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Th�evenin equivalence in disorderless quantum networks

C. A. Cain and C. H. Wua)

Department of Electrical and Computer Engineering, Missouri University of Science and Technology,
301 W 16th St., Rolla, Missouri 65409, USA

(Received 28 August 2014; accepted 26 December 2014; published online 13 January 2015)

We outline the procedure of extending the Th�evenin equivalence principle for classical electric

circuits to reducing Aharonov-Bohm-based quantum networks into equivalent models. With

examples, we show from first principles how the requirements are related to the electron band

structure’s Fermi level and the lattice spacing of the network. Quantum networks of varying

degrees of coupling strength from four basic classifications of single and double entangled loops

sharing symmetry and highly correlated band structures are used to demonstrate the concept. We

show the limitations of how the principle may be applied. Several classes of examples are given

and their equivalent forms are shown. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4905691]

I. INTRODUCTION

Quantum networks in the mesoscopic range have been

well-studied over the last few decades,1–12 with more recent

work focusing on higher-order effects and topics such as

spin transport due to their potential development for quan-

tum computation.13–24 Quantum networks consist of quasi-

one-dimensional paths and nodes connected together.

Because of the existence of loops, the Aharonov-Bohm (AB)

effect can be applied to further modulate the phase of the

electron wavefunction along the paths where Schr€odinger’s

equation is satisfied. Over the last few years, we have been

investigating the behavior when a few AB rings are coupled

for quantum computing.25–27 For this purpose, it is important

to identify whether these quantum networks have the poten-

tial to replace conventional electric circuits with new ones

based on the phase-modulation concept.

One area that has yet to be explored for these complex

quantum networks is the concept of equivalence. In classical

circuits, such as the simple resistive network shown in

Fig. 1(a), L�eon Th�evenin famously showed in the 1800s that it

is possible to form a simpler equivalent version for part of the

circuit.28 The simplified network preserves the total current

and voltage difference being delivered to the unaltered part of

the circuit. This has long been a useful analysis tool in simpli-

fying complex electronic designs to better understand their

behavior. We have recently shown a quantum network-based

processor utilizing symbolic substitution rules, not superposi-

tion of flux qubits.29 Therefore, the question of extending

Th�evenin’s theorem to quantum networks becomes an impor-

tant means for simplification and gaining physical insight about

them. For a general classic circuit, the system is lossy and the

transport is incoherent. Thus, when forming an equivalent cir-

cuit, the equivalent current being delivered to the unaltered

part of the circuit in both models will be a scalar. However, at

the mesoscopic level, where ballistic transport and elastic scat-

tering are possible, the quantum circuits take into effect the

magnitude and phase of the electron wavefunction in relation

to the band structure and chemical potential. These can obvi-

ously differ between the original and equivalent models. In this

work, we attempt to determine how these restrictions affect the

possibility of finding such equivalent networks.

The remainder of the paper is divided into three parts.

Section II will define a quantum network and its properties

as well as outline the analytical model used in our calcula-

tions. Section III is divided into three subsections, with the

first (Sec. III A) describing the general requirements that

need to be met between two networks in order to satisfy an

equivalence. Secs. III B and III C focus on determining

which specific quantum networks can meet these criteria

based on their coupling strength. Finally, the results and

observations are summarized in Sec. IV.

II. PHYSICAL MODEL AND CALCULATION METHOD

Electron transport in AB-modulated networks can be

modeled in a multiply connected space of uniform quasi-1D

paths of length l interconnected by M nodes. It is placed

between two thermal reservoirs with a small chemical poten-

tial difference lH � lL at infinity, which acts as the source

and sink of the electron. There is also an external magnetic

flux U present, as shown in Fig. 2. In these quantum networks,

the well-known Landauer-B€uttiker formula for conductance

applies between any two points in the network. In Fig. 2,

nodes A and C are the elastic scatterers. The system’s trans-

port can be tuned by modifying the flux inside the loop, which

alters the phase of the electron wavefunction within the paths.

The transport between any two points i and j needs to satisfy

the B€uttiker symmetry principle TijðUÞ ¼ Tjið�UÞ.30,31

A brief formulation of the model will be presented here,

with a more complete description given in previous work.32

The Schr€odinger equation must be satisfied at any point in

the ring. For a single free electron situation, the solution

between nodes A and B can be given as

WABðxÞ ¼ ½PABe�ikx þ QABeikx�e�iSðxÞ=�h; (1)

where WABð0Þ ¼ WABðAÞ, and WABðlÞ ¼ WABðBÞ. PAB and

QAB are the complex outgoing and incoming wavea)Electronic mail: chw@mst.edu
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amplitudes from A in the path, respectively. S is a phase fac-

tor introduced due to the magnetic vector potential A and is

given by the path integral

S xð Þ=�h ¼ e

�hc

ðx

0

A x0ð Þ � dx0 ¼ x

r

U
U0

� �
; (2)

where x/r is the angular displacement and the elementary

flux quantum U0 ¼ hc=e. A is connected to a total of three

nodes: B, D, and I. A simplified set of equations can then be

formed as

WðBÞ ¼ WðAÞ½cos kl� tan dAB sin kl�e�i/;

WðDÞ ¼ WðAÞ½cos kl� tan dAD sin kl�ei/;

WðIÞ ¼ WðAÞ½cos kl� tan dAI sin kl�;
(3)

where /¼ ð2p=MÞðU=U0Þ. For a neighbor node j, tandAj

¼i
PAj�QAj

PAjþQAj
and the reflection coefficient RAj¼ðPAj=QAjÞ.

Conservation of probability current requires
P

j tandAj¼0,

and allows one to reduce the set of Eq. (3) into a single node

equation for A as

WðAÞ½2 cos klþ tan dAI sin kl� � ei/WðBÞ � e�i/WðDÞ ¼ 0:

(4)

A similar node equation can be found for the other three

nodes in the ring. To calculate the energy spectrum, the iso-

lated system is considered first (no terminals). This fixes

tan dAI ¼ 0 in Eq. (4). The secular determinant for the four

node equations becomes

16 cos4kl� 16 cos2kl� 2 cos 4/þ 2 ¼ 0: (5)

The four possible energy states En ¼ k2
nðh2=8p2mÞ can then

be found, with m being the electron mass. The half-filled

Fermi energy state EF at T¼ 0 K is then used to solve for the

transport. The terminals are considered a perturbation to the

system, leading to the transmission and reflection coeffi-

cients. This is consistent with the S-matrix results first

reported by B€uttiker et al.10 We have used this method to

study more complicated AB ring configurations in the

past.33,34

III. TH�EVENIN EQUIVALENCE

A. Requirements

There are four basic classes of AB rings, determined by

the number of M nodes in the ring: M¼ 4N, 4N þ 2, 4N þ 1,

and 4N þ 3, with N an integer. More complicated quantum

networks can then be formed by coupling these AB rings to-

gether with different strengths and attaching several termi-

nals. The key question is “Under what circumstances can

these quantum networks be simplified like the classical cir-

cuit example in Fig. 1?” Clearly, if the state of a system and

its equivalent form need to be identical at a node, significant

restrictions will be imposed. The band structure becomes the

first factor in determining whether or not a given network

can be substituted for another. The scaling relations for the

transport in AB rings investigated previously provide some

insight.26 For a symmetric ring such as the example in

Fig. 2, it is possible to scale the network by any integer fac-

tor and still preserve the general band structure and hence

the transport. The Fermi energy EF and wavevector kF for

both structures are identical. When attempting to replace a

portion of a quantum network with a simplified equivalent

form, the node equations (as in Eq. (4)) for the unaltered por-

tion of the network need to be identical. Due to these require-

ments, the correlation between the band structures of two

different networks needs to be strong but not necessarily

identical. In general, they will need to share some form of

symmetry. Also, the correlation depends on the strength of

the coupling between the AB rings. Ideally, EF should be

equal across the entire flux period to have the highest likeli-

hood of satisfying the equivalence. This is satisfied by point-

contact coupled rings and will be shown first in Sec. III B. It

and Sec. III C are divided by coupling strength for the four

basic classes of coupled AB rings.

B. Point-contacted loops

Point-contacted AB loops are a suitable starting point to

demonstrate Th�evenin equivalence. They share an identical

band structure with a single ring, only with extra flux-

invariant states added. Even though the Fermi energies are

equal, it is not possible to meet the equivalence conditions

FIG. 2. Single symmetric two-terminal AB ring consisting of four nodes and

lattice spacing l, placed between terminals of chemical potential difference

lH � lL. H and L are the higher and lower potentials, respectively. A mag-

netic flux U penetrates the loop, adding an additional phase factor to the

electron wavefunction. At each node (A,B,C,D), there is an associated node

equation that relates the wavefunctions between other adjacent nodes.

FIG. 1. (a) Simple resistor network with

a voltage source Vs driving a load

connected at terminals a and b. (b)

Th�evenin equivalent model that delivers

an equal current through the terminals a
and b to the same unaltered load. Vth is

the open circuit voltage of the original

network without the load connected, and

Rth is the equivalent output resistance.
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across the entire flux range. We show that an equivalent cir-

cuit is only possible at a pair of flux values. Beginning with

a network consisting of odd point-contacted M¼ 3 rings

belonging to the 4N þ 3 class, shown in Fig. 3, it can be

shown that its Fermi energy is equivalent to that of a single

ring. This is due to the symmetry of the structure, though the

point-contact causes the transmission to be compressed into

a narrower flux range due to a resonant tunneling effect.

If three terminals are attached, as shown in Fig. 3(a), a

Th�evenin equivalent can be given in Fig. 3(b), where the left

portion of the network is replaced with a single odd three-

terminal ring. This happens to be a quantum circulator.33

The wavefunction magnitudes for nodes D and E in both net-

works are shown in Fig. 4, with peaks at jUj ¼ U0=4 with

Fermi wavevector kF ¼ p=2l. This value leads to the cos kl
term in Eq. (4) vanishing at each node. The two node equa-

tions at B and C in the original network now only contain

phase terms between the wavefunctions at adjacent nodes.

The remaining three node equations take on a similar form

of the equivalent single ring. The preserved part of the net-

work does not necessarily have to contain two output termi-

nals. For instance, if either one of the output terminals were

removed to form a simpler two-terminal network, the

Th�evenin conditions would still hold. The wavefunctions at

D and E between the two networks do however vary by a

constant phase factor h ¼ p=3. This can be offset by prepar-

ing the incident electron with a phase of h to align the two

network states. This means the inputs for the two equivalent

networks need to differ by h in phase space to obtain com-

plete equivalence. Note that by scaling the number of nodes

M in both rings by any odd integer, the same equivalence

can be maintained.

The second example is the M¼ 4N þ 1 class. The point-

contacted M¼ 5 AB rings are shown for the two-terminal sit-

uation in Fig. 5(a). It is possible to replace the left side of the

network with the smaller equivalent form of a single loop. In

this case, four nodes (E,F,G,H) are in the unaltered part of

the network, one being the output terminal. The Fermi

energy levels between the two networks are identical across

the entire flux period. The Th�evenin condition is again satis-

fied at jUj ¼ U0=4.

However, for the even-numbered 4N or 4N þ 2 class, it

is not possible to satisfy the equivalence requirements since

their Fermi levels are independent of the applied flux. The

FIG. 3. (a) Network diagram and energy band structure (in units of h2=8p2l2m) for two M¼ 3 point-contacted loops. The dashed portion of the network will be

replaced with an equivalent form shown in (b). The output nodes D and E remain unchanged. The lines in the band diagrams correspond to the energy states

computed from the secular determinants of each network, similar to that of Eq. (5). Note that in (a), there are five nodes and thus five energy states, two of

which are flux invariant. In (b), there are three nodes and three energy states, which are identical to the flux dependent states in (a). The Fermi energies EF for

both networks are aligned across the entire flux period.

FIG. 4. Wavefunction magnitude of outputs D and E for the point-contacted network and its equivalent model given in Fig. 3. While the Fermi energies are

equivalent across the entire period, the equivalence conditions are only met at two flux values jUj ¼ U0=4. This is indicated by the pair of arrows and stars,

with corresponding energy E ¼ h2=32l2m. This is because the cos kl terms vanish in the node equations since the Fermi wavevector kF ¼ p=2l. There is a phase

shift of p=3 rad between the two networks for both flux values at nodes D and E. To obtain complete equivalence, the inputs at A in both networks need to

differ by this constant phase.
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incident electron is totally reflected to the input terminal,

which does not occur for even-numbered, single rings.

Therefore, none of the Th�evenin conditions are satisfied

other than sharing the same lattice spacing l.

C. Stronger coupled loops

There are two types of stronger coupling: the loops can

share a single scattering path, or they can share two. A single

path is the strongest form. For a single path in each of the

four classes, the energy states that form the band structures

are distorted from those of a single ring. Another issue that

complicates stronger coupling is that the flux period becomes

a rational number, not U0.25 However, there are instances

where the Fermi levels happen to align with an equivalent

single loop. The problem is that this may only be true for a

single flux value, as opposed to a wide range. This gives lit-

tle flexibility in trying to meet the other Th�evenin require-

ments such as matching the wavefunctions and transmission

in the preserved part of the circuit. Due to this, forming an

equivalent model from a network of loops coupled by single

paths is not possible.

Since the strongest form of coupled AB rings is ruled

out for equivalence, we examine the coupled networks which

share two center common paths. While providing two paths

for an electron to scatter, the energy levels are altered. In this

case, it is not possible to meet all equivalence conditions

when the two applied fluxes U1 ¼ U2. However, an interest-

ing pattern in the band structures for all four classes is found

when U1 ¼ �U2. The Fermi levels for these coupled

networks show similarities to a single ring by scaling the

value of the electron charge in the ring. In Fig. 6(b), the

equivalent Fermi energy region is shown after the electron

charge in a single ring is adjusted. Note that when the

applied fluxes are opposite in direction, the phase modulation

along the center common paths is no longer zero (compared

to when the applied fluxes are equal). This leads to a net per-

sistent current flowing in the two common paths and indi-

cates that the band structure must be similar to a single ring

(where persistent current is present in all paths).

By considering all possible terminal configurations, the

smallest odd 4Nþ 3 (M¼ 3) and even 4N (M¼ 4) coupled

networks are ruled out. While their Fermi levels can be

aligned by renormalizing the value of charge in the single

rings, the wavefunction distributions do not match for any

terminal configuration. However, for the smallest 4N þ 1

network (M¼ 5), which is larger than the previous two

(M¼ 3, M¼ 4), we can find that all equivalence require-

ments are satisfied. In the Fig. 6 example, the Fermi levels

can be aligned between the coupled network with period

5U0=6 and a single M¼ 5 ring. The single ring has to be pre-

pared with fractional charge 6e=5 to yield U00 ¼ 5U0=6. This

allows the Fermi energies to be equal in half of the flux range

FIG. 5. (a) Diagram of point-contacted M¼ 5 loops with an equivalent single ring. (b) Energy band structures (in units of h2=8p2l2m) of both networks com-

puted from their secular determinants, similar to Eq. (5). (c) Wavefunction magnitude for the preserved nodes in each system. The equivalence conditions are

only met at two flux values jUj ¼ U0=4, indicated by the pair of arrows and stars, with corresponding energy E ¼ h2=32l2m. This is because the cos kl terms

vanish in the node equations since the Fermi wavevector kF ¼ p=2l. There is a phase difference of � 5=2 rad between the two networks for both flux values at

nodes E, F, G, and H. To obtain complete equivalence, the inputs at A in both networks need to differ by this constant phase.
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jUj � 5U0=24. If three terminals are attached as shown in

Fig. 6(a), an exact equivalence can be achieved at the boun-

daries of this region jUj ¼ 5U0=24. The transmission circu-

lates between unity at each output, and occurs at the same

Fermi wavevector value as the point contact examples dis-

cussed previously, kF ¼ p=2l. This is not the only viable ter-

minal configuration. By symmetry, one can rearrange the

output terminal from G to E while inverting the two flux

directions and still satisfy all the equivalence requirements.

The last example is for an even-numbered 4N þ 2 class

represented by M¼ 6 and shown in Fig. 7(a), which happens

to have particular regions that are able to meet all equiva-

lence conditions. The flux period of this network is 6U0=7. A

fractional charge of 7e=6 can be prepared in the single M¼ 6

ring to alter the flux period and align the Fermi energies in

the range 6U0=35 � jUj � 6U0=14 as shown in Fig. 7(b). At

the zone boundary jUj ¼ 6U0=14, both networks fully trans-

port through terminal G. Note that the boundary of the equiv-

alent network portion could be extended to include nodes F
and I if desired. The Fermi energy and wavevector are con-

sistent with the same values found in all the other examples

presented. This is clearly an interesting observation.

IV. CONCLUSION

We have shown that there are possibilities to extend

Th�evenin’s theorem for classical electric circuits into the

quantum network regime. For an equivalence to be valid, the

node equations for both networks need to be identical in the

unaltered part of the circuit. The requirements dictate that

the two equivalent networks need to have the same Fermi

energies, attributable to the specific structures and applied

fluxes involved. In order for the band structures of two net-

works to be equivalent, and hence suitable for such a trans-

formation, there needs to be some form of symmetry or

scaling relation between the two respective networks. This

requires the same lattice spacing in both structures. We

began with the concept of a single ring being scaled, known

to be valid from prior work. The idea was then extended to

the four basic AB ring classes, M¼ 4N, 4N þ 1, 4N þ 2, and

4N þ 3, at point-contact coupling. These networks share

identical band structures with that of a single ring of the

same class but with extra flux invariant states added. With

the ability to look for an equivalence across the entire flux

period, several examples were identified. Only two classes of

rings exist where Th�evenin’s principle can be applied, when

M¼ 4N þ 1 or 4N þ 3. For the even-numbered classes, the

Fermi energy levels are flux invariant. There is total reflec-

tion for any input, making it impossible to find an equivalent

network. The Th�evenin equivalent is valid up to where the

inputs can differ by a constant phase factor. If two point-

contacted loops can satisfy all Th�evenin requirements, then

it is reasonable to assume this can be extended to an arbitra-

rily large number of point-contacted loops. This would

FIG. 6. (a) Diagram of two path coupled M¼ 5 loops with an equivalent single ring. (b) Energy band structures (in units of h2=8p2l2m) of both networks com-

puted from their secular determinants, similar to Eq. (5). The Fermi energies are equivalent in the range jUj � 5U0=24, indicated by the shaded region. (c)

Wavefunction magnitude for the preserved nodes in each system. All equivalence requirements are satisfied at the two flux values 65U0=24, indicated by the

pair of arrows and stars. These points correspond to the same energy as in the point-contact examples, E ¼ h2=32l2m. This is because the cos kl terms vanish in

the node equations since the Fermi wavevector kF ¼ p=2l. The phase difference at nodes E, F, and G between both networks is �p2=4 rad for the arrow flux

values and � 43=64 rad for the starred values. To obtain complete equivalence, the inputs at B in both networks need to differ by these constant phases.
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simply reduce the valid flux range consistent with multi-

stage resonant tunneling.

We further investigated the four classes of coupled AB

rings with varying coupling strengths. Two cases are pre-

sented: a single path (strongest) and a weaker double path.

For double paths, the entanglement of the loops is still

weak enough that the band structure is similar to a single

ring if the two fluxes are opposite in direction. If the fluxes

are equal, there will be no net persistent current flowing in

the shared center path, indicating that the band structure

will vary too greatly from the single ring spectrum. This

kind of coupling changes the flux period to be a fraction of

U0. To have any potential Th�evenin equivalence, the Fermi

level needs to be aligned with that of a single ring. To

achieve this, there must be a charge renormalization

(e! 7e=6, as an example). Only two suitable classes exist

that meet all of the equivalence requirements. They are the

odd-numbered 4N þ 1 and even-numbered 4N þ 2 classes.

Consistent with the point-contact cases, the equivalence is

only valid at specific flux values and only for a few select

terminal configurations. In the valid instances presented,

the Fermi energy is h2=32l2m with wavevector p=2l. This

leads to vanishing cos kl terms in the node equations for

each network. The result is a simpler set of relations that

allow for an equivalence to be obtained.

In summary, the possibility to extend Th�evenin’s equiv-

alence principle to the mesoscopic regime is limited to spe-

cific circumstances, as one would expect. Here, we have

outlined what general requirements need to be met. For there

to be any possibility of reducing a complex network, the cou-

pling strength between loops formed needs to be weak.

When the coupling becomes too strong, the band structure is

distorted away from that of a single ring. This then elimi-

nates any possibility of equivalence. With weaker coupling,

there are class and terminal restrictions to meet the necessary

conditions. In this work, we have focused on exploring these

restrictions and providing examples that demonstrate the

principle. For any general quantum network, an equivalence

may be possible if the portion of the network to be replaced

has weak coupling and no disorder.
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