Metadata, citation and similar papers at core.ac.uk

Provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

MISSOURI
s Missouri University of Science and Technology

Scholars' Mine

Electrical and Computer Engineering Faculty

Research & Creative Works Electrical and Computer Engineering

01 Oct 1992

Object-Oriented Modeling of Communication Systems

Kurt Louis Kosbar
Missouri University of Science and Technology, kosbar@mst.edu

Kevin W. Schneider

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

K. L. Kosbar and K. W. Schneider, "Object-Oriented Modeling of Communication Systems," MILCOM ‘92
Conference Record - Communications - Fusing Command, Control and Intelligence, pp. 68-72, Institute of
Electrical and Electronics Engineers (IEEE), Oct 1992.

The definitive version is available at https://doi.org/10.1109/MILCOM.1992.244090

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

https://core.ac.uk/display/229173782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1789&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1789&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MILCOM.1992.244090
mailto:scholarsmine@mst.edu

OBJECT-ORIENTED MODELING OF COMMUNICATION SYSTEMS

K. Kosbar
Department of Electrical Engineering
University of Missouri - Rolla
Rolla, MO 65401

ABSTRACT

Conventional communication system simulation programs
and packages are written using procedural programming
languages. Newly developed, object-oriented languages offer
the simulation designer significantly different options and
structures. By exploiting these new techniques it is possible
to significantly increase the flexibility and extensibility of
the simulation package. This allows the system analyst to
efficiently re-use complex simulation code and quickly and
reliably reconfigure the simulation. In addition, a single
object-oriented simulation can be used in all stages of the
design process, from conceptual design through fabrication
and testing. A final benefit of the object-oriented techniques
is that the simulation code closely matches the graphical
user interface used in most modern simulation packages.
This work discusses the basic attributes of an object-oriented
model and examines why this may be an attractive
simulation architecture.

I. INTRODUCTION

Simulation of commaunication systems is a reasonably
mature field. Several technical journals have been dedicated
to this subject, high level computer aided design packages
are commercially available, and textbooks covering the topic
are now in print. While these are all valuable research tools,
many address scientific rather than engineering problems.
By this we mean they encourage the system analyst to focus
on solving a single, narrowly defined problem, such as
determining the symbol error rate of a digital
communication system. The analyst typically develops and
exercises an algorithm that solves this problem, then
summarizes the results in a technical report. The computer
program is then archived and the report used to guide the
remaining design effort.

However, system analysis is merely the first of many
steps required to produce a device. There will be numerous
design decisions made, and modifications to the system
proposed, well after the high level design is completed. The
system level engineering effort will ideally focus not only
on answering the immediate design questions, but also on
establishing a structure which others can use to further refine
and test the system. This structure should place a minimal
number of restrictions on the algorithms used to solve the
design problems faced at any given stage. Such an approach

3.1.1

K. Schneider
Adtran Inc.
4955 Corporate Drive
Huntsville, AL 35805

is even more important in concurrent engineering, where a
team of designers address many engineering concerns
simultaneously. The unifying structure in these projects
could very well be the computer simulation program,

At the most fundamental level, a computer program is
defined as a set of data structures and algorithms. Since
simple simulation algorithms often place a substantial
computational burden on the computer resources, analysts
are accustomed to working with complex, but numerically
efficient, algorithms. In an attempt to shorten the execution
time, simulation research frequently focuses on algorithm
development. Constructing a simulation that can utilize
these highly efficient algorithms and is flexible enough to
address the engineering problems mentioned above will
require a more elaborate program. In particular, the
simulation designer will need to use both advanced
algorithms and advanced data structure concepts.

While the exact implementation of the simulation data
structure will vary from one application to the next, there
are well documented strategies for developing efficient and
flexible data structures. One of the strategies that is
currently receiving considerable attention is object-oriented
(OO0) modeling. Individuals that learned to write programs
in more conventional languages such as FORTRAN, Pascal
and C, must overcome a substantial learning curve before
they can effectively use OO techniques. Since most
engineers face stringent scheduling and fiscal constraints,
they must be convinced that OO modeling holds substantial
promise before they will allocate the resources necessary to
develop a new simulation using this approach. Fortunately,
the flexibility of an academic research environment allowed
the authors to investigate the OO simulation problem
although at least one of them was initially skeptical that it
held substantial promise.

We can now report that there are indeed substantial
benefits to OO modeling of communication systems. The
intent of this work is to briefly outline these benefits.
Section II describes the basic concepts used in OO modeling
while Sections III and IV focus on the advantages of the new
approach when used to model communication systems.
This discussion will hopefully assist others who are deciding
if they wish to gamble on developing OO simulations.

0068 0-7803-0585-X/92 $3.00 © 1992 |EEE

II FUNDAMENTALS OF
OBJECT-ORIENTED MODELING

The earliest high level computer languages, such as
FORTRAN focused almost exclusively on algorithm
development (recall that the name of the language is an
acronym for formula, ak.a. algorithm, translation).
Although extremely elaborate algorithms can be
implemented in FORTRAN, only the most fundamental data
structures, such as simple variables and arrays, can be easily
realized. The next generation of computer languages,
including C, Pascal, and refinements of FORTRAN,
partially rectified this problem by allowing the user to easily
define abstract data structures. While this is a significant
step forward, these languages do not incorporate advanced
techniques for manipulating user-defined data structures.
This can make complex code very difficult to develop,
maintain and modify. Recently developed OO languages
such as C++, Smalltalk, and Eiffel attempt to remedy this
situation by allowing more advanced data structure definition
and manipulation.

While the syntax of the OO languages mentioned above
differ, the underlying concepts are very similar. Expressing
a simulation architecture using these common concepts is
the intent of OO modeling. This activity is important
enough that attempts are underway to standardize the method
of referencing objects (see the Information Object Class
specification in the 1992 ISO standard Abstract Syntax
Notation - ASN.1). An object oriented model can be
implemented in virtually any general purpose language,
including machine specific assembly code, conventional
languages or OO languages. Since the syntax and structure
of an OO language is highly correlated with the OO
modeling constructs, it reasonable to use these languages to
implement OO simulations.

Three concepts that are fundamental in OO modeling and
programming are encapsulation, inheritance and
polymorphism. Each of these is briefly discussed below.

ENCAPSULATION

Object oriented languages extend the concept of a data
structure to form a new program element which is often
called an object. An object contains both data structures and
the algorithms that manipulate this data. These algorithms
are often in the form of functions and subroutines that are
collectively referred to as the object's methods. (To keep the
new OO vocabulary at a minimum, we will refer to the
methods as functions.) The act of grouping the data
structure and the functions into a single program element is
called encapsulation. This single program element can then
be allocated and used just like any other data type, such as
integer or real. Variables can be defined to be of this type.

This ability to create multiple copies (or instances) of an
object is extremely useful. Each instance has the same data
structure, the same functions, but may have different values
assigned to the elements in the data structure. This ability
to have many copies of the object present in thg.‘program‘is
very useful in system modeling where multiple. copies: of
components (such as filters) are often present. ’

The functions of an object have easy access to the
attributes of the object. In C++-or OO dialects-of Pascal,
the functions have access to the attributes as if they were
passed as variable parameters. That is, they can.be modified:
by the function and retain their values after the function is
completed. This easy access to the attributes does not
require the attributes to be listed in the function statement,
so the possibility for mismatch of types is reduced. In
addition, since the functions and the attributes belong to the
same object, we are assured that the function is working
with the data that it is supposed to work with and some
other data has not been passed to it by mistake.

One might argue that encapsulation:can be carried out in
a non-OO language. This is only partially correct. While it
is true that functions can be associated with data in other
languages (in FORTRAN for example, by using named
common blocks), the many advantages of encapsulation as a
part of OO modeling can not be exploited. - First of all, in a
non-O0 language, encapsulation is at best an arrangement of
the source code. In an OO language, encapsulation produces
a unique program element. But perhaps most importantly,
the ability to create multiple instances of -an object
differentiates encapsulation as-a part of GO programming
from non-OO encapsulation. The ability to create multiple
instances without having to copy the source code and fename
variables, make OO modeling very useful when modeling
communication systems.

INHERITANCE ‘
Often, a group of objects will have several attributeés and
operations in common. In this case it is desirable to'define
a core object type that incorporates these comimon elements
and let the various objects in the group include thiscore
with a single program statement. A property of OO
languages known as inheritance allows this. Inheritance
allows a new object type to be defined that includes:all of
the attributes and functions of the previously:defined object
type. The new object type will typically have some new
attributes in addition to those that were inherited. The
functions of the new object type will include those that were
inherited and any additional new functionsthat are necessary .
to carry out the operations of the new object type. -
In simulation modeling, inheritance can be used to define..
a base class for all system models that includes all of the

3.1.2
0069

attributes and operations necessary to be a part of the
simulation architecture. This object type could be referred to
as the "simulation interface”. Since these basic functions
can be inherited, a programmer working on a system model
does not have to be aware of all of the details of the
implementation of the basic functions. In addition, if the
operation of these basic functions needs to be changed, it can
be done in one place and then the new version of the object
will be inherited by the other objects. In contrast, without
inheritance, the "simulation interface" would have to be
modified in each module in the system library. Since a
system library could consist of many modules, this would
be a very large undertaking.

In addition to its use of defining a base object type,
inheritance can also allow a program to be extended without
modifying the existing code. Objects from a working
simulation can be inherited to form new objects that include
some addition or modification to the original object. This
allows changes to the system and simulation to be tested
without jeopardizing the existing program,

POLYMORPHISM

Inheritance is made even more useful by the use of
polymorphism. Polymorphism allows each new object type
to redefine the operation of inherited functions as is
appropriate for its own purposes. This allows a basic
interface to be defined at level of the base simulation object
type and then as system model objects are built by
inheriting the base object type, the implementation of the
functions that make up the interface can be redefined to be an
operation specifically for a particular object type.

II. FLEXIBLE SIMULATIONS -
MANAGING COMPLEXITY

As the design of communication systems has become
more complex and incorporate custom VLSI circuits, the
development of hardware prototypes to help make decisions
about the design of the system hardware has become an
difficult task. As system designers seek to reduce the time
required to develop system components, computer
simulation becomes attractive as a design tool. When using
simulation as a design tool, it is important that the
simulation architecture can easily be altered, to handle the
many changes in the system design that occur throughout
the design process. In these cases, the time that is required
to develop the simulation models of the system components
is significant when compared to the time required to run the
simulation. The many features of OO modeling and
programming can significantly reduce the time spent in
model development. In this section we will briefly

3.13

0070

highlight some of the advantages that OO modeling brings
to the system simulation model development process.

In a previous section, the property of encapsulation was
introduced. Encapsulation allows the simulation model of an
object to more closely resemble the "real world" device that
it is modeling. Most "real world" devices can be modeled by
noting their attributes (or states, memory, etc.) and their
operations. These attributes form the data structure of the
object that models the device and the operations form the
functions of the object. The ability to create multiple
instances of objects allows the models of the system
components to be used to represent many components of the
same type--such as filters or oscillators, that often are
present in multiple quantities in a single device. The
structure of the object lends itself well to the use of a
graphical user interface (GUI) to the simulation. Although
OO0 modeling is not required to use a GUI, the use of OO
modeling allows the program to have a structure that is
similar to the GUI, thus improving the reliability of the
simulation.

As previously mentioned, the use of inheritance and
polymorphism allows the basic simulation interface to be
mostly hidden from the system model programmer. This
basic interface could include "housekeeping” duties such as
saving or loading an object's attributes, an initialization
procedure and a method to reset the device to an initial state.
By using polymorphism, each of these functions can be
defined at the base simulation level, but most will have to
be redefined with each specific object type, as the objects
gain additional attributes and functions. Since all
simulation model objects are derived from this base object
type, the simulation objects can be passed to functions and
subroutines as if they were data structures. The functions of
the objects can be called by the subroutines that the object
was passed to. Polymorphism allows the proper operation
to be carried out when the function is called.

Inheritance can also be used to build hierarchies of
objects that can be used to avoid unnecessary duplication of
common coding blocks. Each level of the hierarchy includes
features that are common to a certain class of devices. Any
time duplicate code can be eliminated, it should, to make the
code more readable and reduce the probability of coding
eITors.

One of the larger problems in using simulation as an
engineering tool is making the simulation flexible enough
to accommodate different design options. By using OO
modeling, libraries of system modules can easily be built up
and extended as the design dictates. By letting the program
design mimic the physical design, the probability for errors
in the simulation model should decrease. Maintaining an

evolving simulation is no small task, but it is made easier
with OO modeling.

IV. MULTI-PURPOSE SIMULATIONS

Engineers throughout the design chain use computer
aided design (CAD) or simulation tools. Each of these
individuals face a different set of problems and is tempted to
use the simulation package or methodology that allows
them to solve their immediate problem with the least
amount of effort. For example, simulation is often
employed at the highest, or system, design level. Since the
designers at this level must work with a very large number
of variables and components, they are forced to make
numerous modeling approximations to keep the analysis
tractable. Such modeling approximations include the use of
idealized filter specifications and mathematically convenient
noise source statistics. They may also choose to ignore
imperfections such as gain and phase imbalance in quadrature
circuits, quantization and recursion noise in digital filters,
and impedance mismatches to name a few. Subsystems that
do not directly effect the overall performance, such as devices
used for testing, calibration and verification, may also be
completely ignored. At the end of the system design stage,
these individuals will have a clear understanding of the
system architecture and performance based on their modeling
approximations.

The subsystem design engineer will develop a more
highly detailed architectural design for each subsystem.
They will consider factors such as ease of fabrication,
physical characteristics including size, power, weight and
thermal characteristics, and develop procedures and devices to
test and verify the performance of the subsystem. The result
of this effort will be a device that approximates the function
the system level designers desired.

For the design to be successful, these two (or more)
groups of engineers will need to effectively communicate
their ideas and design decisions. When working on a
complex system this is no small feat. The success of this
communication is verified during testing. Many
misunderstandings and mistakes can be made along the
design path. These errors can go undetected until the system
is fabricated. When a complex piece of hardware fails to
meet the design specifications, it can be difficult to
determine the cause of the discrepancy. One will need to
integrate the products of the various CAD tools with the
observations made of the final system.

There are at least two approaches to solving this
problem. The first is to allow each design area to use the
CAD tools which they find most convenient and powerful
for their particular design problem. No attempt is made to
integrate these tools. Design decisions and test results are

passed between areas in the form of specifications and
technical reports. While this approach will certainly work,
it invites many problems and a considerable amount of
tedious work. This may also limit the complexity of the
system and/or the time required to bring the system to
market. It can also lead to frustrations because some CAD
tools may not easily accept the format of the test conditions,
or produce outputs that can not be quickly and easily
correlated with the observed data.

Another method of overcoming the design
communication problem is to integrate all of the CAD
functions into a common package. While this sounds
attractive, some are skeptical that one package will be able
to perform every CAD task well. There are many different
problems encountered when designing a system. It is
difficult to believe the software developer will be able to
identify all of these tasks and accommodate them in a single
design package. This may be remedied by allowing the user
to modify aspects of the package. However the resulting
packages run the risk of being very large, complex, and
difficult to modify. ‘

A third method of integrating CAD tools would be to
allow each user to generate the code they need to solve their
immediate problem using a general purpose language.
However, require them to operate within a framework that
allows others to easily use and modify their code. This is
the basic concept behind object-oriented: modelmg An
example of this approach, is given below.

A subsystem of a communication system. contains an
energy detector. The high level design of this device is
shown in Fig. 1. The conventional approach to simulating
this device would be to develop three: separate subroutines,
one for the first low-pass filter, one for the squaring device,
and one for the second lowpass filter. Every time increment
the simulation would execute these three routines in order.

Low-Pass
Filter

Low-Pass R Squé.fing
Filter | Device

Fig. 1. Sample High-Level Block Diagram

Suppose this device will be implemented using digital
signal processing algorithms on an application ' specific
integrated circuit (ASIC). If synchronous logic is used, the
design will consist of blocks of combinator‘iél logic and
registers or Flip/Flops (F/F) to latch the output of the logic
blocks, as shown in Fig. 2. All of the F/F will be-clocked
simultaneously in this design. Assume Logic Block A

corresponds to the first low-pass filter, Logic Block B the, ‘

squaring device and Block C the second low-pass filter.: The
original order of execution is now. starting' to: become

3.14
0071

inconsistent with the detailed design. In fact we may wish
to execute Block C first, then B and finish with Block A,
the exact opposite order from the original simulation.

—

»
—* < M &
e s F/F Ve
-
2] B Ei III 8| 3
2— m m m | B
=] L 2 2| 8
SR i kIt A
—» = -
—p

/F

Fig. 2 Boundary Scan
Operational Configuration

The difference between the original, high level

simulation and the lower level design becomes even more
pronounced when we consider testing techniques. One
particularly interesting technique is known as boundary scan

[31.

This technique allows one to examine, and if desired,

modify, the contents of all of the F/F that fall at a boundary

between the logic blocks.

This is accomplished by

including multiplexing circuitry to allow the ASIC to be
reconfigured as shown in Fig. 3. Since all of the F/F now
form a single shift register, their contents can be examined
or changed by clocking the register the appropriate number
of clock cycles. We have now completely destroyed the

original execution order.

The original subroutine that

implemented the first low-pass filter will have to be called
twice. This will require substantial modifications to the
simulation code.

0072

Scan Line In
— N
.

— < m Q
3| e[T
a—ba m m E.‘
£ 2 2 g1l &
—» &b E 80 &

g gl 83
N
N

" Scan Line Out

Fig. 3 Boundary Scan
Scan Configuration

3.1.5

In this example, a decision was made to execute blocks
in a particular order in the high level simulation. This
placed restrictions on the code that ultimately limited its
flexibility and usefulness. If the original code had been
written so that execution order was not important, it would
have been possible to implement the boundary scan
technique without rewriting major portions of the code. In
this case it would make sense to form an object that was the
lowpass filter. Within that object there would be a routine
to implement the idealized filter used in the high level
design, the actual filter used on the ASIC, and routines to
read in and out the values of the F/F to accommodate
boundary scan. All of these routines require access to the
same data structure. And the data structure should be
"hidden" from the rest of the simulation so that it can not be
inadvertently modified. By thinking in terms of objects
rather than simply algorithms, we could construct a
simulation that would be useful to both system designers
and logic level design engineers.

IV. AN OO SIMULATION EFFORT

We are currently developing a object-oriented
communication system simulation that demonstrates the
principles mentioned above. By making extensive use of
inheritance, polymorphism and encapsulation the user is
able to develop general purpose algorithms within a
structure that allows for future change and integration of the
boundary scan technique mentioned above. Written in the
C++ language, this simulation uses a hierarchy of classes.
At the highest level is a "system interface" class that
contains all of the housekeeping routines needed to
initialize, run and store the results of a simulation, along
with graphical interface data. A "wiring harness" class
inherits all of the properties of the system interface class,
but also allows to user to define a number of state variables.
At the lowest level of the hierarchy is a "module" class
which inherits all of the properties of the harness class, but
also allows for functions that modify state variables. The
simulation has many of the attributes listed above. For
example, it does not require the user to specify the order in
which modules will be executed and can easily incorporate
boundary scan.

REFERENCES
G. Booch, Object oriented design with applications,
Redwood City, CA, Benjamin/Cummings, 1991
J. Rumbaugh et al., Object-oriented modeling and
design, Englewood Cliffs, N.J., Prentice Hall, 1991
M. Levitt, "ASIC Testing Upgraded", IEEE Spectrum,
Vol. 29, No. 5, May, 1992, pp. 26-29

(1]
(2]
(3]

	Object-Oriented Modeling of Communication Systems
	Recommended Citation

	Object-oriented modeling of communication systems

