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Time Series Prediction with a Weighted
Bidirectional Multi-stream Extended Kalman Filter

Xiao Hu

Applied Computational Intelligence Lab
Department of Electrical & Computer Engineering
University of Missouri-Rolla
Rolla, MO 65409 USA
Email: xhu@umr,edu

Abstract-This paper describes the use of a multi-stream
Extended Kalman Filter (EKF) to tackle the IJCNN 2004
challenge problem - Time Series Prediction on CATS
benchmark, A weighted bidirectional approach was adopted in
the experiments to incorporate the forward and backward
predictions of the time series.

[ INTRODUCTION

The goal of this competition is to provide a new
benchmark for the problem of time series prediction. The
proposed time series is the CATS benchmark (for
Competition on Artificial Time Series). The artificial time
series with 5000 data points is given. Within those, 100
values are missing. These missing values are divided in S
blocks: 981-1000, 1981-2000, 2981-3000, 3981-4000 and
4981-5000, as indicated by the 5 circled regions in Figure 1.
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Fig |. The CATS benchmark. The points in the five red cllipses are to
be predicted.

This paper is organized as follows: Section II introduces

the basic concepts of multi-stream Extended Kalman Filter
training. Section Il describes our weighted bidirectional
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approach and presents the prediction results. Conclusions are
given in the Section IV.

11 MULTI-STREAM EXTENDED KALMAN FILTER

Multi-Stream Extended Kalman filter (EKF) is a
practical, general approach to neural networks training. It
consists of the following: 1) gradient calculation by
Backpropagation Through Time (BPTT) [1](2]; 2) weight
updates based on the extended Kalman filter; and 3) data
presentation using multi-stream mechanics [3]. It has been
widely used to deal with many different types of problems
involving temporal systems. A typical problem might
involve prediction, estimation and classification [4][5][6] or
control [7][8]. The core of this training technique is the
extended Kalman filter, which has become a standard
technique used in a number of nonlinear estimaiion and
machine learning applications. Singhal and Wu [9] first
proposed weight updates based on EKF. (For background
material on Kalman filter, see [10] and [11].) Weights are
interpreted as states of a dynamic system {9], which allows
for efficient Kalman training. Given a network with M
weights and Ny output nodes, the weights update for a
training instance at the time step »n of the extended Kalman
filter is given by:

A(n)={R(n)+ H(m)P(m)H(m)] " (1)
K(m) = P(m)H (n) A(n) ©

W(n+1)=W(n)+ K(n)é(n) 3)
P(n+1)=P(n)— K(n)H'(n)P(n)+Q(n) @
P0)y=1/n,,R0)=n1,000)=71 &)

In the above equations, R(n) is a diagonal N¢-by-Ni
matrix, whose diagonal companents are equal to or slightly
less than 1. H(n) is an M-by-N| matrix containing the partial
derivatives of the output node signals with respect to the
weights. P{n) is an M-by-M matrix defined as the
approximate conditional error covariance matrix. A(n) is a
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Ny -by-N| matrix referred as the global scaling matrix. K(n) is
an M-by-N; matrix containing the Kalman gains for the

weights. W (#) is a vector of length M containing all the

weights values. £(#) is the error vector of the network’s

output layer. While the motivation for the use of artificial
process noise in Equation (5) was to avoid numerical
difficulties, it was also found that the addition of the artificial
process noise term significantly enhances the performance of
the EKF algorithm in terms of rate of convergence,
avoidance of local minima and quality of solution.

Decoupied Extended Kalman Filter (DEKF) [7][12] was
implemented in [13] as a natural simplification of EKF by
ignoring the interdependence of mutually exclusive groups of
weights, thereby allowing the computational complexity of
EKF to be adjusted to the low requirements of the
computational resources. Decoupling was crucial for early
practical applications of the method, when speed and
memory capabilities of workstations and personal computers
were severely limited. Now, many problems are smail
enough to be handled without decoupling, that is, with global
EKF {(GEKF). In many cases, full coupling brings benefits in
terms of quality of solution and overall training time [14].
GEKF is employed in this study. The advantage of the EKF
approach over Backpropagation (BP) is that generally EKF
can often produce results comparable to standard BP but with
significantly fewer presentations of training data and less
overall training epochs [12]. Although not limited to, the
GEKF has been widely used in the training of the time-
lagged recurrent networks, usually in the form of Recurrent
Multilayer Perceptrons (RMLP), which are a natural
synthesis of feedforward multilayer perceptron and single-
layer fully recurrent networks [3]. Figure 2 depicts a simple
RMLP with only internal recurrent connections. Figure 3
gives the flow chart of the network learning process.

The multi-stream procedure [15] was devised to cope with
the sometimes conflicting requirements of training [14].
Consider the standard time-lagged recurrent neural network
training problem: training on a sequence of input-output
pairs. If the sequence is fairly homogeneous, then one or
more sequential passes through data will probably produce
good results. When the data sequence is heterogeneous, as
most real time series are, (for example, this CATS
benchmark), GEKF is not enough because it is basically just
a one-stream learning algorithm, in which the tendency
always exists for the network weights to be adapted 1o the
currently presented training data at . the expense of
performance on previous data, called recency effect [16].
This recency effect is analogous to the difficulty that may
arise in training feedforward networks if training data are
presented always in the same order. Multi-stream training is
based on the principle that each weight update should
attempt to satisfy simultaneously the demands from multiple
input-ouput pairs. In each cycle of training, a specified

number Ng of starting points are randomly selected m a
chosen set of files. Each such starting point is the beginning
of a stream. The multi-stream procedure consists of
progressing in sequence through each stream, carrying out
weight updates according to corrent points. A consistent EKF
update routine was also devised in the multi-stream
procedure. The training problem is treated as a single shared-
weight network, in which the number of original outputs is
multiplied by the number of streams. In multi-stream
training, the number of columns in H{n) is correspondingly
increased to Ng » N

Qutput

Hidden laver of
fully recurrent nodes

Input

Fig 2. A simple architecture of a recurrent multilayer perceptron with fully
internal recurrent connections, in which Z - represents the time lag.

Start

Initialize the network
weights W, P, 0 R

Is it the end of the
learning iterations?

Feed forward alithe data
through the network

|

| Compute Hy BPTT

GEKF: Compute 4, £,
Update network weigths # and P

|

Fig 3. The flow chart of th¢ RMLP lcaming process using GEKF, referred
as in Equation (1)-(5).
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Fig 4. The weighting scheme for the incorporation of the results from the forward and the backward prediction. In the forward prediction, the next
point is predicted by using the past 40 data points. In the backward prediction, the next point is predicted by using the futurc 40 data points, while the
prediction moves backwards. The final prediction is computed by using Equation (6): FinalPred = p* FwPred +(1- p)* BwPred .

Similarly, the vector of errors £ has Ng x Ny elements. The

Kalman recursion produces weight updates which are not a
simple average of the weight updates that would be
computed separately for each output or stream.

[II. METHOLOGY AND EXPERIMENT RESULTS

We describe a weighted bidirectional prediction combined
with GEKF.  After trying a few different network
architectures, an RMLP architecture of 40-10R-10R-1L was
chosen. The first and second hidden layers were both fully
recurrent with a bipolar sigmoid transfer function. A linear
transfer function was used in the output layer. The current
data point, along with previous 39 data points, are presented
as inputs to predict the value of the next point, which makes
the input vector size 40-by-1 and output vector size 1-by-1.
In other words, a sliding window with the size of 40 is
moved aleng the time series while predicting the next point.
One such input vector and its corresponding output vector
form an input-output pair.

Initially, forward prediction was employed to validate the
training technique. Every 20 points before each block of
missing values were reserved as the test set. So, there were
100 test points with known values for the validation of the
forward prediction approach. In the absence of prior
information, we initialized the outputs of all neurons to zero
at the start of each stream. The data were normalized within
[-1 1] before being presented to the network for training. The
network was executed for a number of steps N, the trajectory
length, but updates were suspended for N, time steps, called
the priming length, at the beginning of each stream. Hence N,
— N, updates were performed in each training cycle. This
priming scheme is based on the fact that the outputs of a
stable network, after a suitable number of time steps, will be
essentially independent of its initialization [3].

We employed multi-stream GEKF using ten (10) streams,
a priming length of ten (10), and a trajectory length of 200.

Because of the shortcomings of BPTT, which requires saving
the entire history of network input and network state since
the starting time, it was not used. Instead, one can use a
bounded-history  approximation, in which relevant
information is saved for a fixed number A of time steps and
any information older than that is forgotten. This is called
truncated backpropagation through time [17][18], denoted as
BPTT{k). Since BPTT(/4) only utilizes the most recent
information in a trajectory to compute derivatives, it may
lead to a more stable computation of dynamic gradients than
do the forward computations of dynamic derivatives. In this
paper, we use truncated backpropagation through time with
truncation depth # = 20 to compute the derivatives of the
network output with respect to weights. The network was
trained for 500 epochs, which account for 500 x (N, — N,) =
500 = 170 updates, based on 500 x No.Stream x N; = 500 x
10 x 200 input-output pairs. At the termination of training,
the RMS error was approximately 0.0134. The prediction of
the trained network on the test set of 100 points had an RMS
error of about 0.0156. Please note that when performing the
prediction on the test set, the current prediction has to be fed
back to network input as part of the next input vector for the
next prediction. At the prediction of the last point of each
twenty points block in the test set, the network input vector
has 21 known points and 19 predicted points. The same
rationale applies to the final prediction of the missing values.

To enhance the performance of prediction, a scheme
(shown in Figure 4) of the combination of the forward
prediction and the backward prediction was employed. After
the validation of the training technique by the forward
prediction aforementioned, all the available data points were
used in the training with no test points reserved. In the
backward prediction, forty (40) “future” data points were
used as the input to predict the value of the current data
point. In the training of the forward prediction network and
the backward prediction network, multi-stream GEKF using
ten (10} streams, a priming length of ten and a trajectory
length of 200 was employed. Each network was trained for
500 x (N, — N} = 500 x {70 updates, based on 500 x
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No.Stream x N, = 500 x 10 x 200 input-output pairs. At the
termination of fraining, the RMS error from the forward
prediction was approximately 0.0134 and the RMS error
from the backward prediction was approximately 0.0132
from thirty (30) simulations with different initial conditions.

At the prediction of the missing values, a linear symmetric
weighting scheme was employed te incorporate the results
from the forward and backward prediction to enhance the
performance. Since we knew nothing about the signal, we
assumed that the symmetric weighting approach was the
best. So, we incorporated these heuristics to compute the
final predictions by assigning a belief degree p to the results
of the forward and backward prediction. At the point 981, the
forward prediction had a belief degree p = 100% and the
backward prediction had a belief degree (I-p) = 0%, vice
versa at the point 1000. For the other points between the
point 981 and the point 1000, the belief rate p of the forward
prediction was evenly decreased from 100% to 0% while the
belief rate of backward prediction was 7-p, being increased
from 0% to 100%. Figure 4 depicts the weighting scheme
between the forward and the backward prediction. The final
predictions on the missing values were computed as follows:

FinalPred = p* FwPred +(1— p}* BwPred (6)

except that the prediction on the points 4981- 5000 can only
rely on the forward prediction,

Figure 5 shows the results of forward, backward and final
prediction on the points 981-1000, 1981-2000, 2981-3000
and 3981-4000, averaged on the thirty (30) simulations with
the different random initial conditions. Figure 6 gives the
means and the standard derivations of the final predictiens on
the missing points.
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Fig 5. The results of the forward, backward and final predictions on
the points 981-1000, 1981-2000, 2981-3000 and 3981-4000.
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Fig 6. The mean and standard deviation of the final predictions on
the points 981-1000, 1981-2000, 2981-3000 and 3981-4000.

IV. CONCLUSIONS

This paper presents our approaches in details on solving
the LJCNN 2004 challenge problem. Multi-streamn GEKF
with a weighted bidirectional prediction approach was
employed in the experiments to predict the missing values in
the CATS benchmark. The whole time series with the filled
predicted values is shown in Figure 7. The results illustrate
our approach is effective and is able to achieve good
predictions on the missing values of CATS.

4m ' .
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0 500 1000 15000 2000 2500 3000 3500 4000 4500 5000

Fig 7. The whole time series with the predicted missing values
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