
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Apr 2008

Design and Implementation of FPGA Configuration Logic Block Design and Implementation of FPGA Configuration Logic Block

Using Asynchronous Static NCL Using Asynchronous Static NCL

Waleed K. Al-Assadi
Missouri University of Science and Technology, waleed@mst.edu

T. Tammina

Scott C. Smith
Missouri University of Science and Technology

Indira P. Dugganapally

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
W. K. Al-Assadi et al., "Design and Implementation of FPGA Configuration Logic Block Using
Asynchronous Static NCL," Proceedings of the IEEE Region 5 Conference, 2008, Institute of Electrical and
Electronics Engineers (IEEE), Apr 2008.
The definitive version is available at https://doi.org/10.1109/TPSD.2008.4562766

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229174151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1532&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1532&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TPSD.2008.4562766
mailto:scholarsmine@mst.edu

Design and Implementation of FPGA Configuration

Logic Block Using Asynchronous Static NCL

Indira P. Dugganapally, Waleed K. Al-Assadi, Tejaswini Tammina and Scott Smith*

Department of Electrical and Computer Engineering,

Missouri University of Science and Technology

301 W. 16th. Street, Rolla, MO 65409-0040

* Department of Electrical Engineering

University of Arkansas, Fayetteville, AR 72701

Abstract -This paper proposes the design of a FPGA

Configurable Logic Block (CLB) using Asynchronous Static

NULL Convention Logic (NCL) Library. The proposed design

uses three static LUT’s for implementing NCL logic functions.

Each LUT can be configured to function as any one of the 27

fundamental NCL Static gates. The proposed CLB supports 10

inputs and three different outputs, each with resettable and

inverting variations. The CLB has two modes: Configuration

mode and Operation mode. The Static NCL FPGA CLB is

simulated at the transistor level using the 1.8V, 180nm TSMC

CMOS process.

Keywords: Configurable Logic Block (CLB), Field

Programmable Gate Array (FPGA), NULL Convention

Logic (NCL), Look Up Table (LUT).

I. INTRODUCTION

Synchronous Digital designs have been the primary focus

of the Semiconductor Industry for the past few decades. But

with an increasing demand for power efficient, higher

performance and noise resistant design techniques, the

advantages offered by an asynchronous logic paradigm such

as Null Convention Logic (NCL) is not to be neglected. To

achieve higher performance, chips must dedicate increasingly

larger portions of their area for clock drivers to achieve

acceptable skew, assuming normal fabrication process

variations, causing these chips to dissipate increasingly higher

power, especially at the clock edge when switching is most

prevalent.

The size of FPGAs is now more than 1 million equivalent

gates, making them a viable alternative to custom design for

all but the most complex processors. FPGAs are relatively

low-cost and are reconfigurable, making them perfect for

prototyping, as well as for implementing the final design,

especially for low volume production. To compete with this

cheap, reconfigurable synchronous implementation, an NCL-

specific FPGA is needed, such that NCL circuits can be

efficiently implemented without necessitating a prohibitively

expensive full-custom design. This will become increasingly

important as asynchronous paradigms become more widely

used in the industry to increase circuit robustness, decrease

power, and alleviate many clock-related issues, as predicted

by the International Technology Roadmap for Semiconductors

(ITRS). The 2005 ITRS estimates that asynchronous circuits

will account for 19% of chip area within the next 5 years, and

30% of chip area within the next 10 years.

II. NCL OVERVIEW

NCL is a self timed logic paradigm in which control is

inherent in every datum. NCL follows the weak conditions of

Seitz’s delay insensitive signaling scheme that “all inputs of a

combinational circuit must be null before all outputs become

null” along with the condition that “all inputs of the circuit

must be data before all outputs become data”. By these

conditions the self timed operation or delay insensitivity is

ensured. The first condition is ensured by using inbuilt

hysteresis in the basic NCL gates and second condition is

obtained by an intelligent circuit design that is both input

complete and observable.

NCL circuits are comprised of 27 fundamental gates. These

27 gates comprise the set of all functions consisting of four or

fewer variables. Since each rail of NCL is considered a

separate variable, a four variable function is not the same as a

function of four literals, which in normal case would consist

of 8 variables. The primary type of Threshold gate is the

THmn gate where 1 m n. THmn gates have n inputs. At

least m of the n inputs should be asserted before the outputs

become asserted and hence m is a threshold. Each of the n

inputs is connected to the rounded part of the diagram in

figure representation and the output emanates from the pointed

end. The gates threshold m, is represented inside the gate as a

label. Another type of threshold gate is the weighted threshold

gate THmnWw1w2…wR. Weighted threshold gates have an

integer value m wR > 1 applied to input R. Here 1 R < n

where n is the number of inputs; m is the threshold; and w1,

w2, w3…, wR each >1, are the integer weights of input1,

input2, input R, respectively. For example, consider Th34W2

gate, whose n=4 inputs are labeled A, B, C and D as shown in

fig. 1. The weight of A is 2. Since gates threshold is 3, this

implies that in order for the output to be asserted, either inputs

B, C, D must all be asserted or input A should be asserted

along with any other inputs B, C, D. Like mentioned earlier,

978-1-4244-2077-3/08/$25.00 ©2008 IEEE.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 12, 2008 at 11:42 from IEEE Xplore. Restrictions apply.

NCL gates are designed with state holding capability called

hysteresis, such that all inputs must be de-asserted before

outputs become de-asserted. This ensures a complete

transition of inputs back to null before asserting the output

with the inputs wave front of the next data set. NCL gates may

also include a RESET input to initialize the gate output to 0 or

1. Circuit diagrams designate this by denoting a d or n after

the threshold label inside the gate. A d represents that output

rail is reset to data or 1 and an n indicates that output is reset

to null or 0.

Fig. 1: TH34W2 weighted gate

TABLE I

27 FUNDAMENTAL NCL GATES

A. Static NCL Library
 The NCL Static Library consists of the static

implementation of 27 fundamental NCL gates given in Table

1. The NCL threshold gates are designed with hysteresis state-

holding capability, such that after the output is asserted, all

inputs must be de-asserted before the output will be de-

asserted. Therefore, NCL gates have both set and hold

equations, where the set equation determines when the gate

will become asserted and the hold equation determines when

the gate will remain asserted once it has been asserted. The set

equation determines the gate’s functionality as one of the 27

NCL gates, as listed in Table 1, whereas the hold equation is

the same for all NCL gates, and is simply all inputs ORed

together. The general equation for an NCL gate with output Z

is: Z = set + (Z* • hold), where Z* is the previous output value

and Z is the new value. Take the TH23 gate for example. The

set equation is AB + AC + BC, as given in Table I, and the

hold equation is A + B + C; therefore the gate is asserted when

at least 2 inputs are asserted and it then remains asserted until

all inputs are de-asserted. To implement an NCL gate using

CMOS technology, an equation for the complement of Z (i.e.

Z’) is also required, which in general form is: Z’ = reset +

(Z*’ • set’), where reset is the complement of hold (i.e., the

complement of each input, ANDed together), such that the

gate is de-asserted when all inputs are de-asserted and remains

de-asserted while the gate’s set condition is false. For the

TH23 gate, the reset equation is A’B’C’ and the simplified

set’ equation is A’B’ + B’C’ + A’C’. Directly implementing

these equations for Z and Z’, after simplification, yields the

static transistor-level implementation of an NCL gate, as

shown in Fig. 2 for the TH23 gate. This requires the output, Z,

to be fed back as an input to the NMOS and PMOS logic to

achieve hysteresis behavior. Due to the large transistor count

they also dissipate more Power as compared to Semi-Static

NCLgates.

Fig. 2: Static CMOS implementation of TH23 gate

Z=AB+BC+AC

III. PREVIOUS WORK

 There have been a number of asynchronous FPGAs

developed over the past 10+ years [2-9]. MONTAGE [2] was

developed to support both synchronous and asynchronous

circuits. STACC [3] targets bundled data systems in which

there are separate data and control paths where the delay in the

data path must be matched in the control path. To implement

this delay matching, both architectures include some sort of

programmable delay element. MONTAGE [2] both use a

lookup table (LUT) based design, where the output is fed back

as one of the inputs, to implement the C-element's state-

holding capability. STACC [3] is based on fine grain FPGA

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 12, 2008 at 11:42 from IEEE Xplore. Restrictions apply.

architectures where the global clock is replaced by an array of

timing-cells that generate local register control signals. These

systems rely heavily on the placement and routing tools to

yield a functional FPGA circuit, where all delays are correctly

matched. Another type of asynchronous FPGA uses a

programmable phased logic cell [4], [5]. In an effort to design

a delay-insensitive, reconfigurable logic device, Theseus

Logic developed an FPGA based on the Atmel AT40K family

[9]. The design involved replacing the D-type Flip Flop within

each logic block with a threshold-configurable NCL THm4

gate, and removing the associated clock trees from the original

design. Atmel’s routing algorithm for this chip was then

modified to convert an NCL gate-level schematic to a bit

stream to program the FPGA. This method is advantageous in

that it reuses a proven architecture, but the design only utilizes

a fraction of the NCL threshold gates, thus increasing area and

delay for realizing most non-trivial NCL circuits. It also has

the disadvantage of being unable to use all of the LUTs in the

FPGA, thus resulting in inefficient resource utilization [9]. A

more efficient configurable logic element for an NCL FPGA

was presented in [1].

IV. CLB DESIGN AND IMPLEMENTATION

 The proposed CLB design supports 10 logical input

variables (A, B, C, D, E. F, G, H, Din_0, Din_1) and supports

three different outputs (X, Y and Z). Each output comes with

resettable and inverting variations. Fig. 3 shows CLB block

diagram. The CLB consists of: 3 x Static LUT, Decoder,

Output Reset logic, Output Inversion logic, Programmable

Muxes. The CLB has two modes which are Configuration

and operating mode. In Configuration mode the 3 LUT’ s are

programmed to implement different or similar functions and

Output reset, Inversion logic along with the programmable

muxes are also configured. Once configured the CLB is ready

for operation and should operate as the programmer wants it

to. The configuration scheme is explained in detail in further

sections.

A. Static LUT
 The reconfigurable logic portion consists of a 5 bit-

address LUT, shown in fig. 4. The static LUT contains 27

NCL static fundamental gates shown in fig. 4, and 28

multiplexers (MUX). The gate inputs, A, B, C, and D, are

connected to each of the 27 gates and the programmed Dp

value decides which output to pass to the LUT output through

the MUX logic. Since all gate inputs (i.e. A, B, C, and D) are

connected to a series of NCL static gates, the LUT function

output will be logic 1 only when the selected gate’s output is

logic 1. The LUT is outputting logic 0 for Address 0. There is

no hysteresis logic as the Static gates are designed with

internal feedback.

 To configure this LUT as a specific NCL gate, the LUT

should be programmed with corresponding Dp for any set of

inputs corresponding to the gate’s set condition, shown in fig.

2. Take for example a TH23 gate, whose equation is AB + AC

+BC. The LUT should be programmed with Dp = “00111”.

The LUT outputs logic 1 for the following four input patterns:

ABC = 011, 101, 110, and 111, which correspond to setting

condition of TH23 gate. The other four combinations ABC =

000, 001, 010, and 100, corresponding to logic 0 output for

gate TH23 based on its previous state.

 For gates with less than four inputs, the unused inputs

are not connected. Hence, for the TH23 gate, D would be

unconnected to TH23 gate. The LUT mentioned in the fig.2

correspond to the static LUT’s.

 Fig. 3: Static CLB Block Diagram.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 12, 2008 at 11:42 from IEEE Xplore. Restrictions apply.

 Fig. 4: 4-input Static LUT

B. Decoder
 The decoder operates in the Programming mode of the

CLB i.e. when P is asserted. Since we have 3 LUT’s each of

which has a 5 bit programming input Dp, to reduce the

number of CLB programming inputs we have designed a

decoder. The decoder depending on the two bit input select

line muxes the input Dp values to the corresponding LUT.

TABLE II

VALUES OF SELECT INPUTS CORRESPONDING TO LUT

 Select

 Line

 Selected

 Output
 “00” LUT 1

 “01” LUT 2

 “10” LUT 3

 “11” Programmable muxes, Reset Value and

Output inversion per output setting.

The decoder can be described as two different parts. The

following fig. 5 (a) shows decoder hardware for a single input

Dp bit for the three LUTs and the fourth th44 gate’s output is

used for output inversion of one of the three outputs. As seen,

when P is set, the first three Th44 gates get selected depending

on Psel1 and Psel0 and the programming bit is passed to the

LUT. If Psel[1:0] is driven with value “00”,Dp[5:1] is updated

depending upon the function to be implemented in LUT1. The

LUT2 and LUT3 are configured similarly with Psel[1:0]

values being “01” and “10” respectively for their configuring.

When Psel[1:0] value is “11” , the fourth Th44 gate output

decides whether the output inversion takes place or not. Since

there are five programming inputs, five sets of four Th44 gates

should be present. The fourth output of three sets give the

output inversion of three outputs and the fourth and fifth

outputs tells us whether the circuit is reset or not (rst) and the

reset value (Rv). Deassertion of signal P activates the fourth

Th44 gates and also the MUX logic shown in fig. 5(b). The

four select lines for four 2:1 muxes and two select lines for

one 4:1 mux are given as inputs to the decoder can program

the muxes only when P is 0. In this way the Programming of

the LUTs and the multiplexers can be done by using the

decoder.

 Fig. 5(a)

 Fig. (b)
Fig. 5(a) & (b): Decoder logic for Single i/p Dp bit.

C. Output Reset and Inversion Logic, Programmable

muxes
 The proposed CLB has reset logic per output port. The

Reset circuit is show below in fig. 6. The reset logic consists

of a programmable latch and transmission gate MUX. During

the programming phase when P is asserted (nP is deasserted),

the latch stores the value, Rv, that the gate will be reset to

when rst is asserted. rst is the MUX select input, such that

when it is logic 0, the output of the PUPD function passes

through the MUX to be inverted and output on Z; and when rst

is logic 1, the inverse of Rv is passed through the MUX. In

this way the CLB provides the user the option of resetting the

output ports.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 12, 2008 at 11:42 from IEEE Xplore. Restrictions apply.

Fig. 6: Output Inversion and Reset Logic

The proposed CLB has inversion and hysteresis logic per

output port. The Reset circuit is show above in fig. 6. The

output inversion logic also consists of a programmable latch

and transmission gate MUX. The programmable latch stores

Inv during the programming phase, which determines if the

gate is inverting or not. There is no need for hysteresis logic as

the hysteresis logic is already implemented in each of the 27

fundamental Static gates used to make the LUT. The output

and its inverted value are both fed as data inputs to the MUX,

so that either the inverted or non-inverted value can be output,

depending on the stored value of Inv, which is used as the

MUX select input. The CLB design includes 5 programmable

muxes so that the user has possible combinations at the

outputs. During the programming phase i.e signal P asserted

and nP deasserted when the Decoder select lines are “11’’, the

select lines for these programmable muxes are driven. The

user can have a combination of Din_0, LUT1 output, LUT2

output, LUT3 output at the output ports. For example consider

a case where LUT1 is configured as AND gate, LUT2 as OR

gate, LUT3 as XOR gate and the user can have a combination

of LUT1, LUT3 and LUT2 output at X, Y and Z by

programming the muxes accordingly.

D. CLB Implementation
 A schematic for the Static CLB Design was created

using the Mentor Graphics tool “Design Architect”. Each

module of the CLB was designed separately and simulated

using the “Accusim” tool. The symbols for all the modules

were generated. Finally the entire CLB schematic was created

by joining the individual symbols. The Physical layout for the

proposed CLB design was manually constructed and routed

using the Mentor Graphics IC Station tool using a 1.8V,

180nm TSMC CMOS process. As this tool is optimized for

standard libraries, we had to manually add NCL cells and

route them. Due to the complexity of the design five metals

have been used. The VDD and GND port have been made on

metal 1. The layout is as shown in fig. 7 below.

Fig. 7: Layout of the CLB

V. SIMULATION AND RESULTS

 The CLB net-list was simulated using Mentor Graphics

tools ELDO and Ezwave. Estimated Area is 8197.5x4203 2

which is 737.775 x 378.27 (nm2), since the value of for

180nm technology is 0.09.The Total Power Dissipation of a

single LUT has been calculated to be 2.7747E-09 Watts. For

the total CLB, the power dissipation was calculated to be

9.1719E-06 Watts. The propagation delay was found to be

1.79 ns. Fig. 8 shows ELDO simulation of this CLB in which

LUT1 is programmed as Th44 gate, LUT2 is programmed as

Th54w22 gate and LUT 3 is programmed as Th12 gate. The

multiplexers have been given select lines in the following

order: M1=1, M2=1, M3=0, M4=0, M5=1, M6=1 and the rst

is kept ‘0’. The input Din_1 is kept 0 for 210ns and then it is

made high. The input Din_0 is kept 1 for 200ns and then it is

made low. This configuration makes the output X to be the

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 12, 2008 at 11:42 from IEEE Xplore. Restrictions apply.

output of LUT1, output Y to be output of LUT 3 and Z to be

output of LUT 2. During the simulation, we make our

programming input P go high from 10 to 60 ns and then low

till 110ns and high from 110 to 160 ns and then low till 210ns

and high till 260ns and then is made low for the whole of

simulation time. In the three parts where P is high, we select

PSel lines such that three LUTs get configured one after the

other. We give the programming inputs Dp_1 to Dp_5 such

that the LUT1 gets configured for Th44 gate, that is, Dp(5:1)

is “10101” , LUT2 is configured for Th54w22 gate, that is,

Dp(5:1) is “10110” and LUT3 is configured for Th12 gate,

that is, Dp(5:1) is “00000”. Now depending on the inputs A

through H and Din(1:0), we get the outputs X, Y and Z. The

simulation results are as shown in the fig. 8.

Fig. 8: Simulation Results after running Eldo

Scale: 1 unit = 10 ns

VI. CONCLUSION AND FUTURE WORK

 As the semester project in MST’s graduate-level VLSI

course, we designed and implemented a Static FPGA CLB

using Asynchronous Static NCL library at all levels of

abstraction, from Design schematic to layout, using semi-

static NCL gates. The CLB was configured for three different

outputs and was successfully simulated and verified to be

functionally correct. Furthermore, all of the major system

components were implemented, simulated, and verified at the

transistor-level and physical-level. However, due to tool

problems and time constraints, the system implementation at

the physical level was not optimized for area and power.

Future work includes optimizing the design for area and

power. Also the results can be verified for further complex

configurations. Additional topics that need further

investigation, but are beyond the scope of this paper, include

the overall FPGA architecture, switching matrix, and the

FPGA interconnect strategy. Possible choices for overall

architecture include island-style or hierarchical. Alternative

numbers of LUTs and connection of LUTs within a CLB need

to be studied. The overall FPGA interconnect grouping needs

to be researched.

ACKNOWLEDGMENT

This work was supported partly by the National Science

Foundation under grant DUE 071776.

REFERENCES

[1] S. C. Smith, "Design of Logic Element for implementing an

Asynchronous FPGA." IEEE Transactions on VLSI Systems, Vol. 15/6,

June 2007.

[2] S. Hauck, S. Burns, G. Borriello, and C. Ebeling, “An FPGA for

Implementing Asynchronous Circuits,” IEEE Design & Test of

Computers, Vol. 11, No. 3, pp 60-69, 1994.

[3] R. E. Payne, “Self-Timed FPGA Systems,” 5th International Workshop

on Field Programmable Logic and Applications,” pp. 21-35, 1995.

[4] C. Traver, R. B. Reese, and M. A. Thornton, “Cell Designs for Self-

Timed FPGAs,” 14th Annual IEEE International ASIC/SOC

Conference, pp. 175-179, 2001.

[5] M. Aydin and C. Traver, “Implementation of a Programmable Phased

Logic Cell,” 45th Midwest Symposium on Circuits and Systems, Vol. 2,

pp. 21-24, 2002.

[6] J. Teifel,R, Manohar, “An Asynchronous Dataflow FPGA

Architecture,” IEEE Transactions on Computers, Vol. 53, No. 11,

pp.1376-1392, 2004

[7] C. G. Wong, A. J. Martin, and P. Thomas, “An Architecture for

Asynchronous FPGAs,” IEEE International Conference on Field

Programmable Technology, pp. 170-177, 2003.

[8] R. Manohar, “Asynchronous Reconfigurable Logic,” Custom Integrated

Circuits Conference, 2006.

[9] K. Meekins, D. Ferguson, M. Basta, “Delay Insensitive NCL

Reconfigurable Logic,” IEEE Aerospace Conference, Vol. 4, pp. 1961-

1966, 2002.

[10] D. H. Linder and J. H. Harden, “Phased logic: supporting the

synchronous design paradigm with delay-insensitive circuitry,” IEEE

Transactions on Computers, Vol. 45/9, pp. 1031-1044, 1996.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 12, 2008 at 11:42 from IEEE Xplore. Restrictions apply.

	Design and Implementation of FPGA Configuration Logic Block Using Asynchronous Static NCL
	Recommended Citation

	Design and implementation of FPGA configuration logic block using asynchronous static NCL Region 5 Conference

