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Absbarl- An important application of mobile robots is searching 
a region to locate the origin of a specific phenomenon. A variety 
of optimization algorithms can be employed to locate the target 
source, which has the maximum intensity of the distribution of 
some detected function. We propose two neural networks 
algorithms: stochastic optimization algorithm and dual heuristic 
programming (DHP) to solve the collective robotic search 
problem. Experiments were carried out to investigate the effect 
of noise and, the number of robots on the task performance, as 
well as the expenses. The experimental results showed that the 
performance of the dual heuristic programming (DHP) is better 
than the stochastic optimization method. 

Keywords: Neural Networks, Dual Heuristic Programming (DHP), 
Adaptive Critic Designs. 

I .  INTRODUCTION 

In recent years there has been growing interest in collective 
robotic search problem. The primary reason is that mobile 
robots can complete high-risk tasks. Mapping minefields, 
extraterrestrial and undersea exploration, detecting the 
location of chemical and biological weapons, and the location 
of explosive devices are its important applications. The goal 
of the team of robots is to find the origin of a specific 
phenomenon with the maximum intensity, by sharing 
information between robots, and to aggregate around the 
phenomenon. For example, we may need to drive a large 
number of inexpensive, expendable sensory robots in 
hazardous or hostile environments, with a particular emphasis 
on sensing concentrations of hazardous chemicals. In cases 
where human intervention through teleoperation is not 
available, the robot team must be deployed in a territory 
without supervision, requiring an autonomous decentralized 
coordination strategy. Spatial distribution of the mines, or 
more generally of the objects being searched for, can be 
regular, totally random, patchy or graded. Search strategies 
are affected by these distributions and need to be optimized 
for various environments [I]. 

Investigations of collective behavior are considerably 
rarefied, and studies involving collective search are rarer still. 
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The foraging problem [2][3][4][5], in which robots 
collect objects scattered in the environment, is a 
canonical problem related to the source location 
problem. Relevant results in robotics, which are 
inspired by animal behaviors, were discussed in [6]. A 
decentralized alpha-beta coordination is proposed for 
an agent team searching for source targets [7] .  Its 
simulations confirm the ability of the team to find a 
source and stabilize the steady-state mean squared 
error. It has been shown in [8] that how space-filling 
curves can enhance the efficiency and robustness of 
geographic search by robot collectives. In [9], a 
control system employing an extended Kalman filter 
(EKF) and different styles of Global Position System 
(GPS) is introduced to control a mobile robot to 
search a given rectangular area. Three neural networks 
algorithms were also provided [IO]. 

We propose neural networks based stochastic 
optimization algorithm and dual heuristic 
programming algorithm to solve the collective robotic 
search problem. The robots search for the target 
source by collaboration. The performances of the two 
approaches are compared. 

2. PROBLEM DESCRIPTION 

Let’s assume we have a two-dimensional bounded 
Euclidean space. The domain is shown in Fig. 1. 
Several signal sources are randomly distributed in the 
domain. One of the sources is the target, which has the 
maximum intensity, and the others are classified as 
noises. We presume there are no obstacles in this 
domain and each source emits signal evenly in every 
direction. Robots don’t know the location of the target 
source a priori. The searching will stop when all the 
robots converge to the target. 
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(a) @) 

Fig. 1 Robot search region with five sources and four robots. 
Experiments were carried out on this 1 by 1 length unit square 
domain. The red star denotes the target, and the blue crosses 
denote the noises. The square blocks in different colors denote 
the robots. The lines indicate each step of an individual robot. 
In (a), x-axis and y-axis denotes the coordinates of sources 
and robots. The illumination of each source is shown. In (h), 
x-axis and y-axis denotes the coordinates of sources and 
robots. The z-axis denotes the illumination of each source. 

3. STOCHASTIC OPTIMIZATION APPROACH 

The only way that we detect the sources is the specific 
signals they emit. Robots measure the sources by the 
illumination, E, which is defined as light flux per unit area of 
surface [l l] .  Total illumination at a point is the sum of 
illumination magnitudes from all sources. Thus, we have the 
following expression for the distribution of illumination: 

Where x and y are the coordinates of the robot, I is the 
intensity of i-th source with coordinates o f s i  , sk , and the 

altitude hi. However, we are searching for the source of 
maximum intensity. Expression (1) can only help us obtain 
the maximum illumination. In order to assure that the target 
source has the maximum of (l), it is necessary for us to set the 
intensity of the target to I and the intensity of noise sources to 
0.3. Although we know the intensities of the sources, the 
robots don't. We approximate the distribution of illumination 
based on the known magnitudes at the explored locations. 
Using the obtained approximation the robots estimate the 
locations of the sources, and then go over there to check, and 
then correct the model. The search will finish if the model 
does not require further adjustments. 

The neural network architecture is shown in Fig. 2.  The 
neural network is continuously trained on-line to estimate the 
magnitude at a location of given coordinates. The network is 
customized in such a way so it  can compute ( I ) .  The 

coordinates P and intensities I of the sources are 
inputs to the network. The transfer function of the first 
layer is I I n l ,  which means neurons in the first layer 

will calculate the quotient of the pair of intensity and 
coordinates. The transfer function of the second layer 
is linear. The neural network provides us with a 
gradient of approximation error, which we use to train 
the network. The constraints are lower and upper 
bounds for location and intensity of a source. The 
neural network is trained using the constrained 
optimization algorithm from the Optimization 
Toolbox in Matlah [12]. 

Fig. 2 Neural network architecture 

c Init 7 LLl 
I samples= p, 1; S'=I 4-J 

Fig. 3 Algorithm flowchart 
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The algorithm is briefly outlined in Fig. 3. We start from 
one neuron, which represents one source. P stands for 
coordinate, and t stands for the source intensity. We initialize 
the network by random and then train it. We have two 
threshold values for the error: BigErr and SmallErr. When the 
error is bigger than BigErr, we consider the chosen number of 
sources in the model (i.e. number of neurons) insufficient, and 
thus add new neurons to the network; if the error is between 
SmaNErr and BigErr, we perform the Monte-Carlo search for 
a better approximation training with different initial weights. 
Once a satisfactory approximation (i.e. error < SmallError) is 
found we consider the parameters of the network to he the 
coordinates and intensities of the sources. Let’s define n as 
the number of robots. We choose the n brightest sources and 
send the robots to examine these estimated locations. The 
robots move with constant length of steps, and measure the 
illumination at each step. Therefore, at every step the sample 
set is supplemented with new samples. The robots remember 
the history of all the visited points. Whenever the neural 
network does not change with new points, that is, the error 
remains under the SmallError, the search will end. The robots 
will look through the track history, and then all go to the 
brightest source. Otherwise, the Monte-Carlo search is 
repeated. 

4. DUAL HEURISTIC PROGRAMMING (DHP) 
APPROACH 

DHP uses the critic network to estimate the derivatives of J 
function with respect to the state vector [13]. The cost-to-go 
function J in the Bellman equation of dynamic programming 
is expressed as follows: 

k=O 
(2) 

m k  J(1)  = c y U(f + k )  

Where y is a discount factor for finite horizon problems 
(O<y<l), and U(.) is the utility function. The critic is trained 
forward in time, which is of great importance of real-time 
operation. The critic network tries to minimize the following 
error measure over time: 

(3) 

where 
dJ[Y(t)]  dJ[Y(t + l)] au(t) 

aY( t )  ay@) 
(4) -- E(t)  = -Y 

ay@) 
where a( . ) /aY( t )  is a vector containing partial derivatives 
of the scalar (.) with respect to the components of the state 
vector, Y(t). According to the chain rule, each of n 
components of the vector E(t) can be finally determined by 

aJ(t  + 1) W ( f )  
E . ( [ ) = - -  y--- ’ a R j ( t )  a R j ( t )  a R j ( t )  

where 
aRi ( I  + 1) 2 Ai ( t  + 1) aJ(t + 1) 

-= 
a R i ( t )  i=l aR j (4  

m n  aRi ( t  + 1) aAk (f) 
(6) 

+ k=l i=l a A k ( f )  a R j ( ‘ )  

, l i ( t + l ) = a J ( t + l ) / a R i ( t + l ) ,  and n, m are the 

numbers of outputs of the model and the action 
networks, respectively. The adaptation of action 
network is implemented by propagating 
;E, (t + 1) back through the model down to the action 
and its goal can be expressed as equation: 

aA(t)  ’ aA(t)  
(7) 

Adaptation of DHP is summarized in Fig. 4. In the 
figure, the discount factor is assumed to be equal to 1. 
The critic network is shown in two consecutive 
moments in time and pathways of hackpropagation are 
depicted in dash lines. 

I - - - - - - - -  

4 .  I The State Vector 

In our case, the state vector R(t)consists of five 
components at time step t: 
vir ( t )  , vmr (f) 3 vsr ( t ) ,  f r  (f) and s r  ( t )  

where vlr ( 1 )  stands for the direction of the center of 

mass for the large field strength robots relative to 
robot r, v m r ( t )  stands for the direction of the center 
of mass for the medium field strength robots relative 
to robot r ,  vsr (1) stands for the direction of the center 
of mass for the small field strength robots relative to 
robot r ,  f r ( t )  stands for its field intensity, and 
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sr  (t)stands for its status. They are determined by the 
following expressions. 

where cm stands for I ,  m or s, xcm ( t )  and ycm (f) are 
coordinates of the center of mass o f  large, medium, or small 
field strength robots, respectively, and vCmr is the 
normalized direction of the corresponding center of mass 
relative to robot I. 

(9) 

Wherex, (1) and y ,  ( I )  are the coordinates of robot r at time 
step t. C is the class of robots having large, medium, or small 
field intensities. f r  ( I )  stands for the field intensity of the 
robot r, which can be calculated in ( I ) .  
xr  ( t  + 1) = c0s(2dr  ( t ) )  + XI .  ( 1 )  

Y ,  ( 1  + 1) = s i n ( 2 4 .  (0) + Y ,  ( 1 )  

(10) 

(1 1)  

Where A, ( t )  is the output of the action network for robot r at 

time step t. The status sr ( t )  is calculated as follows: 

Where fmax ( t )  is the maximum field intensity that robots 
have ever sensed. 

4.2 Utility Function 

The utility function is designed as the sum of mean square 
of the distance of each robot from the source. 

I '  2 *  2 u( t )=C- [ ( x  ' - x r ( t + l ) )  + ( Y  - ~ r ( t + I ) )  l (13)  
r 2  

Where x and y are the coordinates of the target source, 
xr  ( I  + 1) and y r  (t + 1) are the coordinates of robot r at time 
step t+l. 

The utility function makes use of the positions of the robots 
at time step t+l, but not 1. This is because of the consideration 
that one may not know the cost that a robot incurs until it 
takes an action. If we use the Dositions of the robots at time 

* * 

the distance between the robot's starting position and 
the target source. In other word, it has nothing to do 
with the cost that it incurs at its first step. 

5 .  TRAINING OF MODEL, CRITIC, AND 
ACTION NEURAL NETWORKS 

5.1 Critic andAction Neural Networks 

DHP design for the robotic search problem is 
shown in Fig. 5. We combine the action network and 
the critic network as one network, called Action-Critic 
Module. The inputs to the model neural network are 
the state vector and the action at time step t, and its 
outputs are the state vector at time step t+l. The 
outputs of the model network are the inputs to the 
Action-Critic module, and the outputs of the A-C 
module are the derivative of the cost-to-go function 
with respect to each state vector component. 

The critic network has two layers. There are 20 
neurons in the hidden layer. The transfer function of 
the hidden layer is logsig. There are five neurons in 
the output layer. The transfer function of the output 
layer is satlin. Thus, the critic has five outputs, each of 
which is the derivative of the cost-to-go function with 
respect to the state vector component. We use (IO) and 
(11) to compute the next slate of the robotic search 
system. JRi ( I  + 1) / JR (1) and JRi ( t  + 1) I aAk ( t )  

can be calculated directly from the equations of the 
dynamics, (10) and (11). And 8Ak( t ) laR . ( I )  can be 

obtained from the action network. JU(t )  / a R  . (f) and 

J U ( t ) /  J A , ( t )  can be calculated according to the 

definition of the utility function. So we have all the 
components required to calculate the target of output 
of the critic network in (5). 

The action network has two layers. There are 20 
neurons in the hidden layer. The transfer function of 
the hidden layer is logsig. There is one neuron in the 
output layer. The transfer function of the output layer 
is satlin. Thus, the action network has only one output, 
the direction. Each robot can make a move o f  one grid 
square at each time step. 

J 

J 

~~ ~ ~~~ 

step t instead, we would in fact calculate the one step cost of 
the previous step. For example, if we use the position of a 
robot at time step t instead, then utility function in (13) is only 

Fig. 5 DHP Architecture for Robotic Search Problem 
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S.2 Model Network 

DHP has an important advantage since its critical neural 
network builds a representation for the derivatives of J directly 
by being explicitly trained on them through JU(t)  / J R ( t )  and 
aU(t)/CM(f) . For example, in the area of model-based 
control, the model neural network can be pretrained. The 
partial derivatives of the utility function U(t) with respect to 
A ( t ) ,  and R(t), JU(f)/ JA(t) and J U ( t ) / a R ( t ) ,  respectively, 
are obtained by backpropagating the utility function, U(t) 
through the Model network as shown in Fig. 6 .  To adapt the 
action neural network, only the derivatives JJ(t) I J R ( f )  or 
U(t) / aA(t) are required, rather than the J function itself. 

Fig. 6 Backpropagation of U(t) through the Model network 

6 .  SIMULATION AND EXPERIMENTAL RESULTS 

Experiments were performed using multiple robots. We 
compare the performance of neural networks trained by 
stochastic optimization approach and the dual heuristic 
programming (DHP) approach. The performance is evaluated by 
the average route length per robot. The less the route length per 
robot the robots take, the faster the robots converge at the target 
source. Two experiments were done. In the first experiment, two 
sources are randomly distributed in the domain. We increase the 
number of robots, and observe the performance of the two neural 
networks approaches. The route length comparison is shown in 
Fig. 7. 

Fig. 7 Route length comparison of stochastic 
optimization approach and DHP approach when 
sources = 2. 

From Fig. 7, we find that DHP has better results 
against stochastic optimization, especially when the 
numher of robots is less than the number of sources. In 
addition, the more the robots, the less route length the 
robots take. This is because the more the robots, the 
higher probability that the robots are close to the target 
source. Moreover, when the number of robots is much 
more than the sources (i.e. 10 to Z), the difference 
between the two approaches is small. 

In experiment 2, we increase the number of sources 
to four, and observe the performance of the two neural 
networks approaches with the increase of the numher of 
robots. The route length comparison is shown in Fig. 8, 
From Fig. 8, we find that the route lengths of both of 
the two approaches are much greater than that in Fig. 7.  
When the number of robots is more than the numher of 
sources, the route length of two approaches decrease 
considerably. In addition, route length of DHP is less 
than the stochastic optimization approach when the 
numher of robots is less than the number of sources. 
Moreover, when the number of robots exceeds the 
number of sources, the difference between the two 
approaches is very small. 

, ,.. 

i- 
, ,-+,. 

Fig. 8 Route length comparison of stochastic 
optimization approach and DHP approach when 
sources = 4. 

7. CONCLUSION 

This paper has presented two neural networks 
approaches to solve the collective robotic search 
problem. The stochastic optimization approach works 
effectively if the numher of sources is not greater than 
the numher of the robots. In this case, there will be a 
high probability that there will he one robot stand by 
each source. It is also shown that the more the robots, 
the less the route length per robot. In addition, the 
more the noise, the more route length per robot. Dual 
Heuristic Programming (DHP) takes much less route 
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length than the stochastic optimization approach, especially [I21 Thomas Coleman, Mary Ann Branch, and 
when the number of robots is less than the sources. Since the Andrew Grace, Optimization .Toolbox User’s 
expenses are proportional to the route, length, DHP proves to Guide, Mathworks Inc., 19g9. 
be an efficient approach to save more expenses in a very noisy v. prokbOrov and DC wunscb 11, 
environment. This is because DHP is a promising neural “Adaptive Critic Designs,” IEEE Trans. on Neural 
network design method to solve optimal control problem Networks, 8, No. 5, PP.997-1007, 1997. 
under the conditions of noise and uncertainty. 
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