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Abstract

Quality and risk concerns currently limit the application
of commercial off-the-shelf (COTS) software components
to non-critical applications. Software metrics can quantify
factors contributing to the overall quality of a component-
based system, and models for tradeoffs between cost and
various aspects of quality can guide quality and risk man-
agement by identifying and eliminating sources of risk. This
paper discusses metrics and models that can be used to al-
leviate quality concerns for COTS-based systems, enabling
the use of COTS components in a broader range of applica-
tions.

1. Introduction

The paradigm shift to commercial off-the-shelf (COTS)
components appears inevitable, necessitating drastic
changes to current software development and business
practices. Quality and risk concerns currently limit the
application of COTS-Based Systems (CBSs) to non-critical
applications. New approaches to quality and risk manage-
ment are needed to handle the growth of CBSs [4, 6]. With
software development proceeding at unprecedented speed,
in-house development of all system components may prove
too costly in terms of both time and money, as witnessed
by the outsourcing trend currently present in commercial
software development. Large-scale component reuse
and COTS component acquisition can generate savings
in development resources, which can then be applied to
quality improvement, such as enhancements to reliability,
availability, and ease of maintenance.

From a historical perspective, software failures in both
traditional and component-based systems have had drastic
consequences for the organizations employing these sys-
tems. Software errors in the automated baggage control sys-
tem of the Denver International Airport delayed the opening
16 months, dramatically increasing the construction costs

[10]. Within the Department of Defense, where software is
subject to rigorous testing and debugging, a software error
caused severe failure in a mission involving the Clementine
satellite. This satellite was launched into lunar orbit in the
spring of 1994, and one objective of its launch was the test-
ing of targeting software that may have later been used in
missile defense systems [10]. If the failure had gone un-
detected, and the software system had been used in a mis-
sile defense system, such a failure may have had calamitous
consequences.

Such case studies serve as important stepping-stones
on the path to component-based software development, as
many of the same problems threaten CBSs. Quality and per-
formance concerns can be alleviated by using software met-
rics to guide quality and risk management in a CBS, accu-
rately quantifying various factors contributing to the overall
quality of a CBS, and identifying and eliminating sources of
risk. Metrics can guide decisions throughout the software
life cycle and determine whether software quality improve-
ment initiatives are financially worthwhile [28, 21, 20].

As in any development or manufacturing process, soft-
ware quality is achieved at a cost. This paper outlines ex-
isting challenges in cost and quality management of CBSs
and illustrates the use of metrics for quantifying the con-
cept of software quality, investigating the tradeoff between
cost and quality, and using the information gained to guide
quality management.

2. Software Metrics for CBSs

Measurement enables engineers to quantify product
quality and performance, to evaluate the development pro-
cess and product attributes that impact quality and per-
formance, and to demonstrate how product and process
changes impact these attributes. A proper choice of basic
metrics combined with a selection of powerful tools and
true integration of these metrics and tools forms the foun-
dation of efficient and robust software project management.
To this end, a metrics-guided approach to the quality man-
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agement of CBSs can aim to provide software developers
and managers of CBSs with the same benefits attained by
metrics in developing in-house software. The first step is
identifying a set of metrics tailored to the specific needs of
CBSs.

Metrics can guide risk and quality management and help
to reduce the risks encountered during the planning and ex-
ecution of software development, resource and effort allo-
cation, scheduling, and product evaluation [18, 21]. Risks
can include performance issues, reliability, adaptability, and
return on investment. Risk reduction can take many forms,
such as using component wrappers or middleware, replac-
ing components, relaxing system requirements, or even is-
suing legal disclaimers for certain failure-prone software
features. Metrics let developers identify and isolate these
risks, then take corrective action.

One of the keys to success is selecting appropriate met-
rics - especially metrics that provide measures applicable
over the entire software cycle and address both software
processes and products. In choosing metrics, the soft-
ware engineering environment of both the development and
maintenance cycles should be considered, as well as the
economics of metrics collection and analysis. To reduce
the possibility of having a single bottleneck to measurement
accuracy, redundant or cross-related metrics can be defined,
where each of the related metrics can validate the data pro-
vided by the others. The metrics selected should also have
a strong basis in industry or government practice for estab-
lishing “rule of thumb” thresholds for use by software man-
agers [11, 28].

An important difference between metrics for CBSs and
traditional systems is the unavailability of “size” as a met-
ric. Most traditional metrics sets incorporate the size of the
source code, measured in Lines of Code (LOC), into several
metrics. This size is generally not known for COTS com-
ponents, hence, if a measure of program or component size
is required, alternate measures should be used. One such
measure is the number of use cases - business tasks the ap-
plication performs - that a given component supports [26].

CBS metrics also approach time to market differently.
Component acquisition changes the concept of time to mar-
ket because developers may not know the component de-
velopment time and cannot incorporate it into time calcula-
tions. For CBSs, a simple delivery rate measure can replace
the time to market measure. One proposed measure divides
the number of use cases by the elapsed time in months [26].

Another challenge arises from the fact that the thorough
component level testing required for metrics collection may
not be possible, due to inaccessibility of the component
source code. Test results reported by the component devel-
opment team may be of limited use, as integration testing
is performed at the time of deployment, and discrepancies
may arise between the metrics collected at system and com-

ponent levels.
An initial set of system level metrics for CBSs is de-

scribed in 1. These metrics are intended to help software de-
velopers and managers select appropriate components from
a repository of software products and aid in deciding be-
tween using COTS components or developing new compo-
nents. The primary considerations are cost, time to market,
and product quality.

Of the metrics defined in Table 1, a subset is of par-
ticular importance to CBS development and design. This
subset, which appears italicized in Table 1, includes seven
metrics: cost, time to market, software engineering environ-
ment, complexity, test coverage (either integration or end-
to-end), and reliability. A study of the literature, including
industrial case studies [11, 28, 25, 24, 2], underlines the im-
portance of this subset.

Cost is an obvious choice for the focus group. Time to
market is closely related to cost and directly impacts the
market viability of the software product. The software engi-
neering environment metric is of interest due to its potential
for predicting quality software. From the quality perspec-
tive, the focus is on the test coverage and reliability metrics.
Complexity has been chosen, as it impacts the robustness
of the software, as well the cost, as detailed later in this
paper. Reliability is currently the bottleneck for CBS devel-
opment, and is hindering the deployment of CBSs in critical
applications [19, 17, 27]. The test coverage metric is of im-
portance, as it is closely related to reliability and provides
an automated means for measuring which code has been
tested.

This subset of metrics satisfies the criteria mentioned
above for metrics selection, as the six metrics are relevant to
the software engineering environment of CBS development
and maintenance, can be collected in a cost-effective man-
ner, are cross-related to each other, and can be used to es-
tablish rule-of-thumb guidelines for software management.

Because the metrics are interdependent, understanding
the relationships between them can aid decision-making re-
garding CBS quality-improvement investments. The most
obvious relationship is between cost and the quality met-
rics, such as reliability [7, 13]. However, more subtle re-
lationships exist, such as those among time to market, test
coverage, and reliability. Delayed product release because
of testing and debugging can result in reduced revenues or,
in extreme cases, loss of the market to a competitor with
an earlier release. On the other hand, premature product
release can lead to lower reliability. Understanding the re-
lationships among time to market, test coverage, and relia-
bility can help in selecting a suitable release schedule [9].
Another effective strategy involves using the software en-
gineering environment in conjunction with the quality met-
rics to encourage vendors to improve their software devel-
opment process and adhere to standards, thus increasing the
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Table 1. System-level Software Engineering Metrics for CBSs.
Category Metric Evaluates/Measures

Management Cost Total software development expenditure, including costs
of component acquisition, integration, and quality im-
provement

Time-to-market Elapsed time between development start and component
acquisition to software delivery

Software Engineering Environment Capability and maturity of the development environment
System Resource Utilization Utilization of target computer resources as a percentage of

total capacity
Requirements Requirements Conformance Adherence of integrated product to defined requirements

at various levels of software development and integration
Requirements Stability Level of changes to established software requirements

Quality Adaptability Integrated system’s ability to adapt to requirements
changes

Complexity Component interface and middleware or integration code
complexity, number of components

Integration Test Coverage Fraction of the system that has undergone satisfactory in-
tegration testing

End-to-End (E2E) Test Coverage Fraction of the system that has undergone satisfactory E2E
testing

Fault Profiles Cumulative number of detected faults
Reliability Probability of failure-free system operation over a speci-

fied period of time
Customer Satisfaction Degree to which the software meets customer expectations

and requirements

likelihood that users will select their component.

One possible approach to modeling the relationships
among the metrics is an influence diagram [22]. An influ-
ence diagram is a network for probabilistic and decision
analysis models. The nodes correspond to variables that
can be constants, uncertain quantities, decisions, or objec-
tives. The arcs reveal the probabilistic dependence between
the uncertain quantities and the information available at the
time of the decisions. Detailed data about the variables is
stored within the nodes, so the program graph is compact
and focuses attention on the relationships among the vari-
ables. The flexibility, tractability, graphic nature, and in-
tuitiveness of influence diagrams make them an attractive
choice. To construct the influence diagrams, and to de-
termine the initial metrics values, data from case studies,
field tests, and simulation can be used. A sample influence
diagram is presented in Figure 1, and depicts the relation-
ships among the focus subset of the metrics. In this figure,
the rectangles, ovals, and rounded rectangle represent deci-
sions, uncertain quantities, and the objective value, respec-
tively.

Beginning at the rightmost node of Figure 1, the objec-
tive value being maximized is the software value, which can

be expressed in terms of the overall return on investment,
the market share, or other common measures of product
value. The decisions to be made involve the time to mar-
ket and reliability of the product. For instance, how long to
continue testing and debugging before releasing the prod-
uct, which in turn determines how quickly the product will
be released, and how reliable it will be. These decisions di-
rectly impact the software value, as an early product release
will lead to a competitive edge, and a possible increase in
market share, and higher reliability will make the product
more desirable, and hence, more valuable.

The uncertain quantities driving the decisions are cost,
software engineering environment, and test coverage, as
well as the time to market and reliability. The software
engineering environment influences all of the other uncer-
tain quantities, as a better software engineering environment
will achieve higher test coverage, and hence higher reliabil-
ity within lower cost and shorter time to market. Test cov-
erage influences reliability, as higher test coverage is more
likely to remove a greater number of software faults, lead-
ing to a lower failure rate and higher reliability. Time to
market influences cost, as the a late release may be costly
in terms of increased testing costs, as well as loss of rev-
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Figure 1. Sample influence diagram for a sub-
set of the software metrics

enue due to losing market share to competitors. Reliability
influences time to market, as a more reliable product can be
released more quickly.

Complexity influences test coverage and reliability, as
overly complex software is less likely to be tested thor-
oughly and will be less reliable as a result. Complexity also
influences time to market, as testing will be more time con-
suming. For reasons described later in this paper, complex-
ity is also affects the cost of the software. Having a clear
picture of these influences and interrelationships facilitates
decision-making regarding investments in quality improve-
ment initiatives.

3. Modeling Cost and Quality in CBSs

In deciding between in-house development and COTS
component acquisition, the anticipated effect on system
quality is an important concern. Software quality can be
measured from several different perspectives, including the
level of satisfaction of the customer, the key attributes of the
software, or freedom from defects in the software’s opera-
tion. In metrics-guided quality management, software met-
rics are used to guide the allocation of resources to quality
improvement initiatives.

The cost of quality (CoQ) represents the resources ded-
icated to improving the quality of the product being devel-
oped. For example, increasing or maintaining reliability
incurs costs that can be considered the costs of reliability.
The overall CoQ is the sum of such costs plus other costs
that cannot be directly attributed to factors measured by the
quality metrics. Quality costs, then, represent “the differ-
ence between the actual cost of a product or service and
what the reduced cost would be if there were no possibil-
ity of substandard service, failure of products, or defects in

their manufacture [8].”
We concern ourselves with the cost of software quality

(CoSQ) - corresponding to a portion of the cost metric in
defined earlier - which can be divided into two major types:
cost of conformance and cost of nonconformance.

The cost of conformance derives from the amount the de-
veloper spends on attempts to improve quality. We can fur-
ther divide conformance costs into prevention and appraisal
costs. Projects incur prevention costs during activities tar-
geted at preventing defects, such as training costs, software
design reviews, and formal quality inspections. Likewise,
activities that involve measuring, evaluating, or auditing
products to assure conformance to quality standards and
performance incur appraisal costs. These activities include
code inspections, testing, quality audits, and software mea-
surement activities such as metrics collection and analysis.

The cost of nonconformance includes all expenses the
developer incurs when the system does not operate as spec-
ified. Internal failure costs stem from nonconformance oc-
curring before the product ships to the customer, such as the
costs of rework in programming, defect management, rein-
spection, and retesting. External failure costs arise from
product failure after delivery to the customer. Examples in-
clude technical support, maintenance, remedial upgrades,
liability damages, and litigation expenses.

In any development process, models that depict the rela-
tionship between costs and quality can guide decisions re-
garding investments in quality improvement. Discussions
of such models in the economics and management literature
[15, 12, 8] generally depict a nonlinear relationship between
CoQ and quality. Accurate cost-quality models can be in-
valuable to managers and developers, guiding resource and
cost management and other aspects of the software devel-
opment process.

In [23], the cost of quality and return on quality are
evaluated from the perspective of software development.
Three metrics are introduced in the software engineering
context, CoSQ, return on software quality (RoSQ), and soft-
ware quality profitability index (SQPI), which determines
whether a particular quality initiative will create value that
exceeds its investment. This study also assumes non-CBS
software development. Similar composite metrics can be
defined for CBSs, and used to model cost-quality trade-
offs in such environments. [16] conducts an assessment of
the impact of reuse on quality and productivity in object-
oriented systems. The metrics used are size, reusability, ef-
fort, productivity, and number of defects. These metrics can
be used in CBSs, provided that the notion of size is suitably
defined.

Very little, if any, research has been conducted on the
economics of quality in CBS development. Cost models
for software reuse have been widely studied, but quality is
largely ignored in these studies. COCOMO 2.0 [5] takes
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software reuse into account, and allows the use of logical
lines of code (LLOC) as the standard measure. The au-
thors suggest using the checklist developed by Park at the
SEI to explicitly define a LLOC. This model has limited ap-
plicability to CBS, as COTS software, libraries, and auto-
generated code are excluded when counting the LLOCs.
Where possible, COCOMO 2.0 can be used to estimate
some component level cost factors.

The Constructive COTS (COCOTS) model [1, 3], one of
the suites of COCOMO models, can be used to estimate ef-
fort and schedule for CBS development. This model is an
amalgam of four related sub-models: (1) COTS component
assessment, (2) COTS component tailoring, (3) COTS glue
code development, and (4) COTS volatility. Seventeen at-
tributes, including correctness, availability/robustness, and
security, are also defined as most influential during a final
selection assessment of COTS software. The assessment
sub-model is intended for use in the initial stages of devel-
opment, and is aimed at selecting the most suitable COTS
component from a set of candidates. COCOTS can cur-
rently yield effort estimates only; schedule estimation is yet
to be incorporated into the model.
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Figure 2. Optimum Quality Costs Model
(adapted from [14])

Figure 2(a) depicts the classic model of optimum quality
costs. In this model, which shows the relationship between
the cost per good unit of product and the quality of confor-
mance, expressed as a percentage of total conformance, pre-
vention and appraisal costs rise asymptotically as the prod-
uct achieves complete conformance. Recent technological
developments inspired a revised model that reflects the abil-
ity to achieve very high quality, or “perfection,” at finite
costs. Shown in Figure 2(b), this model, proposed in [14],
has two key concepts. The first is that moderate investments
in quality improvement result in a significant decrease in the
cost of nonconformance. The second key concept is that fo-
cusing on quality improvement by defect prevention results
in an overall decrease in the cost of testing and related ap-
praisal tasks.

These models can be analyzed in terms of the metrics
defined for a CBS. The quality of conformance in the orig-
inal model can represent one quality metric, such as test
coverage or reliability. Accordingly, the vertical axis rep-
resents a CoSQ component - namely, the portion of quality
costs dedicated to improving the particular quality factor.
Intuitively, the same nonlinear relationship should hold. In-
creasing the investment in improving a certain quality factor
should increase the value of the corresponding metric, and
the amount of this increase should taper off as the prod-
uct achieves high quality levels. As described in previous
sections of this paper, it is generally difficult to accurately
evaluate and quantify the quality and performance of COTS
components. Hence, “perfect” quality may be very difficult
to claim, and will not be achievable at finite costs. For these
reasons, Figure 2(a) may be a better model for quality costs
in CBSs.

In adapting Figure 2(a) to CBSs, we maintain that con-
formance costs are lower than those of traditional software
systems. For CBSs, only black box testing can generally be
assumed feasible, so the costs incurred in white box test-
ing are avoided. These savings may be cancelled by the
costs incurred during the selection of appropriate compo-
nents, leading to the conclusion that appraisal costs for a
CBS are comparable to appraisal costs in a traditional soft-
ware system. Prevention costs may be lower for a CBS, as
the black box nature of the components limits the possibility
of extensive preventative measures. Comparable appraisal
costs and lower prevention costs result in an overall lower
cost of conformance.

In evaluating the failure costs of a CBS, one should note
that the failures occurring later in the software life cycle are
costlier than those occurring early in the software life cy-
cle. Generally, internal failure costs incurred due to failures
prior to the release of the software, such as defect manage-
ment, are lower than external failure costs incurred after re-
lease, such as defect notification and litigation costs. Due to
the limited testing possible for COTS components, in sim-
ilar software engineering environments, fewer failures will
be detected prior to the release of a CBS, as compared to
a traditional software system. Fewer detected failures im-
ply lower internal failure costs. If the software being com-
pared is of similar quality (comparable number of failures),
this delays the detection of failures to after the release of
the software, increasing the cost of such failures, which are
now considered external failure costs. Lower internal fail-
ure costs and higher external failure costs may lead to com-
parable overall costs of nonconformance. Considering the
lower conformance costs of CBSs, we can generally con-
clude that the total quality costs of a CBS are lower than a
non-component based software system of comparable qual-
ity.

Although we may be able to determine the overall CoQ
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with reasonable accuracy, determining the amount dedi-
cated to improving a particular quality factor is difficult be-
cause all factors interrelate. For quality metrics such as cus-
tomer satisfaction, the relationship between cost and quality
may be too complex for such a simple model, as increased
investments in quality improvement may be invisible to the
customer. For example, users may find 95 percent relia-
bility satisfactory, making further investments in reliability
pointless. Further, customer satisfaction may increase in
jumps, resulting in a discontinuous cost-quality curve, al-
though empirical studies should verify this behavior.

Recent work by Abts [2], examines the relationship be-
tween the number of COTS components in a CBS, and
tradeoffs between maintaining and retiring the system. Abts
postulates that increasing the number of COTS components
is economically beneficial only up to a certain point, where
the savings resulting from the use of COTS components
break even with the maintenance costs arising from the
volatility of such components. The study recommends low-
ering the number of COTS components by increasing the
functional density of the components used, in other words,
using leaner components. Although the resulting system
will benefit from reduced complexity, the disadvantage to
using lean components is the lack of robustness that results.
As a component is relied upon for providing a greater num-
ber of functions to the system, a failure in the component is
more costly to the system due to decreased redundancy in
component functionality. Quality costs arising from a lack
of robustness can be classified as costs of non-conformance.

Conversely, using a greater number of COTS compo-
nents leads to higher system complexity, increasing not only
the maintenance costs mentioned in [2], but also appraisal
and prevention costs in general, as testing a complex sys-
tem is generally lengthy and expensive. A complex system
is generally more likely to fail; hence, the costs of noncon-
formance will also increase in an overly complex system.

This leads to a generalization of the results of [2],
whereby quality costs are modeled as having a non-linear
relationship with complexity, as depicted in Figure 3. In
this view, an optimal value of system complexity will main-
tain the best balance between leanness and robustness, min-
imizing quality costs. A decision theoretic approach can be
utilized to find the best tradeoff among quality, cost, and
complexity, facilitating high quality of conformance at low
cost and moderate complexity.

4. Conclusions

Quality and risk concerns currently limit the application
of COTS-based system design to non-critical applications.
The cost and quality metrics and models discussed in this
paper can aid developers and managers in deciding on opti-
mal quality improvement initiatives for CBSs, as well as an-
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Figure 3. Relationship between Quality Costs
and Complexity of a CBS

alyzing the return on investment in quality improvement ini-
tiatives. Research on metrics-guided quality management
can enable extensive economic and engineering analyses
for CBSs, including identification of cost factors and cost-
benefit analysis involving the unique risks associated with
CBSs, determination of the complexity and cost associated
with integration, interoperability, and middleware develop-
ment, and estimation of the costs associated with the unique
testing requirements of CBSs. The findings can alleviate
concerns about the risks associated with deploying COTS
components in critical applications, facilitating the use of
components in a broader range of applications.
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