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Time Series Prediction with a Weighted 
Bidirectional Multi-stream Extended Kalman Filter 

Xiao Hu 
Applied Computational Intelligence Lab 

Department of Electrical & Computer Engineering 
University of Missouri-Rolla 

Rolla, MO 65409 USA 
Email xhu@umr.edu 

Abstract-This paper describes the use of a multi-stream 
Extended Kalman Filter (EKF) to tackle the IJCNN 2004 
challenge problem - Time Series Prediction on CATS 
benchmark, A weighted bidirectional approach was adapted in 
the experiments to incorporate the forward and backward 
predictions of the time series. 

I. INTRODUCTION 

The goal of this competition is to provide a new 
benchmark for the problem of time series prediction. The 
proposed time series is the CATS benchmark (for 
Competition on Artificial Time Series). The artificial time 
series with 5000 data points is given. Within those, 100 
values are missing. These missing values are divided in 5 
blocks: 981-1000, 1981-2000, 2981-3000, 3981-4000 and 
4981-5000, as indicated by the 5 circled regions in Figure 1. 

Fig I, The CATS bcnchmark. Thc paints in thc fivc red cllipscs arc to 
be prcdicted. 

This paper is organized as follows: Section I1 introduces 
the basic concepts of multi-stream Extended Kalman Filter 
training. Section 111 describes our weighted bidirectional 
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approach and presents the prediction results. Conclusions are 
given in the Section IV. 

11. MULTI-STREAM EXTENDED KALMAN FILTER 

Multi-Stream Extended Kalman filter (EKF) is a 
practical, general approach to neural networks training. It 
consists of the following: I)  gradient calculation by 
Backpropagation Through Time (BPTT) [1][2]; 2) weight 
updates based on the extended Kalman filter; and 3) data 
presentation using multi-stream mechanics [3]. It has been 
widely used to deal with many different types of problems 
involving temporal systems. A typical problem might 
involve prediction, estimation and classification [4][5][6] or 
control [7][8]. The core of this training technique is the 
extended Kalman filter, which has become a standard 
technique used in a number of nonlinear estimation and 
machine learning applications. Singhal and Wu [9] first 
proposed weight updates based on EKF. (For background 
material on Kalman filter, see [IO] and [Ill.) Weights are 
interpreted as states of a dynamic system [9], which allows 
for efficient Kalman training. Given a network with M 
weights and NL output nodes, the weights update for a 
training instance at the time step n of the extended Kahnan 
filter is given by: 

A(n) =[R(n)+H'(n)P(n)H(n)]-' (1) 

K(n)  = P(n)H(n)A(n) (2) 

W(n + 1) = W(n) + K(n)<(n) 

J'(O)=I/rl,,R(O) =rlJ,Q(O)=v,$ ( 5 )  

(3 ) 

(4) P(n + 1) = P(n) - K(n)H'(n)P(n) + Q(n) 

In the above equations, R(n) is a diagonal Nrhy-NL 
matrix, whose diagonal components are equal to or slightly 
less than 1. H(n) is an M-by-NL matrix containing the partial 
derivatives of the output node signals with respect to the 
weights. P(n) is an M-by-M matrix defmed as the 
approximate conditional error covariance matrix. A(n) is a 

mailto:xhu@umr.edu
mailto:dwunsch@umr.edu


NL-by-NLmatrix referred as the global scaling matrix. K(n) is 
an M-by-NL matrix containing the Kalman gains for the 
weights. W(n)  is a vector of length M containing all the 

weights values. &-I) is the error vector of the network's 
output layer. While the motivation for the use of artificial 
process noise in Equation (5) was to avoid numerical 
difficulties, it was also found that the addition of the artificial 
process noise term significantly enhances the performance of 
the EKF algorithm in terms of rate of convergence, 
avoidance of local minima and quality of solution. 

Decoupled Extended Kalman Filter (DEW) [7][12] was 
implemented in [13] as a natural simplification of EKF by 
ignoring the interdependence of mutually exclusive groups of 
weights, thereby allowing the computational complexity of 
EKF to he adjusted to the low requirements of the 
computational resources. Decoupling was crucial for early 
practical applications of the method, when speed and 
memory capabilities of workstations and personal computers 
were severely limited. Now, many problems are small 
enough to be handled without decoupling, that is, with global 
EKF (GEKF). In many cases, full coupling brings benefits in 
terms of quality of solution and overall training time [14]. 
GEKF is employed in this study. The advantage of the EKF 
approach over Backpropagation (BP) is that generally EKF 
can oAen produce results comparable to standard BP but with 
significantly fewer presentations of training data and less 
overall training epochs [IZ]. Although not limited to, the 
GEKF has been widely used in the training of the time- 
lagged recurrent networks, usually in the form of Recurrent 
Multilayer Perceptrons (RMLP), which are a natural 
synthesis of feedforward multilayer perceptron and single- 
layer fully recurrent networks [3]. Figure 2 depicts a simple 
RMLP with only internal recurrent connections. Figure 3 
gives the flow chart of the network learning process. 

The multi-stream procedure [I51 was devised to cope with 
the sometimes conflicting requirements of training [14]. 
Consider the standard time-lagged recurrent neural network 
training problem: training on a sequence of input-output 
pairs. If the sequence is fairly homogeneous, then one or 
more sequential passes through data will probably produce 
good results. When the data sequence is heterogeneous, as 
most real time series are, (for example, this CATS 
benchmark), GEKF is not enough because it is basically just 
a one-stream learning algorithm, in which the tendency 
always exists for the network weights to he adapted to the 
currently presented training data at the expense of 
performance on previous data, called recency effect [16]. 
This recency effect is analogous to the difficulty that may 
arise in training feedforward networks if training data are 
presented always in the same order. Multi-stream training is 
based on the principle that each weight update should 
attempt to satisfy simultaneously the demands fiom multiple 
input-ouput pairs. In each cycle of training, a specified 

number Ns of starling points are randomly selected in a 
chosen set of files. Each such starting point is the beginning 
of a stream. The multi-stream procedure consists of 
progressing in sequence through each stream, carrying out 
weight updates according to current points. A consistent EKF 
update routine was also devised in the multi-stream 
procedure. The training problem is treated as a single shared- 
weight network, in which the number of original outputs is 
multiplied by the number of streams. In multi-stream 
training, the number of columns in H(n) is correspondingly 
increased to Ns x NL. 

outpur 

Fig 2. A simple architcclurc ofa recurrent mullilaycr pcrceplron with fully 

internal recurrent connections, in which z-' reprcscnts the lime lag. 

wclghts U: P, Q R 

Ir it the end of the 
ieamvlg iterations? 

ComputcHbyBFTT 

Fig 3. The flow chart of thc RMLP learning proccss using GEKF. referred 
BS in Equation (l)-(5). 
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Weighting between the forward 
and badward prediction occurs 

only on the missing values 
n 
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Fig 4. Thc weighting scheme for the incorporation of thc results from the forward and the backward prediction. In the forward prediction, thc ncxt 
point is predicted by using the past 40 data poinu. In the backward prediction, the next point is predicted by using the fuhrrc 40 data poinu, while the 
prcdiction moves backwards. The final prediction is computed by using Equation (6): Finalpred = p * FwPred + (1 - p )  * BwPred . 

Similarly, the vector of errors 5 has Ns x NL elements. The 
Kalman recursion produces weight updates which are not a 
simple average of the weight updates that would he 
computed separately for each output or stream. 

111. METHOLOGY AND EXPERIMENT RESULTS 

We describe a weighted bidirectional prediction combined 
with GEKF. After trying a few different network 
architectures, an RMLP architecture of 40-IOR-IOR-1L was 
chosen. The fnst and second hidden layers were both fully 
recurrent with a bipolar sigmoid transfer f ic t ion.  A linear 
transfer function was used in the output layer. The current 
data point, along with previous 39 data points, are presented 
as inputs to predict the value of the next point, which makes 
the input vector size 40-by-I and output vector size I-by-I. 
In other words, a sliding window with the size of 40 is 
moved along the time series while predicting the next point. 
One such input vector and its corresponding output vector 
form an input-output pair. 

Initially, forward prediction was employed to validate the 
training technique. Every 20 points before each block of 
missing values were reserved as the test set. So, there were 
100 test points with known values for the validation of the 
forward prediction approach. In the absence of prior 
information, we initialized the outputs of all neurons to zero 
at the start of each stream. The data were normalized within 
[-1 I ]  before being presented to the network for training. The 
network was executed for a number of steps N,, the trajectory 
length, hut updates were suspended for N, time steps, called 
the priming length, at the beginning of each stream. Hence N, 
- N, updates were performed in each training cycle. This 
priming scheme is based on the fact that the outputs of a 
stable network, after a suitable number of time steps, will be 
essentially independent of its initialization [3]. 

We employed multi-stream CEKF using ten (IO) streams, 
a priming length of ten (IO), and a trajectory length of 200. 

Because of the shortcomings of BPTT, which requires saving 
the entire history of network input and network state since 
the starting time, it was not used. Instead, one can use a 
bounded-history approximation, in which relevant 
information is saved for a fixed number h of time steps and 
any information older than that is forgotten. This is called 
truncated backpropagation through time [17][ 181, denoted as 
BPTT(h). Since BPTT(h) only utilizes the most recent 
information in a trajectory to compute derivatives, it may 
lead to a more stable computation of dynamic gradients than 
do the forward computations of dynamic derivatives. In this 
paper, we use truncated backpropagation through time with 
truncation depth h = 20 to compute the derivatives of the 
network output with respect to weights. The network was 
trained for 500 epochs, which account for 500 x (N, - NP) = 
500 x 170 updates, based on 500 x No.Stream x N, = 500 x 
IO x 200 input-output pairs. At the termination of training, 
the RMS error was approximately 0.0134. The prediction of 
the trained network on the test set of 100 points had an RMS 
error of about 0.0156. Please note that when performing the 
prediction on the test set, the current prediction has to he fed 
hack to network input as part of the next input vector for the 
next prediction. At the prediction of the last point of each 
twenty points block in the test set, the network input vector 
has 21 known points and 19 predicted points. The same 
rationale applies to the final prediction of the missing values. 

To enhance the performance of prediction, a scheme 
(shown in Figure 4) of the combination of the forward 
prediction and the backward prediction was employed. After 
the validation of the training technique by the forward 
prediction aforementioned, all the available data points were 
used in the training with no test points reserved. In the 
backward prediction, forty (40) “future” data points were 
used as the input to predict the value of the current data 
point. In the training of the forward prediction network and 
the backward prediction network, multi-stream GEKF using 
ten (10) streams, a priming length of ten and a trajectory 
length of 200 was employed. Each network was trained for 
500 x (N, - N,) = 500 x 170 updates, based on 500 x 
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No.Stream x N, = 500 x IO x 200 input-output pairs. At the 
termination of training, the RMS error from the forward 
prediction was approximately 0.0134 and the RMS error 
from the backward prediction was approximately 0.0132 
from thirty (30) simulations with different initial conditions. 

At the prediction of the missing values, a linear symmetric 
weighting scheme was employed to incorporate the results 
from the forward and backward prediction to enhance the 
performance. Since we knew nothing about the signal, we 
assumed that the symmetric weighting approach was the 
best. So, we incorporated these heuristics to compute the 
final predictions by assigning a belief degree p to the results 
of the forward and backward prediction. At the point 981, the 
forward prediction had a belief degree p = 100% and the 
backward prediction had a belief degree (I-p) = 0%, vice 
versa at the point 1000. For the other points between the 
point 981 and the point 1000, the belief ratep of the forward 
prediction was evenly decreased from 100% to 0% while the 
belief rate of backward prediction was I-p, being increased 
from 0% to 100%. Figure 4 depicts the weighting scheme 
between the forward and the backward prediction. The final 
predictions on the missing values were computed as follows: 

Finalpred = p * FwPred + (1 - p )  * BwPred (6) 

except that the prediction on the points 4981- 5000 can only 
rely on the forward prediction. 

Figure 5 shows the results of forward, backward and final 
prediction on the points 981-1000, 1981-2000, 2981-3000 
and 3981-4000, averaged on the thirty (30) simulations with 
the different random initial conditions. Figure 6 gives the 
means and the standard derivations of the final predictions on 
the missing points. 

33-1ClX 1981-am 
?Eo,  , 420, 

.' .., 
120 

"0 5 10 15 20 

0 5 10 15 20 -d ' 5 10 15 4 
Fig 5. The results of the forward, backward and final predictions on 
the points 981-1000, 1981-2000, 2981-3000 and 3981-4000. 

Fig 6. The mean and standard deviation of the final predictions on 
the points 981-1000, 1981-2000,2981-3000 and 3981-4000. 

IV. CONCLUSIONS 

This paper presents our approaches in details on solving 
the IJCNN 2004 challenge problem. Multi-stream GEKF 
with a weighted bidirectional prediction approach was 
employed in the experiments to predict the missing values in 
the CATS benchmark. The whole time series with the filled 
predicted values is shown in Figure 7. The results illustrate 
our approach is effective and is able to achieve good 
predictions on the missing values of CATS. 

€m " " " " ' I 
0 m l m l l m m m m r m 4 m 4 m m  

Fig 7. The whole time series with the predicted missing values 
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