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Design and Implementation of FPGA Configuration 

Logic Block Using Asynchronous Static NCL

Indira P. Dugganapally, Waleed K. Al-Assadi, Tejaswini Tammina and Scott Smith*  

Department of Electrical and Computer Engineering, 

Missouri University of Science and Technology  

301 W. 16th. Street, Rolla, MO 65409-0040 

* Department of Electrical Engineering 

University of Arkansas, Fayetteville, AR 72701 

Abstract -This paper proposes the design of a FPGA 

Configurable Logic Block (CLB) using Asynchronous Static 

NULL Convention Logic (NCL) Library. The proposed design 

uses three static LUT’s for implementing NCL logic functions. 

Each LUT can be configured to function as any one of the 27 

fundamental NCL Static gates. The proposed CLB supports 10 

inputs and three different outputs, each with resettable and 

inverting variations. The CLB has two modes: Configuration 

mode and Operation mode. The Static NCL FPGA CLB is 

simulated at the transistor level using the 1.8V, 180nm TSMC 

CMOS process. 

Keywords: Configurable Logic Block (CLB), Field 

Programmable Gate Array (FPGA), NULL Convention 

Logic (NCL), Look Up Table (LUT). 

I. INTRODUCTION 

Synchronous Digital designs have been the primary focus 

of the Semiconductor Industry for the past few decades. But 

with an increasing demand for power efficient, higher 

performance and noise resistant design techniques, the 

advantages offered by an asynchronous logic paradigm such 

as Null Convention Logic (NCL) is not to be neglected. To 

achieve higher performance, chips must dedicate increasingly 

larger portions of their area for clock drivers to achieve 

acceptable skew, assuming normal fabrication process 

variations, causing these chips to dissipate increasingly higher 

power, especially at the clock edge when switching is most 

prevalent.  

The size of FPGAs is now more than 1 million equivalent 

gates, making them a viable alternative to custom design for 

all but the most complex processors. FPGAs are relatively 

low-cost and are reconfigurable, making them perfect for 

prototyping, as well as for implementing the final design, 

especially for low volume production. To compete with this 

cheap, reconfigurable synchronous implementation, an NCL-

specific FPGA is needed, such that NCL circuits can be 

efficiently implemented without necessitating a prohibitively 

expensive full-custom design. This will become increasingly 

important as asynchronous paradigms become more widely 

used in the industry to increase circuit robustness, decrease 

power, and alleviate many clock-related issues, as predicted 

by the International Technology Roadmap for Semiconductors 

(ITRS). The 2005 ITRS estimates that asynchronous circuits 

will account for 19% of chip area within the next 5 years, and 

30% of chip area within the next 10 years.

II.   NCL OVERVIEW

NCL is a self timed logic paradigm in which control is 

inherent in every datum. NCL follows the weak conditions of 

Seitz’s delay insensitive signaling scheme that “all inputs of a 

combinational circuit must be null before all outputs become 

null” along with the condition that “all inputs of the circuit 

must be data before all outputs become data”. By these 

conditions the self timed operation or delay insensitivity is 

ensured. The first condition is ensured by using inbuilt 

hysteresis in the basic NCL gates and second condition is 

obtained by an intelligent circuit design that is both input 

complete and observable. 

NCL circuits are comprised of 27 fundamental gates. These 

27 gates comprise the set of all functions consisting of four or 

fewer variables. Since each rail of NCL is considered a 

separate variable, a four variable function is not the same as a 

function of four literals, which in normal case would consist 

of 8 variables. The primary type of Threshold gate is the 

THmn gate where 1  m  n. THmn gates have n inputs. At 

least m of the n inputs should be asserted before the outputs 

become asserted and hence m is a threshold. Each of the n 

inputs is connected to the rounded part of the diagram in 

figure representation and the output emanates from the pointed 

end. The gates threshold m, is represented inside the gate as a 

label. Another type of threshold gate is the weighted threshold 

gate THmnWw1w2…wR. Weighted threshold gates have an 

integer value m  wR > 1 applied to input R. Here 1  R < n 

where n is the number of inputs; m is the threshold; and w1,

w2, w3…, wR each >1, are the integer weights of input1, 

input2, input R, respectively. For example, consider Th34W2 

gate, whose  n=4 inputs are labeled A, B, C and D as shown in 

fig. 1. The weight of A is 2. Since gates threshold is 3, this 

implies that in order for the output to be asserted, either inputs 

B, C, D must all be asserted or input A should be asserted 

along with any other inputs B, C, D. Like mentioned earlier, 
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NCL gates are designed with state holding capability called 

hysteresis, such that all inputs must be de-asserted before 

outputs become de-asserted. This ensures a complete 

transition of inputs back to null before asserting the output 

with the inputs wave front of the next data set. NCL gates may 

also include a RESET input to initialize the gate output to 0 or 

1. Circuit diagrams designate this by denoting a d or n after 

the threshold label inside the gate. A d represents that output 

rail is reset to data or 1 and an n indicates that output is reset 

to null or 0.  

Fig. 1: TH34W2 weighted gate 

TABLE I 

27 FUNDAMENTAL NCL GATES 

A. Static NCL Library 
       The NCL Static Library consists of the static 

implementation of 27 fundamental NCL gates given in Table 

1. The NCL threshold gates are designed with hysteresis state-

holding capability, such that after the output is asserted, all 

inputs must be de-asserted before the output will be de-

asserted. Therefore, NCL gates have both set and hold 

equations, where the set equation determines when the gate 

will become asserted and the hold equation determines when 

the gate will remain asserted once it has been asserted. The set

equation determines the gate’s functionality as one of the 27 

NCL gates, as listed in Table 1, whereas the hold equation is 

the same for all NCL gates, and is simply all inputs ORed 

together. The general equation for an NCL gate with output Z

is: Z = set + (Z* • hold), where Z* is the previous output value 

and Z is the new value. Take the TH23 gate for example. The 

set equation is AB + AC + BC, as given in Table I, and the 

hold equation is A + B + C; therefore the gate is asserted when 

at least 2 inputs are asserted and it then remains asserted until 

all inputs are de-asserted. To implement an NCL gate using 

CMOS technology, an equation for the complement of Z (i.e. 

Z’) is also required, which in general form is: Z’ = reset + 

(Z*’ • set’), where reset is the complement of hold (i.e., the 

complement of each input, ANDed together), such that the 

gate is de-asserted when all inputs are de-asserted and remains 

de-asserted while the gate’s set condition is false. For the 

TH23 gate, the reset equation is A’B’C’ and the simplified 

set’ equation is A’B’ + B’C’ + A’C’. Directly implementing 

these equations for Z and Z’, after simplification, yields the 

static transistor-level implementation of an NCL gate, as 

shown in Fig. 2 for the TH23 gate. This requires the output, Z,

to be fed back as an input to the NMOS and PMOS logic to 

achieve hysteresis behavior. Due to the large transistor count 

they also dissipate more Power as compared to Semi-Static 

NCLgates. 

Fig. 2: Static CMOS implementation of TH23 gate       

Z=AB+BC+AC

III. PREVIOUS WORK

     There have been a number of asynchronous FPGAs 

developed over the past 10+ years [2-9].  MONTAGE [2] was 

developed to support both synchronous and asynchronous 

circuits. STACC [3] targets bundled data systems in which 

there are separate data and control paths where the delay in the 

data path must be matched in the control path. To implement 

this delay matching, both architectures include some sort of 

programmable delay element. MONTAGE [2] both use a 

lookup table (LUT) based design, where the output is fed back 

as one of the inputs, to implement the C-element's state-

holding capability. STACC [3] is based on fine grain FPGA 
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architectures where the global clock is replaced by an array of 

timing-cells that generate local register control signals. These 

systems rely heavily on the placement and routing tools to 

yield a functional FPGA circuit, where all delays are correctly 

matched. Another type of asynchronous FPGA uses a 

programmable phased logic cell [4], [5]. In an effort to design 

a delay-insensitive, reconfigurable logic device, Theseus 

Logic developed an FPGA based on the Atmel AT40K family 

[9]. The design involved replacing the D-type Flip Flop within 

each logic block with a threshold-configurable NCL THm4 

gate, and removing the associated clock trees from the original 

design. Atmel’s routing algorithm for this chip was then 

modified to convert an NCL gate-level schematic to a bit 

stream to program the FPGA. This method is advantageous in 

that it reuses a proven architecture, but the design only utilizes 

a fraction of the NCL threshold gates, thus increasing area and 

delay for realizing most non-trivial NCL circuits. It also has 

the disadvantage of being unable to use all of the LUTs in the 

FPGA, thus resulting in inefficient resource utilization [9]. A 

more efficient configurable logic element for an NCL FPGA 

was presented in [1].  

      

IV. CLB DESIGN AND IMPLEMENTATION

     The proposed CLB design supports 10 logical input 

variables (A, B, C, D, E. F, G, H, Din_0, Din_1) and supports 

three different outputs (X, Y and Z). Each output comes with 

resettable and inverting variations.  Fig. 3 shows CLB block 

diagram. The CLB consists of: 3 x Static LUT, Decoder, 

Output Reset logic, Output Inversion logic, Programmable 

Muxes. The CLB has two modes which are Configuration  

and operating mode. In Configuration mode the 3 LUT’ s are 

programmed to implement different or similar functions and 

Output reset, Inversion logic along with the programmable  

muxes are also configured. Once configured the CLB is ready 

for operation and should operate as the programmer wants it 

to. The configuration scheme is explained in detail in further 

sections. 

A. Static LUT  
     The reconfigurable logic portion consists of a 5 bit-

address LUT, shown in fig. 4. The static LUT contains 27 

NCL static fundamental gates shown in fig. 4, and 28 

multiplexers (MUX). The gate inputs, A, B, C, and D, are 

connected to each of the 27 gates and the programmed Dp 

value decides which output to pass to the LUT output through 

the MUX logic. Since all gate inputs (i.e. A, B, C, and D) are 

connected to a series of NCL static gates, the LUT function 

output will be logic 1 only when the selected gate’s output is 

logic 1. The LUT is outputting logic 0 for Address 0. There is 

no hysteresis logic as the Static gates are designed with 

internal feedback. 

      To configure this LUT as a specific NCL gate, the LUT 

should be programmed with corresponding Dp for any set of 

inputs corresponding to the gate’s set condition, shown in fig. 

2. Take for example a TH23 gate, whose equation is AB + AC 

+BC. The LUT should be programmed with Dp = “00111”. 

The LUT outputs logic 1 for the following four input patterns: 

ABC = 011, 101, 110, and 111, which correspond to setting 

condition of TH23 gate. The other four combinations ABC =

000, 001, 010, and 100, corresponding to logic 0 output for 

gate TH23 based on its previous state.

     For gates with less than four inputs, the unused inputs 

are not connected. Hence, for the TH23 gate, D would be 

unconnected to TH23 gate. The LUT mentioned in the fig.2 

correspond to the static LUT’s. 

                          

                                                              

                                                                   Fig. 3: Static CLB Block Diagram.
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                       Fig. 4: 4-input Static LUT 

B. Decoder 
    The decoder operates in the Programming mode of the 

CLB i.e. when P is asserted. Since we have 3 LUT’s each of 

which has a 5 bit programming input Dp, to reduce the 

number of CLB programming inputs we have designed a 

decoder. The decoder depending on the two bit input select 

line muxes the input Dp values to the corresponding LUT. 

TABLE II 

VALUES OF SELECT INPUTS CORRESPONDING TO LUT 

  Select 

   Line 

   Selected            

   Output 
   “00” LUT 1   

   “01” LUT 2  

   “10”  LUT 3 

   “11”  Programmable muxes, Reset Value and 

Output inversion per output setting.  

The decoder can be described as two different parts. The 

following fig. 5 (a) shows decoder hardware for a single input 

Dp bit for the three LUTs and the fourth th44 gate’s output is 

used for output inversion of one of the three outputs. As seen, 

when P is set, the first three Th44 gates get selected depending 

on Psel1 and Psel0 and the programming bit is passed to the 

LUT. If Psel[1:0] is driven with value “00”,Dp[5:1] is updated 

depending upon the function to be implemented in LUT1. The 

LUT2 and LUT3 are configured similarly with Psel[1:0] 

values being “01” and “10” respectively for their configuring. 

When Psel[1:0] value is “11” , the fourth Th44 gate output 

decides whether the output inversion takes place or not. Since 

there are five programming inputs, five sets of four Th44 gates 

should be present. The fourth output of three sets give the 

output inversion of three outputs and the fourth and fifth 

outputs tells us whether the circuit is reset or not (rst) and the 

reset value (Rv). Deassertion of signal P activates the fourth 

Th44 gates and also the MUX logic shown in fig. 5(b). The 

four select lines for four 2:1 muxes and two select lines for 

one 4:1 mux are given as inputs to the decoder can program 

the muxes only when P is 0. In this way the Programming of 

the LUTs and the multiplexers can be done by using the 

decoder. 

                                              Fig. 5(a)                                                            

      Fig. (b) 
Fig. 5(a) & (b): Decoder logic for Single i/p Dp bit. 

C. Output Reset and Inversion Logic, Programmable 

muxes
   The proposed CLB has reset logic per output port. The 

Reset circuit is show below in fig. 6. The reset logic consists 

of a programmable latch and transmission gate MUX. During 

the programming phase when P is asserted (nP is deasserted), 

the latch stores the value, Rv, that the gate will be reset to 

when rst is asserted. rst is the MUX select input, such that 

when it is logic 0, the output of the PUPD function passes 

through the MUX to be inverted and output on Z; and when rst 

is logic 1, the inverse of Rv is passed through the MUX. In 

this way the CLB provides the user the option of resetting the 

output ports. 
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Fig. 6: Output Inversion and Reset Logic 

The proposed CLB has inversion and hysteresis logic per 

output port. The Reset circuit is show above in fig. 6. The 

output inversion logic also consists of a programmable latch 

and transmission gate MUX. The programmable latch stores 

Inv during the programming phase, which determines if the 

gate is inverting or not. There is no need for hysteresis logic as 

the hysteresis logic is already implemented in each of the 27 

fundamental Static gates used to make the LUT. The output 

and its inverted value are both fed as data inputs to the MUX, 

so that either the inverted or non-inverted value can be output, 

depending on the stored value of Inv, which is used as the 

MUX select input. The CLB design includes 5 programmable 

muxes so that the user has possible combinations at the 

outputs. During the programming phase i.e signal P asserted 

and nP deasserted when the Decoder select lines are “11’’, the 

select lines for these programmable muxes are driven. The 

user can have a combination of Din_0, LUT1 output, LUT2 

output, LUT3 output at the output ports. For example consider 

a case where LUT1 is configured as AND gate, LUT2 as OR 

gate, LUT3 as XOR gate and the user can have a combination 

of LUT1, LUT3 and LUT2 output at X, Y and Z by 

programming the muxes accordingly.

D. CLB Implementation 
           A schematic for the Static CLB Design was created 

using the Mentor Graphics tool “Design Architect”. Each 

module of the CLB was designed separately and simulated 

using the “Accusim” tool. The symbols for all the modules 

were generated. Finally the entire CLB schematic was created 

by joining the individual symbols. The Physical layout for the 

proposed CLB design was manually constructed and routed 

using the Mentor Graphics IC Station tool using a 1.8V, 

180nm TSMC CMOS process. As this tool is optimized for 

standard libraries, we had to manually add NCL cells and 

route them. Due to the complexity of the design five metals 

have been used. The VDD and GND port have been made on 

metal 1.  The layout is as shown in fig. 7 below.

Fig. 7: Layout of the CLB 

V. SIMULATION AND RESULTS 

       The CLB net-list was simulated using Mentor Graphics 

tools ELDO and Ezwave. Estimated Area is 8197.5x4203  2 

which is 737.775 x 378.27 (nm2), since the value of  for 

180nm technology is 0.09.The Total Power Dissipation of a 

single LUT has been calculated to be 2.7747E-09 Watts. For 

the total CLB, the power dissipation was calculated to be 

9.1719E-06 Watts. The propagation delay was found to be 

1.79 ns. Fig. 8 shows ELDO simulation of this CLB in which 

LUT1 is programmed as Th44 gate, LUT2 is programmed as 

Th54w22 gate and LUT 3 is programmed as Th12 gate. The 

multiplexers have been given select lines in the following 

order: M1=1, M2=1, M3=0, M4=0, M5=1, M6=1 and the rst 

is kept ‘0’. The input Din_1 is kept 0 for 210ns and then it is 

made high. The input Din_0 is kept 1 for 200ns and then it is 

made low. This configuration makes the output X to be the 
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output of LUT1, output Y to be output of LUT 3 and Z to be 

output of LUT 2. During the simulation, we make our 

programming   input P go high from 10 to 60 ns and then low 

till 110ns and high from 110 to 160 ns and then low till 210ns 

and high till 260ns and then is made low for the whole of 

simulation time. In the three parts where P is high, we select 

PSel lines such that three LUTs get configured one after the 

other. We give the programming inputs Dp_1 to Dp_5 such 

that the LUT1 gets configured for Th44 gate, that is, Dp(5:1) 

is “10101” , LUT2 is configured for Th54w22 gate, that is, 

Dp(5:1) is “10110” and LUT3 is configured for Th12 gate, 

that is, Dp(5:1) is “00000”. Now depending on the inputs A 

through H and Din(1:0), we get the outputs X, Y and Z. The 

simulation results are as shown in the fig. 8. 

Fig. 8: Simulation Results after running Eldo 

Scale: 1 unit = 10 ns 

VI. CONCLUSION AND FUTURE WORK

    As the semester project in MST’s graduate-level VLSI 

course, we designed and implemented a Static FPGA CLB 

using Asynchronous Static NCL library at all levels of 

abstraction, from Design schematic to layout, using semi-

static NCL gates. The CLB was configured for three different 

outputs and was successfully simulated and verified to be 

functionally correct. Furthermore, all of the major system 

components were implemented, simulated, and verified at the 

transistor-level and physical-level. However, due to tool 

problems and time constraints, the system implementation at 

the physical level was not optimized for area and power. 

Future work includes optimizing the design for area and 

power. Also the results can be verified for further complex 

configurations. Additional topics that need further 

investigation, but are beyond the scope of this paper, include 

the overall FPGA architecture, switching matrix, and the 

FPGA interconnect strategy. Possible choices for overall 

architecture include island-style or hierarchical. Alternative 

numbers of LUTs and connection of LUTs within a CLB need 

to be studied. The overall FPGA interconnect grouping needs 

to be researched. 
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