimental results on a 
research engine at an equivalence ratio of 0.77 show a drop in 
NOx emissions by around 98% from stoichiometric levels. A 
30% drop in unburned hydrocarbons from uncontrolled case is 
observed at this equivalence ratio.   

I. INTRODUCTION
ODERN automobiles utilize microprocessor-based 
engine control systems to meet stringent federal 

regulations governing fuel economy and the emissions of 
CO, NOx and HC. Current efforts aim to decrease emissions 
and minimize the fuel consumption. To address these 
requirements, lean combustion control technology has 
received increasing preference [1]. A difficulty of operating 
an engine at extreme lean conditions is that significant cyclic 
dispersion [2] in heat release is exhibited, causing engine 
instability and poor performance.  

Several control schemes have been proposed to stabilize 
the engine operation at lean conditions. Inoue et al. [1] 
designed a lean combustion engine control system using a 
combustion pressure sensor. With the measurement of 
engine torsional acceleration, Davis et al. [3] developed a 
feedback control approach, which uses the fuel as the 
control variable to reduce the cyclic dispersion. However, no 
system stability is guaranteed in both [1] and [3] since 
stability analysis for nonlinear unknown engine dynamics is 
difficult. He et al. [4] proposed an adaptive neural network 
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(NN) backstepping controller to maintain stable operation of 
the SI engine at lean conditions by altering the fuel intake as 
the control variable and using total mass of air and fuel 
(system states), which are extremely difficult if not 
impossible to measure. In [5], another control scheme is 
presented using the state feedback. 

Output feedback controller schemes are necessary when 
certain states of the plant become unavailable. Moreover, the 
separation principle does not hold for nonlinear systems, 
since an exponentially decaying state estimation error can 
lead to instability at finite time [6]. Consequently, the output 
feedback control design is quite difficult. 

To make the controller implementation more practical, a 
heat-release-based neuro-output feedback controller is 
introduced in discrete-time to reach stable operation of a 
spark ignition (SI) engine at lean conditions.   The output 
feedback controller has an observer and a controller.  The 
NN observer is designed to estimate the total mass of air and 
fuel in the cylinder by using a measured value of heat 
release.  The estimated values are used by a NN controller.  
Non-catalytic SI engine designs (e.g. generator sets and 
other industrial applications) could make use lean operation 
to reduce engine-out NOx and improve fuel efficiency.   

Moreover, the proposed controller is designed for a class 
of nonlinear discrete-time systems in nonstrict feedback 
form. A persistency of excitation condition is not required, 
certainty equivalence and separation principle are not 
needed and linearity in the unknown parameter assumption 
is not used.  A uniform ultimate boundedness (UUB) of all 
the signals is demonstrated. Experimental results show 
satisfactory performance of the controller.  It is important to 
note that in this work, the output is an unknown function of 
system states unlike in the existing literature [6-8, 10-11] 
where the system output is a known linear function. 

II. CONTROLLER DESIGN

A. Background
1) Engine Dynamics 

According to the Daw model [2], spark ignition (SI) 
engine dynamics can be expressed as a class of nonlinear 
systems in nonstrict feedback form: 

1 1 2 11x k AF k F k x k R F k CE k x k d k , (1) 

2 2 21 1x k CE k F k x k MF k u k d k , (2) 

kCEkxky 2 , (3) 
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where kx1  and kx2  are total mass of air and fuel, 

respectively, in the cylinder before thk  burn, ky  is the 
heat release at kth instant, kCE  is combustion efficiency for 

maxmin0 CEkCECE , maxCE  is the maximum 
combustion efficiency, kF  is residual gas fraction for 

maxmin0 FkFF , kAF  is mass of fresh air per cycle, 
R  is stoichiometric air-fuel ratio, kMF  is mass of fresh 
fuel per cycle, ku  is change in mass of fresh fuel per 
cycle, k  is input equivalence ratio, lum ,,  are 
constant system parameters, and kd1  and kd2  are 
unknown but bounded disturbances. Since ky  varies each 
cycle, the engine is unstable. In the above engine dynamics, 
both kF  and kCE  are unknown nonlinear functions of 

kx1  and kx2 .
Remark 1: In system (1)-(3), states of kx1  and kx2

are typically immeasurable and only output ky  is 
available. The control objective is to stably operate the 
engine at lean conditions ( 10 k ) with only heat 
release information available – to stabilize ky  around dy ,
where dy  is the target heat release value. 

Remark 2: We notice that in (3) the available system 
output ky  is an unknown nonlinear function of both 
immeasurable states of kx1  and kx2 , unlike that in all 
past literatures [6-8,10-11], where ky = kx1  or ky  is a 
known linear combination of system states. This issue makes 
the observer design more challenging. 

2) Engine Dynamics in Another Form 
Substituting (3) into both (1) and (2), obtain equations 

1 1 11x k AF k F k x k R F k y k d k ,(7)

2 2 21x k F k x k y k MF k u k d k .(8)

For actual engine operation, fresh air, kAF , fresh fuel, 
kMF , and residual gas fraction, kF , can all be viewed 

as nominal values plus some small and bounded 
disturbances: 

kAFAFkAF 0 , (9) 
kMFMFkMF 0 , (10) 

and
kFFkF 0 , (11) 

where 0AF , 0MF , and 0F  are known nominal fresh air, 

fresh fuel and residual gas fraction values, respectively. 
kAF , kMF , and kF  are small, unknown but 

bounded disturbances for fresh air, fresh fuel, and residual 
gas fraction, respectively. The bounds are given by  

mAFkAF0 , (12) 

mMFkMF0 , (13) 
and

mFkF0 , (14) 

where mAF , mMF , and mF  are the respective upper 
bounds for kAF , kMF , and kF .

Combine (9)-(11) with (7) and (8), and rewrite (7) and (8) 
to get 

kdkykFRkxkFkAF
kyFRkxFAFkx

11

01001 1
, (15) 

kdkMFkykxkF
kuMFkykxFkx

22

0202 1
. (16) 

Now, at the kth step and based on (3), future heat release, 
1ky can be predicted as

2 3 1 2( 1) ( 1) ( 1) ( ( ), ( ), ( ), ( ))y k x k CE k f x k x k y k u k ,(17)

where ))(),(),(),(( 213 kukykxkxf  is an unknown nonlinear 
function. 

B. NN Observer Design 
A neural network predicts the heat release in the 

subsequent time interval. The observer has 35 hidden layer 
nodes with sigmoid activation function. The heat release 
prediction error is utilized to design the system observer. 
From (17) 1ky  can be approximated by using a one 
layer NN as 

kzkzvwky TT
1111111 , (18) 

where 4
211 ,,, Rkukykxkxkz T  is the network 

input, matrices 1
1

nRw  and 14
1

nRv  represent target 
output and hidden layer weights, 1  represents the hidden 
layer activation function, 1n  denotes the number of the 
hidden layer nodes, and Rkz1  is the functional 
approximation error. As demonstrated in [12], if the hidden 
layer weight, 1v , is chosen initially at random and held 
constant and the number of hidden layer nodes is 
sufficiently large, the approximation error kz1  can be 
made arbitrarily small over the compact set since the 
activation function forms a basis. 

For simplicity define 
kzvkz T

11111 , (19) 
and

kzk 11 . (20) 
Given (19) and (20), (18) is re-written as 

kkzwky T
11111 . (21) 
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1) Observer Structure  
Since states kx1  and kx2  are not measurable, kz1  is 

not available either. Using the estimated values kx1ˆ ,
kx2ˆ , and kŷ  instead of kx1 , kx2 , and ky , the 

proposed heat release observer is given as 

1 1 1 1 1 1 1 1 1ˆ ˆ ˆˆ ˆ1 T T Ty k w k v z k l y k w k z k l y k ,(22)

where 1ˆ ky  is the predicted heat release, 1
1ˆ nRkw  are 

output layer weights, 4
211 ,ˆ,ˆ,ˆˆ Rkukykxkxkz T

is the network input, Rl1  is the observer gain, ky~  is the 
heat release estimation error, where 

kykyky ˆ~ , (23) 

and kz11 ˆ  represents kzvT
111 ˆ , for simplicity. 

Using the heat release estimation error, the proposed 
system observer is given as 

kylkyFRkxFAFkx ~ˆˆ1ˆ 201001 , (24) 
and

kylkuMFkykxFkx ~ˆˆ1ˆ 30202 , (25) 
where Rl2  and Rl3  are observer gains. Here, the initial 
value of 0u  is assumed to be bounded.  Equations (22), 
(24), and (25) represent the proposed system observer to 
estimate the states of kx1  and kx2 .

2) Observer Error Dynamics 
Let us define the state estimation errors as 

2,1ˆ~
iiii kxkxkx . (26) 

Combining (21) through (26), obtain the estimation error 
dynamics as 

kdkykFRkxkFkAF
kyFRlkxFkx

11

02101
~~1~

, (27) 

kdkMFkykxkF
kyFlkxFkx

22

03202
~~1~

, (28) 

and

kkzkwk

kkzkwkzkw

kkzwkylkzkwky

T

TT

TT

11111

1111111

11111111

~

~ˆ~

~ˆˆ1~

 (29) 

where
11ˆ~ wkwkw , (30) 

kzkwk T
1111 ˆ~ , (31) 

and, for simplicity, kz11
~  is kzkz 1111 ˆ .

C.  Adaptive NN Output Feedback Controller 
To stabilize the engine due to cyclic dispersion in heat 

release at lean conditions, the control objective is to drive 
the heat release toward the target operating point of dy .
Given dy  and the engine dynamics (1) through (5), we 
could obtain the operating point of total mass of air and fuel 
in the cylinder, dx1  and dx2 , respectively. By driving 

states kx1  and kx2  to approach their respective operating 
points dx1  and dx21 , ky  will approach the desired value 

dy .  Then the control objective is realized. With the 
estimated states kx1ˆ  and kx2ˆ , the controller design 
follows the backstepping technique detailed in the following 
sections.

1) Adaptive NN Output Feedback Controller Design 
Step 1:  Virtual controller design. Define system error as 

dxkxke 111 . (32) 
Combining with (1), (32) can be rewritten as 

1 1 1 1 1 2 1d de k x k x AF k F k x k x R F k CE k x k d k .(33)

For simplicity, denote 
dxkxkFkAFkf 111 , (34) 

and
kCEkFRkg1 . (35) 

Then the system error equation can be expressed as 
kdkxkgkfke 12111 1 . (36) 

By viewing kx2  as a virtual control input, a desired 
feedback control signal can be designed as

kg
kf

kx d
1

1
2 . (37) 

The term kx d2  can be approximated by the second NN as 

2 2 2 2 2 2 2 2
T T T

dx k w v x k x k w x k x k ,(38)

where the input is the state Tkxkxkx 21 , , 2
2

nRw

and 12
2

nRv  denote the constant ideal output and hidden 
layer weights, 2n  is the number of hidden layer nodes, the 
hidden layer activation function of the input and hidden 
layer weights, kxvT

22 , is abbreviated as kx2 , and 
kx2  is the approximation error. 

Since both kx1  and kx2  are unavailable, the 
estimated state kx̂  is selected as the NN input. 
Consequently, the virtual control input is taken as

kxkwkxvkwkx TTT
d ˆˆˆˆˆ 222222 , (39) 

where 2
2ˆ nT Rkw  is the actual weight matrix for the first 

action NN. Define the weight estimation error by 
222 ˆ~ wkwkw . (40) 

Define the error between kx2  and kx d2ˆ  as 
kxkxke d222 ˆ . (41) 

Equation (36) can be expressed using (41) for kx2 as
kdkxkekgkfke d 122111 ˆ1 , (42) 

or, equivalently, 
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kd
kxkxkw

kxkwke
kg

kdkxkxkekg
kdkxkxkxke

kgkfke

T

T

dd

ddd

1
22

222
1

12221

12222

111

ˆˆ

ˆ
ˆ

1

. (43) 

Similar to the calculation of (29), (43) can be further 
expressed as 

1 1 2 2 2 2 2 11 Te k g k e k k w x k x k d k ,(44)

where
kxkwk T ˆ~

222 , (45) 
and

kxkxwkxw TT
22222 ˆ~ . (46) 

Step 2:  Design of control input ku . Rewriting the error 
ke2  from (41) as 

kdkxkukMF
kxkFkCE

kxkxke

d

d

22

2

222

1ˆ
1

1ˆ11
, (47) 

for simplicity,  
kMFkxkFkCEkf 22 1 . (48) 

Equation (47) can be written as 
kdkxkukfke d 2222 1ˆ1 . (49) 

Here, the future value 1ˆ2 kx d  is not available in the 
current time step. However, from (37) and (39), observe that 

1ˆ2 kx d  is a smooth nonlinear function of the state kx
and the virtual control input kx d2ˆ . Consequently, 

1ˆ2 kx d  is assumed to be approximated by using another 
NN since a first order predictor is sufficient to obtain this 
value.  The feedforward NN with the proposed weight 
tuning generates a dynamic NN which is used to obtain the 
future value. Alternatively, a first order filter is used to 
obtain the value in [9]. 

Using the second action neural network, we can now 
select the desired control input as 

2 2 3 3 3 3 3 3 3 3 3 3 3ˆ 1 T T T
d du k f k x k w v z k z k w z k z k ,(50)

where 3
3

nRw  and 33
3

nRv  denote the constant ideal 
output and hidden layer weights, 3n  is the number of hidden 

layer nodes, the activation function kzvT
333  is 

abbreviated by kz33 , kz33  is the approximation 

error, and 3
3 Rkz  is the NN input, which is given by 

(51). Considering that both kx1  and kx2  cannot be 

measured, kz3  is substituted with 3
3ˆ ( )z k R , where

3
23 ˆ, Rkxkxkz T

d , (51) 
and

3
23 ˆ,ˆˆ Rkxkxkz T

d . (52) 
Define

dxkxke 111 ˆˆ , (53) 

and
dxkxke 222 ˆˆ . (54) 

The actual control input is now selected as 

kelkzkw

kelkzvkwku
T

TT

24333

243333

ˆˆˆ

ˆˆˆ
, (55) 

where 3
3ˆ nRkw  is the actual output layer weights, and 

Rl4  is the controller gain selected to stabilize the system. 
Similar to the derivation of (29), combine (49), (50), and 

(55) yielding 
2 4 2 3 3 3 3 3 3 2ˆ1 Te k l e k k w z k z k d k ,(56)

where
333 ˆ~ wkwkw , (57) 

kzkwk T
3333 ˆ~ , (58) 

and
kzkzwkzw TT

3333333 ˆ~ . (59) 
Equations (44) and (56) represent the closed-loop error 

dynamics.  It is necessary to show that the estimation errors 
(23) and (26), the system errors (44) and (56), and the NN 
weight matrices kw1ˆ , kw2ˆ , and kw3ˆ  are bounded. 

2)  Weight Updates for Guaranteed Performance 
Assumption 1 (Bounded Ideal Weights): Let 1w , 2w , and 

3w  be the unknown output layer target weights for the 
observer and two action NNs and assume that they are 
bounded above so that 

mm wwww 2211 , , and mww 33 ,  (60) 

where Rw m1 , Rw m2 , and Rw m3  represent the 
bounds on the unknown target weights where the Frobenius 
norm is used. 

Fact 1: The activation functions are bounded above by 
known positive values so that 

3,2,1, iimi , (61) 

where 3,2,1, iim  are the upper bounds. 
Assumption 2 (Bounded NN Approximation Error): The 

NN approximation errors kz11 , kx2 , and 
kz33  are bounded over the compact set by m1 , m2 ,

and m3 , respectively. 
Theorem 1:  Consider the system given in (1)-(3) and let 

the Assumptions 1 and 2 hold.  Let the unknown 
disturbances be bounded by mdkd 11  and mdkd 22 ,
respectively.  Let the observer weight tuning be given by  

kylkzkwkzkwkw T ~ˆˆˆˆ1ˆ 511111111 , (62) 
with the virtual control NN weight tuning be provided by  

kelkxkwkxkwkw T
16222222 ˆˆˆˆˆ1ˆ , (63) 

and the control input weight be tuned by 
kelkzkwkzkwkw T

2733333333 ˆˆˆˆˆ1ˆ ,(64)
where RRR 321 ,,  and Rl5 , Rl6 , and 
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Rl7  are design parameters. Let the system observer be 
given by (22), (24), and (25), virtual and actual control 
inputs be defined as (39) and (55), respectively. The 
estimation errors (27)-(29), the tracking errors (44) and (56), 
and the NN weights kw1ˆ , kw2ˆ , and kw3ˆ  are UUB 
provided the design parameters are selected as: 

(a) 3,2,1,10 2 ikii , (65) 

(b) 2
52

2
02

22

2
012

3 4
66

1 l
F
Fl

FR
FRl

l
mm

, (66) 

(c)
222

2
02

6 18
1,

18
1

min
RFR

F
l

m

, (67) 

(d)
3
1,

6
1

min6 2

2
02

7
2
4

mF
F

ll . (68) 

Remark 3: Given specific values of R , 0F , and mF , we 
can derive the design parameters of li, i=1,6,7. For instance, 
given R=14.6, 0F =0.14, and mF =0.02, we can select 
l1=1.99, l2=0.13, l3=0.4, l4=0.14, l5=0.25, l6=0.016, and 
l7=0.1667 to satisfy (66)-(68). 

Remark 4: Given the hypotheses, this proposed neuro-
output NN control scheme and the weight updating rules in 
Theorem 1 with the parameter selection based on (65) 
through (68), the state kx2  approaches the operating point 

dx2 .
Remark 5: It is important to note that in this theorem there 

is no persistence of excitation condition, certainty 
equivalence and linearity in the unknown parameter 
assumptions for the NN observer and NN controller. In the 
proof, the Lyapunov function consists of the observer 
estimation errors, system errors, and the NN estimation 
errors and therefore separation principle is not used. The 
proof obviates the need for the certainty equivalence 
assumption, and it allows weight-tuning algorithms to be 
derived during the proof, not selected a priori. 

III. REINFORCEMENT WEIGHT UPDATING

   In this section, we develop alternate weight updating 
rules based on reinforcement learning where actor-critic 
architecture is utilized. The critic NN is trained online to 
approximate the strategic utility function (long-term system 
performance index). Then the critic signal, with a potential 
for estimating the future system performance, is employed to 
tune the two action NNs to minimize the strategic utility 
function and the unknown system estimation errors so that 
closed-loop stability is inferred. 

A. The Strategic Utility Function 
   The utility function kp  is defined based on the 
current system errors and it is given by 

1 2ˆ ˆ0,

1,

if e k e k c
p k

otherwise

,                              (69) 

where c  is a pre-defined threshold. The utility function 
kp  is viewed as the current system performance index; 

0kp and 1kp refers to the good and poor tracking 
performance respectively.  
   The long-term system performance measure or the 
strategic utility function kQ , is defined as

NpkpkpkQ kNN 11 21 ,         (70) 
where  and 10 , and N  is the depth or horizon. 
The term kQ  is viewed here as the future system 
performance measure. 

B. Design of the Critic NN 
     The critic NN is used to approximate the strategic utility 
function kQ . We define the prediction error as 

kpkQkQke N
c 1ˆˆ ,            (71) 

where the subscript “c” stands for the “critic” and
kkwkxvkwkQ TTT

33333 ˆˆˆ ,           (72) 

and kQ̂  is the critic signal, 3
3ˆ nkw  and 

32
3

nv represent the matrix of weight estimates, 
3

3
nk  is the activation function vector in the hidden 

layer, 3n  is the number of the nodes in the hidden layer, and 
the critic NN input is given by 2x̂ k . The objective 
function to be minimized by the critic NN is defined as 

kekE cc
2

2
1 .                          (73) 

   The weight update rule for the critic NN is a gradient-
based adaptation, which is given by 

kwkwkw 333 ˆˆ1ˆ ,               (74) 
where

kw
kEkw c

3
33 ˆ

ˆ ,                   (75) 

or
TN kQkpkQkkwkw 1ˆˆˆ1ˆ 1

3333
, (76) 

where 3  is the NN adaptation gain. 

C. Weight Updating Rule for the First Action NN 
   The first action NN kkwT

11ˆ weight is tuned by using the 
functional estimation error, k1

, and the error between the 
desired strategic utility function kQd

 and the critic signal 

kQ̂ .  Define 
)ˆ(11 kQkQkke da
,             (77) 

where k1
 is defined in (31), kea1

, and the subscript 
“a1” stands for the “first action NN”.
   The value for the desired strategic utility function kQd

 is 
taken as “0” [9], i.e., to indicate that at every step, the 
nonlinear system can track the reference signal well. Thus, 
(34) becomes 

kQkkea
ˆ

11
,                    (78) 

   The objective function to be minimized by the first action 
NN is given by 
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kekE aa
2
11 2

1 ,                        (79) 

    The weight update rule for the action NN is also a 
gradient-based adaptation, which is defined as 

kwkwkw 111 ˆˆ1ˆ ,             (80) 
where

kw
kEkw a

1

1
11 ˆ

ˆ ,                     (81) 

or
kkQkkwkw 11111

ˆˆ1ˆ ,    (82) 
where 2  is the NN adaptation gain. 
     The NN weight updating rule in (82) cannot be 
implemented in practice since the target weight 1w  is 
unknown. However, using (18), the functional estimation 
error k1 is given by 

1 1 1 1 2 1 1ˆ ˆ ˆ1k e k l e k e k x k d k .  (83) 

Substituting (83) into (82), we get 

kQkkwkw ˆˆ1ˆ 1111

1 1 1 1 1 2 1 1ˆ ˆ ˆ1k e k l e k e k x k d k .              (84) 

   Assume that bounded disturbance kd1 and the NN 
approximation error kx1

 are zeros for weight tuning 
implementation, then (84) is rewritten as 

kQkkwkw ˆˆ1ˆ 1111 1 1 1 1 1 2ˆ ˆ ˆ1k e k l e k e k .   (85) 

   Equation (85) is the adaptive critic based weight updating 
rule for the first action NN. Similarly, the weight updating 
rule for the second action NN kkwT

22ˆ  is given next. 

D. Weight Updating Rule for the Second Action NN 
   Define 

kg
kQkkgkea

2
222

ˆ ,              (86) 

where k2  is defined in (45), kg2
 and kea2 ,

the subscript “a2” stands for the “second action NN”. 
Following the similar design procedure and taking the 
bounded unknown disturbance kd2

 and the NN 
approximation error kz2

 to be zeros, the second action 
NN kkwT

22ˆ  weight updating rule is given by 

2 2 2 2 2 2 2
ˆˆ ˆ ˆ ˆ1 1w k w k k Q k e k l e k ,      (87) 

One can use these weight tuning schemes and prove the 
closed-loop stability. 

IV. CONTROLLER HARDWARE DESIGN

The research engine on which the controller operates is 
motored at 1000 RPM, and fires one cylinder to eliminate 
the dynamics introduced by multiple cylinders. Shaft 
encoders are mounted on the cam and crank shafts that 
return start-of-cycle and crank angle signals, respectively. 
There are 720° of crank angle per engine cycle, so a crank 
angle degree is detected every 167 microseconds.  

Heat release for a given engine cycle is calculated by 
integrating in-cylinder pressure and volume over time.  In-
cylinder pressure is measured from the engine every half 
crank angle degree before, during, and after combustion, 
which is a cycle window from 345° to 490°, for a total of 
290 pressure measurements. At 1000 RPM pressure 
measurements must be made every 83.3 microseconds.  

The control input is an adjustment to the nominal fuel 
required at a given equivalence ratio. Fuel injection is 
controlled by a TTL signal to a fuel injector driver circuit 
equipped with the engine. Pressure measurements come 
from a charge amplifier which receives pressure transducer 
signals from within the cylinder. 

An engine-to-PC interface board was designed to manage 
the shaft encoder signals, pressure measurements, and fuel 
injector signal since timing is crucial to correct engine 
operation. The board uses a microcontroller to communicate 
between the TTL and analog signals of the engine hardware 
and a parallel digital I/O port of the PC. A high speed 8-bit 
A/D converts the pressure measurements. Pressure 
measurements are sent to the PC where they are used to 
calculate heat release that is inputted to the controller 
algorithm. Fuel pulse width is adjusted from the nominal 
value according to the value returned from the controller 
algorithm and sent to the microcontroller.  The received fuel 
pulse width is used in the following engine cycle. 

The controller algorithm and data structures are 
implemented in C and compiled to run on an x86 PC.  The 
hidden layer nodes parameter n was set to 35 for all of the 
NN for controller compilation. This value was chosen after 
experimentation showed that more nodes give no further 
improvement and that the hardware was sufficiently capable 
of processing the networks. Configuration files allow the 
controller gains and engine parameters to be modified 
without recompiling. 

V. EXPERIMENTAL RESULTS

The engine load is not varied during experimentation so 
that the performance of the controller on reducing emissions 
can be observed at a desired operating point. At 1000 RPM 
the pressure in the intake manifold is around 80 kPa which 
is roughly a mid-load operating condition. Full load would 
be atmospheric pressure and low load would be around 40 
kPa. Since the controller is working to reduce effects of the 
unknown non-linear dynamics caused by residuals left in the 
cylinder after combustion, the engine speed was held 
constant.

Before activating the controller, air flow is measured and 
nominal fuel is calculated for the desired equivalence ratio 
by 

AF
MFR , (88) 

where MF is nominal mass of fuel and AF is nominal mass 
of air. The nominal fuel and air are loaded into the controller 
configuration.  During data acquisition, ambient pressure is 
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measured when the exhaust valve is fully open at 600° and 
used to calibrate the pressure measurements. This is 
necessary to remove any bias generated by the charge 
amplifier from which pressure is measured. 

Uncontrolled and controlled heat release data were 
collected at equivalence ratios 0.79, 0.77, and 0.75.  NOx

and unburned hydrocarbons (uHC) emissions data were also 
collected for both uncontrolled and controlled engine 
operation.

“Uncontrolled” means the controller algorithm was not 
used to modify the fuel injected for each cycle, but the 
amount of fuel to be injected was set to a nominal value. 
“Controlled” comes from the controller modifying the fuel 
injector pulse width for every cycle. The engine ran for 
3,000 cycles uncontrolled, and then 5,000 cycles with the 
control. Before collecting data the engine was allowed to 
reach a steady state for each set point according to stable 
exhaust temperature. 
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Fig. 1. Time series of heat release at equivalence ratio 0.77. 
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Fig. 2. Return maps of heat release at equivalence ratio 0.77. 

Heat release data is shown in time series and return maps. 
Time series show the heat release data for the last 500 cycles 
without control and for the first 500 cycles with control. 
This illustrates the change in heat release when control is 
activated. Return maps of heat release are the current cycle 
of heat release plotted against the next cycle of heat release. 
This shows the heat release on a per-cycle-basis as well as 
the general cyclic dispersion.  For fair comparison of cyclic 
dispersion, 3,000 cycles are used to create the uncontrolled 
return map and 3,000 cycles for the controlled return map. 

On each return map of controlled data, the percentage 
increase in equivalence ratio during control is due to the 
mean value of fuel increasing from the nominal value 
injected for the cycles without controller operation.

Fig. 1 shows the time series of heat release for an 

equivalence ratio of 0.77. At index k=0 the controller is 
activated, and mean heat release increases. Note that heat 
release increases when control is activated, and there are 
fewer misfires. In Fig. 2 return maps of the uncontrolled and 
controlled heat release are plotted next to each other. Both 
the return maps exhibit cyclic dispersion, however, with 
control the dispersion has decreased. This fact is emphasized 
by the lower coefficient of variation (COV) of indicated 
work per cycle calculated for each return map.   

Note that heat release appears to be much higher than 
average after a misfire or partial burn. This stronger-than-
average burn can be explained by residual fuel left over in 
the cylinder from the previous cycle that experienced the 
weak burn. This results in more fuel to burn for the next 
cycle causing a higher heat release since the engine is 
operating lean. At this equivalence ratio, coefficient of 
variation decreases from 38.7% to 13.6% when control has 
been applied. A decrease in cyclic dispersion is shown by 
the drop in coefficient of variation (COV). 
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Fig. 3. Time series of heat release at equivalence ratio 0.75. 
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Fig. 4. Return maps of heat release at equivalence ratio 0.75. 

Fig. 3 is a time series of heat release plot like that of Fig. 
1, but the equivalence ratio has been lowered to 0.75. Notice 
that the heat release has become more unstable both with 
and without control.  As equivalence ratio is further 
decreased, heat release becomes so unstable that misfires 
and partial burns are more prevalent than proper fires.  Fig. 
4 is the set of uncontrolled and controlled return maps 
obtained at equivalence ratio 0.75.  Note that the COV 
decreases when control is applied.  The cyclic dispersion 
decrease is evident. 

The COV for all of the uncontrolled and controlled heat 
release return maps is shown in Table 1. For each 
equivalence ratio, the uncontrolled COV is greater than the 
uncontrolled COV since cyclic dispersion reduced when 
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control was applied. The most significant decrease in cyclic 
dispersion was observed at an equivalence ratio 0.77. This 
reduction is dispersion translated into a drop of 30% in 
measured unburned hydrocarbons compared to the 
uncontrolled case at an equivalence ratio of 0.77.  Measured 
NOx values decreased by around 98% from levels at 
stoichiometric conditions. 

TABLE 1. COEFFICIENT OF VARIATION FOR LEAN SET-POINTS

set-point Uncontrolled
COV

Controlled 
COV

0.79 0.2302 0.2047 
0.77 0.3851 0.1364 
0.75 0.4631 0.2073 

TABLE 2. EMISSIONS DATA FOR LEAN SET-POINTS

set-point (u) NOx
(PPM)

(c) NOx
(PPM)

(u) uHC 
(PPM)

(c) uHC 
(PPM)

0.79 159.01 351.17 81.417 77.678 
0.77 92.833 48.199 387.31 283.70 
0.75 130.00 54.512 913.29 386.09 

Emissions data are given in Table 2. Exhaust gas 
analyzers were used to measured parts-per-million (PPM) of 
nitrogen oxides (NOx) and PPM C3 unburned hydrocarbons 
(uHC). The (u) and (c) prefixes in the column headings 
stand for uncontrolled and controlled, respectively. Looking 
at the uncontrolled and controlled data independently uHC 
increases as equivalence ratio decreases due to more 
abundant partial fuel burns. NOx decreases at lower 
equivalence ratios because of lower combustion 
temperatures. uHC will tend to increase as equivalence ratio 
is decreased because of higher cyclic dispersion resulting 
from misfires and partial burns. To reduce uHC at lower 
equivalence ratios, cyclic dispersion must be decreased.  

VI. CONCLUSIONS

The spark ignition engine controller aims to decrease 
emissions by reducing cyclic dispersion encountered during 
lean operation. Both in model simulation and engine 
experimentation the controller minimizes estimated heat 
release error given by (23) returning a noticeable decrease in 
cyclic dispersion. Although model heat release output 
cannot exhibit all the nonlinearities of actual engine heat 
release, the controller is still able to reduce heat release 
error.  Correlating the reduction in cyclic dispersion to the 
measured values of NOx and unburned hydrocarbons, it is 
clear that a modest drop in emission products is observed 
between controlled and uncontrolled scenarios and a 
significant drop in NOx from stoichiometric levels. 
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