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Density Estimation Using a Generalized Neuron
Raveesh Kiran and Ganesh K. Venayagamoorthy
Real-Time Power and Intelligent Systems Lab.
Dept. of Electrical and Computer Engineering

University of Missouri - Rolla, MO 65409, U.S.A
rkktbgumr.edu and gkumargieee.org

Abstract - Neural Networks have been shown to be
useful tools for density estimation. However, the
training ofneural network structures is time consuming
and requires fast processors for practical applications.
A new method with a Generalized Neuron (GN) for
density estimation is presented in this paper. The GN is
trained with the particle swarm optimization algorithm
which is known to have fast convergence than the
standard backpropagation algorithm Results are
presented to show that the GN can estimate the density
functions for distribution functions with different
means and variances. This density estimation method
can also be applied to the multi-sensor data fusion
process.

Keywords: Density Estimation, generalized neuron,
particle swarm optimization, probability distribution
function.

1 Introduction

A frequently encountered problem in the statistical
process control (SPC) is the estimation of the probability
density function or simply the density function of
variables. A majority of the problems encountered in the
world of science and engineering deal with large amounts
of data which need to be modeled in a probabilistic
manner. A number of phenomena have a good amount of
complexity present in them. In most of such cases a
probabilistic formulation seems to be the only feasible
solution from the computational view. Some of the
practical applications of the density estimation includes,
signal denoising and edge-preserving [1], forecasting of
the power distribution [2], biomedical application like
current density within a heart [3], etc. Density estimation
based data fusion has applications in various tasks such as
object tracking, 3D modeling, motion analysis, robot
localization and in various other military and non-military
applications [4], [5].

Neural networks based methods have also been proposed
for estimation of the density function [6]. Some of the
disadvantages of the conventional neural networks, like
the one used in [6], are larger training time and more
memory and hardware constraints. This paper proposes a
new method for the estimation of the density function
using the Generalized Neuron (GN) trained offline with
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the Particle Swarm Optimization (PSO). The probability
distribution function is first approximated by a GN and
then the density function is obtained by differentiating the
GN function.

A Generalized Neuron (GN) trained with the
Backpropagation (BP) learning algorithm has been shown
to overcome some of the drawbacks with conventional
feedforward neural networks such as the multilayer
perceptrons [7]. Some of the advantages of the GN when
compared to the conventional neural network are that
there are lesser requirements in terms of memory and
speed for hardware implementation. The training time for
the weights can be reduced by reducing the number of
unknown parameters (weights) to be determined.

Particle swarm optimization technique, which is based on
the behavior of a flock of birds or school of fish, is a kind
of evolutionary computation [8], [9]. It has been shown
previously that the PSO training algorithm has better
convergence in fewer computations than BP algorithm for
training neural networks to achieve the same performance
[10]. In this paper, the GN for the probability distribution
function approximation is trained using the PSO training
algorithm.

The paper is organized as follows: In section 2, the
architecture of the GN considered in this paper is
explained. In section 3, a brief overview of the PSO
technique is given. Section 4 deals with the application of
the PSO to training a GN. The concept of estimation of a
distribution function and density using the GN has been
discussed in section 5. Section 6 represents some
simulation results first to show that a GN can be
differentiated to obtain a derivative of the function
approximated by a GN and then density estimation results
are obtained for Gaussian distributions with different
mean and variance. Section 7 discusses about application
of the density estimation for multi-sensor data fusion.
Finally, a brief conclusion is given in section 8.

2 Generalized Neuron

The general structure of the common neuron model is an
aggregation function and a thresholding function. The
general neural network model consists of three distinct
layers namely the input layer, the hidden layer and the
output layer. Each of these layers consists of a number of



simple neurons that are interconnected. There may be
more than one hidden layer in cases involving more
complex problems. Also the number of neurons in each
layer depends on the type of application it is being used
for. Thus it can be seen that as the complexity of the
problem increases, the number of neurons and the number
of weights to be found also tends to increase. Although
the aggregation operators are generally crisp, they
overlook the fact that most of the processing in the neural
networks is done with incomplete information at hand.
The GN model uses partly sum and partly product to take
into account the vagueness involved, thus over coming
such drawbacks.

The use of a sigmoidal thresholding function and an
ordinary product or summation aggregation in the simple
neuron model does not always give satisfactory results.
This is because real life problems generally involve some
amount of nonlinearity. Hence the GN, which has both
sigmoidal and the Gaussian functions with weight
sharing, can be used to overcome such problems. Due to
this the GN has more flexibility and the ability to cope
better with the nonlinearity involved in any application.

Unlike the common neuron model which has either Hl
(product) or , (summation) aggregation function, the GN
model has both Z and HI aggregation functions.
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O fT=f2(pi net) = e(-kpxpi_net2)
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pi net = fl WziXi x XozT
and 2p is the gain of H1 part.

(3)

(4)

The final output (Opk) of the neuron is a function of the
two outputs OE and Q, with the weights W and (1-W),
respectively, and can be written in the mathematical form
as
Opk = OT x (1 -W) +O ExW (5)

Thus, it can be seen from the GN model here, that there is
only one output. If more than one output is required then
one GN is used for each output. The number of weights in
case of the GN is equal to twice the number of inputs plus
one. This is very much lower when compared to the
number of weights in a multilayer feedforward neural
network. By reducing the number of unknown weights,
the training time can be reduced.

In this model summation and product are the aggregations
function used. But other fuzzy operators such as the max,
min and the compensatory operators can also be used.
Unlike the thresholding functions like the sigmoidal and
the Gaussian functions used here, other functions like
sine, cosine, hyperbolic tangent, linear functions, etc can
also be used.

It can also be seen that the outputs of the sigmoidal and
the Gaussian functions are summed up and hence this type
of model is called as the summation type generalized
neuron model. Similarly, if the product of the sigmoidal
and the Gaussian functions is used, then that type of
model is called as the product type generalized neuron
model. It has been found that the GN model works well
in most of the cases.

Figure 1: Generalized neuron model

The sigmoidal characteristic function (f1) is used with the
Y1 summation aggregation function while the Gaussian
characteristic function (f2) is used with the Hl product
aggregation function. Thus, it can be seen that flexibility
at both the aggregation and the threshold level is present
in the GN and so it is better equipped to cope with the
nonlinearities involved in any type of application.

The output of the Yj part with the sigmoidal activation
function for f1 of the GN is as shown below [5]:

3 Particle Swarm Optimization

Particle Swarm Optimization is a type of evolutionary
computing technique. The PSO algorithm is a population-
based search algorithm, based on the simulation of the
social behavior of birds within a flock. A swarm consists
of a set of particles, where each particle represents a

potential solution. The changes to the position of a

particle and its operation in a swarm are influenced by the
experience and the knowledge of its neighbors.

1

1+e(-2sxs net)
where,
s net = 2,WziXi+Xo

(1)

(2)

and is is the gain ofY part.

The output of the Npart with the Gaussian activation

function forf2of the GN is as shown below:

Initially a set of random solutions or a set of particles are
considered. A random velocity is given to each particle
and they are flown through the problem space. Each
particle has memory which is used to keep track of the
previous best position and corresponding fitness. The best
value of the position of each individual is stored as 'Pid'-
In other words, 'Pid' is the best position acquired by an
individual particle during the course of its movement
within the swarm. It has another value called the 'Pgd',
which is the best value of all the particles 'Pid' in the
swarm. The basic concept of the PSO technique lies in

0z = fi(s _net)



accelerating each particle towards its 'Pid' and 'Pgd'
locations at each time step. The figure below briefly
illustrates the concept ofPSO where
* Xid (k) is the current position.
* Xid (k+±) is the modified position.
* Vid (k) is the initial velocity
* Vid (k+±) is the modified velocity.

y x rand2 x
(k))

In case the velocity of the particle exceeds Vmax then it is
reduced to Vmax. Thus, the resolution and fitness of search
depends on the Vmax. If Vmax is too high, then particles will
move in larger steps and so the solution reached may not
be the as good as expected. If Vmax is too low, then
particles will take a long time to reach the desired
solution.

4 IMPLEMENTATION OF PSO
FOR GN TRAINING

c1 x rand1 x (Pid (k) - Xid (k))
WX V,d(k+1)

x

Figure 2: PSO particle update process illustrated for a two
dimensional case

i). Initialize a population of particles with random
positions and velocities in the problem space.

ii). For each particle, evaluate the desired optimization
fitness function.

iii). Compare the particles fitness evaluation with the
particles Pid If current value is better than the Pid then
set Pid value equal to the current location.

iv). Compare the best fitness evaluation with the
population's overall previous best. If the current
value is better than the Pgd, then set Pgd to the
particle's array and index value.

v). Update the particle's velocity and position according
to the equations shown below:

The velocity of the ith particle of d dimension is given
by:

Vid(k +1)= WXVd(k) +ci x raod X (pd(k)-Xd(k))
+ C2 X rald2 X (pgd(k) -Xid(k))

(6)

The position vector of the ith particle of d dimension is
changed as follows:

Xid(k + 1)= Xid(k) + Vid(k + 1) (7)

vi). Repeat the step ii) until a criterion is met, usually a
sufficiently good fitness or a maximum number of
iterations or epochs.

PSO has many parameters and these are described as
follows:
* w - Inertia weight, controls the exploration and

exploitation of search space, dynamically adjusts
velocity

* Vmax - Maximum velocity for the particles.
* Vid - Velocity of ith particle with d dimensions
* Xid- Position of ith particle with d dimensions
* cl - Cognition constant
* C2 - Social constant

Selection of the PSO parameters plays an important role
in the optimization of any problem. The selection of the
parameters of the GN also plays an important role is
getting good results. The PSO parameters and the
parameters of the GN are determined by trail and error
experimentation. The value of the maximum velocity and
the search space limitation depends on the type of
problem it is being applied to. The number of particles
was also varied. But it was observed that a very high
value of the particles lead to an increase in the
computational time. Hence a compromise between the
computational time and the performance needs to be
taken. Batch training is used in this paper.

The following set of parameters
calculations in this paper.
* Maximum velocity, V max
* Maximum search space range
* Inertia weight, W
* Acceleration constants, Cl C2
* Size of swarm

is used for the

2
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The parameters of the GN are also varied over a wide
range and it is found that the value of the parameters is
problem dependent. So the values of the parameters are
defined separately for each problem. The values of the
gain scale factors (Xs, )) in the GN are determined using
trail and error.

5 ESTIMATION OF DENSITY
FUNCTION

Assume a sample of m observations x1, x2...xn whose
underlying density function, f(x), is to be estimated. Let
F(x) be the corresponding distribution function. Without
loss of generality, the observations are assumed to be
sorted in such a way that XI < X2< ...... < xm. For the
problem of the density estimation the basic idea is that if
a continuous estimation of the distribution function F(x)
is available, then the estimation of the density function
could be obtained by differentiating F(x),

( I

f(X) = F '(x) . (8)

Sigmoidal function and the Gaussian function have been
used along with the two aggregation functions. If the
input to the neural network is x, then the output of the
neural network is

-



N(x) = OZ x (1- W) + OxW
where,

1L l, -+e (-sxs net)
s net = IWZiXi+Xo
O = e-(Xpxpi_net2)
pi_ net = fl W,1X, xXoX

It is reasonable to take N(x) as the estimation of the
distribution function, i.e.

F(x) = N(x) (10)

Obviously, F(x) is of continuous form so that the
equation (8) and equation (10) we have,

f(x) = N'(x)

= dOcx( -W)+dOzxW (11)

where,
dOr = - Or x 2p x 2 x x(i) xWr2

dOz =Oz x (1-Oz) x /is xWz

Reference Curne
----- Estimated Curve

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4: Differentiated output dyldx = 4x

6.2 Time Varying Function

The GN is now applied to a sinusoidal function,
x = sin (2zft), where 't' is varied in the range of (0, 1).
The values of is and 4p are taken to be 0.7 and 1

respectively. Figure 5 is obtained from the GN after it is
run for 500 epochs. The MSE value is found to be
5.61 x 10-7. The result shown in Figure 6 is for the
differentiated output obtained from the sinusoidal
function which is dyldx = 2zf cos (2zft). The MSE is
found to be 3.49 x 10-4.

6 RESULTS

6.1 Nonlinear Static Function

In order to test the proper functioning of the GN, it is
trained on the non-linear quadratic equation y =2x2 + 1,
with the data points in the range of (-1, 1). The values of
is and 4p are taken to be 10 and 1 respectively. The result
shown in Figure 3 is obtained from the GN after it is run

for 500 epochs. It has a Mean Square Error (MSE) of
4.97 x 10-5. Next the concept of differentiation is applied
to this function and the results are obtained. Figure 4
shows the differentiated output obtained for the function
y =2x2+1 which is dyldx = 4x and it has a MSE of
0.0017.

1 ,~ ~ ~ ~ ~ ~~~efrnc c~
. / a~~~~~~~~Reference curve

0.8 - ----- Estimated curve
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Figure 5: Output for y = sin (2zft) with GN trained with
PSO for 500 epochs
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Figure 3: Output for y = 2x2+1 with GN trained with PSO
for 500 epochs
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Figure 6: Differentiated output
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6.3 Gaussian Distribution

It can be shown from the following results that good
approximations, for the following functions F(x) and f(x),
can be obtained from N(x) and N'(x) respectively.

2

F(x)= 1
exp( 2 )dt

an7-do 2a
and

(12)

2

f(x) = 1 exp(- ( Al)
- 2a

(13)

where,
p = mean of the distribution
2 = variance of the distribution

1 0-5 for 1000 epochs. The Gaussian density function
result is shown in Figure 10. It has a MSE value of 1.05
X 10-4. The values of is and 4p are taken to be -0.7 and 1
respectively.

1

0.9 l r

0.5

0.4 _

0.1 / Gaussian distribution curve
_ ~~~~~~~~------Estimated distribution function

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

The real Gaussian distribution obtained after 1000 epochs
is shown in Figure 7, for a t = 0 and &7 = 1, while the real
Gaussian density function is shown in Figure 8. The
former has a MSE of 1.65 x 10-5 while the latter has an
MSE of 1.03 x 10-4. The values of is and 4p are taken to
be 0.7 and 1 respectively.

1

0.52

Gaussian distribution function
0.1 ----- Estimated distribution function

n
2 3

x

Figure 7 : Gaussian distribution function vs. estimated
distribution function (i = 0 and &2 = 1)
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Figure 8: Gaussian density function vs. estimated density
function (i = 0 and 2 = 1)

Figure 9: Gaussian distribution function vs. estimated
distribution function (i = 0.5 and 2 = 1)
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Figure 10: Gaussian density function vs. estimated density
function (t = 0.5 and G2 = 1)

Figure 11 shows the results for the Gaussian distribution
function with i = 0.8 and G2 = 4. It has a MSE of 1.33 x
10-5 for 1000 epochs. The result for the Gaussian density
function is shown in Figure 12. It has a MSE value of
2.22 x 10-5. The values of is and 4p are taken to be -0.6
and 1 respectively.

1

0.6

0.5

2Gaussian distribution curve
0.1 ------ Estimated distribution function _

-4 -2 0 2 4 6

Figure 9 shows the results for the Gaussian distribution
function with a i = 0.5 and &2 1. It has a MSE of 2.62 x

Figure 11: Gaussian distribution function vs. estimated
distribution function (i = 0.8 and 2 = 4)
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Figure 12: Gaussian density function vs. estimated density
function (i = 0.8 and 2 = 4)

The real Gaussian distribution obtained after 1000 epochs
for t = -0.5 and a = lis shown in Figure 13. A MSE of
2.22 x 10-5 is observed. The real Gaussian density
function is shown in Figure 14 and it has an MSE of 1.34
x 10-4. The values of and 4p are taken to be 0.9 and 1
respectively.
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Figure 13: Gaussian distribution function vs. estimated
distribution function (i = -0.5 and &2 = 1)
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It can be seen from the above results that the GN trained
with the PSO works well for the estimation of the
probability density function for various values of mean
and variance.

7 Application for Multi-Sensor Data
Fusion

Data fusion is generally used to eliminate the uncertainty
and to gain a more precise and reliable value than the
arithmetical mean of the measured data from finite
sensors. In other words, data fusion seeks to combine data
from multiple sensors to perform inferences that may not
be possible from a single sensor alone. Multi-sensor data
fusion has widespread applications such as automated
target recognition, remote sensing, battlefield
surveillance, control of autonomous vehicles, monitoring
of complex machinery, robotics and medical applications.
One of the techniques used for multi-sensor data fusion is
to fuse the data using neural networks. The neural
networks provide a sub-optimal but practical solution as
the training algorithms used for these networks generally
converge to the first workable solution as shown earlier
[11], [12]. For lesser number of sensors, the conventional
neural network can be used, but as the number of sensors
increases, the computational time and the memory
requirements of the conventional neural network also
increases. The GN on the other hand has lesser
computational time and also lower memory requirements.
Thus, the response would be faster for large number of
sensors.

8 Conclusions

A new method for the estimation of the probability
density function using the Generalized Neuron has been
presented. The training of the GN with the PSO
algorithm to approximate distribution functions with
different means and variance is shown to be accurate. The
differentiation of the GN results in accurate estimates of
the respective density functions. The GN can be used to
approximate any function provided the characteristic
functions f' and f2 (as shown in Figure: 1) are taken
according to the function representing the data. The
advantage of the GN structure is that it takes fewer
parameters than the traditional feedforward neural
networks. Thus, the training time required is less and the
requirements on the hardware for the implementation are
not expensive as for the networks with more parameters.
Future work includes applying the GN for the density
estimation in multi-sensor data fusion.
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