
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 2004

Evolutionary Algorithms, Markov Decision Processes, Adaptive Evolutionary Algorithms, Markov Decision Processes, Adaptive

Critic Designs, and Clustering: Commonalities, Hybridization and Critic Designs, and Clustering: Commonalities, Hybridization and

Performance Performance

Donald C. Wunsch
Missouri University of Science and Technology, dwunsch@mst.edu

Samuel A. Mulder

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
D. C. Wunsch and S. A. Mulder, "Evolutionary Algorithms, Markov Decision Processes, Adaptive Critic
Designs, and Clustering: Commonalities, Hybridization and Performance," Proceedings of the International
Conference on Intelligent Sensing and Information Processing, 2004, Institute of Electrical and
Electronics Engineers (IEEE), Jan 2004.
The definitive version is available at https://doi.org/10.1109/ICISIP.2004.1287704

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229173482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1607&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1607&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICISIP.2004.1287704
mailto:scholarsmine@mst.edu

Evolutionary Algorithms, Markov Decision Processes, Ada tive Critic Designs, and
Clustering: Commonalities, Hybridization, an ip Performance

Donald C. Wunsch I1 and Samuel Mulder
Applied Computational Intelligence Laboratory

University of Missouri - Rolla
Rolla, MO 65409 USA
ww w.ecc. unirxddacil

Abstract

We briefly review and compare the mathematical
formulation of Markov Decision Processes
(MDP) and Evolutionary Algorithms (EA). In so
doing, we observe that the Adaptive Critic
Design (ACD) approach to MDP can be viewed
as a special form of EA. This leads us to pose
pertinent questions about possible expansions of
the methodology of ACD. This expansive view
of EA is not limited to ACD. We discuss how it
is possible to consider the p o w e h l Chained Lin-
Kemighan (chained LK) algorithm for the
Traveling Salesman Problem (TSP) as a
degenerate case of EA. Finally, we review some
recent TSP results, using clustering to divide-
and-conquer, that provide superior speed and
scalability.

Formulation of MDP

An MDP consists of the following:
Epochs: Typically numbered from t = 0, 1, . . .
N, where N is the horizon, possibly infinite.

States: Indicated by a variable, say, x, which
can be continuous or discrete. The discrete
state space is typical, even if infinite.
Continuous state spaces are equivalent to
Partially Observable Markov Decision
Processes.

The Markov property implies that. this is
independent of previous x and a values. In the
general case, when the probabilities do not
reduce to binary, deterministic values, this
implies that (1) is suppressing a conditional
expectation operator on the right hand side of the
equation.

We also need to introduce the notion of a policy
xi = [ai(x,O), ai(x,l), . . . ai(x,N)], defined for all
x, t. If xi is independent of t, we call it a
stationary policy.

Adaptive Critic Designs

An ACD uses a critic element to mediate
learning. Most implementations to date used two
or more (typically three) neural networks, where
an Action network generated an output to
indicate the action ai, and a Critic network
estimated the cost-to-go function J(t) or,
alternatively, its derivative with respect to the
state. The training signal for the Critic is of
interest. In the perfect case, (1) applies alway:.
Since the Critic’s output is only an estimate, J,
we consider the quantity:

e = Qt) - [u(t) + j(t+l>l. (2)

Since this would be equal to zero in the ideal
case, any deviation is used as an error signal to
train the Critic network. Actions: Represented by a set A = {al, a2, a3,

. . . 1. The ai can be functions of x andor t.

Rewards (often punishments or costs): Formulation of EA

Incrementally giveh by u(x(t), a(t)), and
cumulatively, by the cost-to-go function: , An EA approach to a problem consists of: ,

Data Structure:
A function X: Solutions -+Data Structure.
This mapping needs to be chosen in such a
way as to provide information that will be
useful in improving the solution iteratively.

J(t) = u(t) + J(t+l). (1) -

Thus, J(0) = u(0) + u(1) -t . . . + u(N).

Transition Probabilities: P[x(t + 1) 1 x(t), a(t)].

0-7803-8243-9104/$17.00 0 2004 IEEE 477 lClSlP 2004

Time is therefore implicitly included, SO at any
time, the function is denoted x(t).
Initialization: Size of population of candidate
solutions, related characteristics.
Variation operators: Number of parents,
number of offspring, type of crossover,
probability of applying the operator - all can
be denoted v(x(t)).
Scoring the offspring and selection pressure,
whether proportional to fitness, truncating the
most fit, or a combination (called toumament),
all denoted by s(v(x(t))).

The whole process can compactly be
represented x(t+l) = s(v(x(t))). (3)

Implicit in the above, but worth mentioning
explicitly, is the factor of randomness in the
functioning of the above process. Although it is
possible to specib the above deterministically,
this is considered a degenerate case, which
eliminates much of the advantage of EA.

Reformulation of an ACD as an Instance of EA

To consider an ACD in the light of EA, we first
must resolve some issues of notation. The
notion of time in the two formulations, for
example, has different meanings. For MDP and
ACD, time is part of the problem specification,
that is, we are required to find optimal actions
over time, for the defined horizon. For EA, time
is an itcration variable to scarch for, hopefully,
increasingly fit solution populations. This is
easily resolved by replacing t in the EA
formulation by an iteration variable i. Also, for
EA, x indicates a population of solutions, but it
is a state of the external system for MDP and
ACD. The appropriate notation for a population
of solutions is n(i) = [nl, n2, . . . nm], where m
can vary from iteration to iteration. Now, we can
focus on the fitness and selection criteria from
(3) and the cost function estimate in (2). (3)
becomes:

So, the ingredients for an EA - ACD are:
Initial population:
One parent, the initial Action network mapping,
Ti@).

Fitness function:
.? (From the Critic network. Should be as small
as possible.)

Variation Function:
The variatio? induced by backpropagation on
NA(t) using J as an error signal. Training of the
Critic indirectly acts as a variation as well by
changing J.
This variation function can be simple, as in
(Widrow, 73), (Watkins, 89), (Werbos, 90) or
quite complex (Werlaos, 90), (Prokhorov and
Wunsch, 97).

Selection Pressure:
A binary fimction: If the neural network has not
converged yet, keep the child. If the network has
converged, keep the parent. A variety of
mechanisms are usecl to determine& whether the
network has converged, such as: J sufficiently
small, weight changes sufficiently small, or
training set error equal to validation set error.

This section has reinterpreted an ACD as an EA.
In the next section, we will examine what this
means for future potential ACD.

Alternative Formulati.on for ACD

It is straightforward to observe that there is no
need for some of the constraints in the above
formulation. By removing these, we
automatically expand the definition of an ACD
to allow a broader family of EA. Basically,
anything except the fitness function can change
and still serve the intcended purpose of an ACD.

Initial Population: N parents.

Fitness function: j
Il(i+l) = s(v(n(i))). (4)

We can thus view the Action network of an ACD
as a mapping from the state space to a policy,
that is, at any time t, from any state x in X, to
any of the 7ci. We can denote the time
dependence of the policy by making the index of
the policy dependent on time, i.e. ?ti(t). Thus:

Variation function:
Virtually anything. Examples are
backpropagation on N neural networks in
parallel, crossover of weights, or any training
algorithm.

Selection Pressure:
Also open to ch2ice. Anything tending to favor
lower values of J should work.

478 IClSlP 2004

Memetic EA and the TSP

In general, EA, are mostly useful on problems
where no good algorithms are known. EA have
been applied to the TSP before, but havc been
generally unsuccesshl as compared to state of
the art heuristic algorithms. A good overview of
the current state of the art in TSP optimization is
given in (Gutin and Punnen, 2002). EA receive
barely a passing mention, because they have not
been competitive with this type of problem.
(Fogel, 1994) and (Larranaga ct al, 1999) present
a good overview of straightforward
implementations of gcnetic algorithms for the
TSP. While they do give decent tours on small
problem instances (less than 100 cities), the
times rcquired to solve such instances are very
large compared to other heuristic approaches.

Until recently, the best rcsults on large-scale TSP
instances came from variations on an algorithm
proposed by Lin and Kcmighan in 1973 (Lin and
Kemighan, 1973), (Rego and Glover, 2002).
This algorithm takes a randomly selected tour
and optimizes it by stages until a local minimum
is found. This result is saved and a new random
tour selectcd to begin thc process again. Given
enough time, the optimal tour can be found for
any instancc of the problem, although in practice
this is limited to small instances for an absolute
result duc to time constraints. Even with
extremely large instances, however, reasonably
short tours can typically be found (Johnson and
McGeoch, 2002). A popular variant, responsible
for the best performance of this class of
algorithms, is called chained-LK. This, instead
of beginning with a random tour at each new
iteration, perturbs the previous tour and
optimizes from there. This perturbation
generally consists of a process known as a
double bridge (Applegate et. al., 2000). This
consists of a 4-edge exchange that is never found
by the basic LK algorithm and is illustrated in
Figure 1.

c---+#-#
Figure 1. Double Bridge

This exchange has the effect of changing the
global shape of the tour and starts the basic LK
algorithm in a position that should find a
different minimal tour, increasing the chance that
the actual minimum tour is found.

A new approach to evolutionary algorithms
(Ulder et al, 1990) combines local search
algorithms with evolutionary algorithms to
create a new hybrid. These algorithms use local
search as a learning function to create a memetic
algorithm. A memetic algorithm is one in which
parents pass on not only their genetic material,
but also learned characteristics. By applying a
local search operator to members of the
population, the search space is explored more
efficiently. To see how this works, consider the
space of possible tours as a high dimensional
search space. If we consider local search as a
hill-climbing technique, then the evolutionary
approach places new population members in the
space and the local search climbs to the nearest
hill. This greatly reduces the size of the space to
be searched, and insures that good solutions are
found at each generation. We can also think of
the chained LK algorithm as a special case with
one population member and one child created
each generation using the double bridge as a
mutation operator. It remains to be seen whether
increasing the population size brings any
advantage in terms of search speed. At the very
least, it makes a parallel implementation trivial
to code.

Clustering Divide-and-Conquer TSP Algorithm

The algorithm presented in this paper combines
ART (Carpenter and Grossberg, 1987, 88) and
LK local optimization to divide and conquer
instances of the TSP. We begin by reading in
the cities, stored in TSP-LIB format (Mostcoto,
2002). The ordering of the cities in memory
represents the current tour. This is known as a
permutation representation. This permutation
representation is chosen because weight-matrix
representations become intractable for large
values of n, i.e. a 250k-city problem would
require around 62.5 GB of memory to store an
edge-weight matrix. Since the problem is
Euclidean, it is sufficient to store (x,y)
coordinates for each city and calculate distances
on the fly.

The first stage of the algorithm involves sorting
the cities into clusters using the ART algorithm
described previously. Our variation of ART uses

479

the vigilance parameter to set a maximum
distance from the current pattern. A vigilance
parameter between 0 and 1 is considered and
used as a percentage of the global space to
determine the vigilance distance. Values were
chosen based on the number and size of
individual clusters desired, but typical values
ranged from 0.80 to 0.97. The learning rate was
set to 0.02. The clusters at this point were still in
a random order. The individual clusters were
then each passed to a version of the LK
algorithm also described above. Since the size of
the tours was controlled and kept under a
thousand cities, we allowed the LK search depth
to be infinite as long as the total improvement
for a given swap series remained positive.

Now we are faced with the problem of
combining a number of subtours back into one
complete tour. This may be accomplished by
adding the cluster tours into a combined tour,
one at a time. Obviously the order in which the
tours are added back is important. To minimize
the cost added by inter-tour edges, it is important
to add tours that are adjacent to the current
combined tour. Our method for accomplishing
this is to add the tours in order of increasing
distance from the origin. It is not clear whether
this is best, and this is an area for future research.
The other major factor involved with merging
the tours is running time. Since this a potentially
global operation, care must be exercised in the
nature of the algorithm. For example, attempting
to find an optimal linking between thc two tours
could be at least an O(n;) algorithm, which is
unacceptable, because the n involved would be
the total number of cities, not just the cities in a
tour. To avoid the O(n;) global operation, we
first find the centroid of the cluster to be added.
This is just the average of the x and y
coordinates of each city in the cluster, and is
easily calculated in O(n,), where the n involved
is the size of an individual cluster. We then find
the k nearest cities to that centroid in the
combined tour. Clearly, this operation requires
O(n& time. Next, we consider each of the k
cities from the main tour to determine the cost of
inserting the cluster tour in place of the
following edge. This involves the comparison of
k cities to n, cities to determine the lowest cost
matching, yielding a running time of O(k*n,),
where k << ng. Finally, the cluster tour is
inserted into the merged tour at the best location
discovered. Some illustrative results are
provided in Figure 2. The advantage over
chained LK becomes apparent for large

instances. For example, for the ten million city
problem, the Clustering Divide-and-Conquer
algorithm runs in 10,529 seconds on a PC, while
chained LK takes 43,631 seconds, to achieve
virtually identical quality tours (within 1 %.) For
the twenty-five million city tour, Clustering
Divide-and-Conquer takes 13,500 seconds, whilc
chained LK can not solve the problem at all
within the memory constraints of the machine.
Superior memory management guarantees
improved scalability for the Divide-and-Conquer
approach.

Figure 2. TSP resulting tours for (a) lk, (b) 10k,
(c) 1M cities.

480 IClSlP 2004

Conclusion

We have examined and compared the
fundamental definitions of ACD and EA. In so
doing, this allowed us to see an ACD as a special
case of an EA. It is important to note that the
overlap is not complete, for example, it excludes
deterministic decision processes. However, this
interpretation does include many of the richest
and most interesting problem representations in
ACD. This allows us to expand the notion of
ACD, whereby we create a representation based
on fundamental principles, as opposed to
arbitrary hybrids. We also discuss how this
expansive view of EA applies to other
techniques, such as the chained LK for TSP.
Finally, we introduce a clustering divide-and-
conquer algorithm that combines ART networks
with chained LK, for superior performance on
large TSP instances.

References

K. Menger. Das Botenproblem. Ergebnisse
Eines Mathematischen Kolloquiums, 2: 11-12,
1932.

S . Lin, B. W. Kemighan, (1973). An Effective
Heuristic Algorithm for the Traveling Salesman
Problem. Operations Research 2 1,498-5 16.

D. Applegate, W. Cook, and A. Rohe, (2000).
Chained Lin-Kemighan for large traveling
salesman problems. Technical report
http://www.keck.caam.rice.edu/reports/ chained
k p s

T. Cormen, C. Leiserson, R. Rivest (1996).
Introduction to Algorithms (pp. 954-960).
Cambridge, MA: MIT Press.

R. Aganvala, D.L. Applegate, D. Maglott, G.D.
Schuler, A.A. Schaffler (2000). A Fast and
Scalable Radiation Hybrid Mau Construction
and Intcmation Stratcm.
ht~:/lwww.ncbi.nlm.nih.Fzov/genomc/rhmau/

C. A. Bailey, T. W. McLain, R. W. Beard (to
appear). Fuel Saving Strategies for Dual
Spacecraft Interferometry Missions. Joumal of
the Astronatical Science.

C.H. Papadimitriou. (1 977). The Euclidean
Traveling Salesman Problem is NP-complete.
Theoretical Computer Science 4,237-244.

M.L. Braun, J.M. Buhmann (2002). The Noisy
Euclidean Traveling Salesman Problem and
Learning. Advances in Neural Information
Processing Systems 14. Cambridge, MA: MIT
Press.

E.M. Cochrane, J.M. Cochrane (1 999),
Exploring competition and co-operation for
solving the Euclidean Traveling Salesman
Problem by using the Self-Organizing Map.
Artificial Neural Networks, 1, 180- 185.

S. Aurora (1998). Polynomial time
approximation schemes for {Euclidean}
traveling salesman and other geometric
problems. Journal of the ACM, V.45 N.5, 753-
782.

G. Carpenter, S. Grossberg (1988). The art of
adaptive pattern recognition by a self-organizing
neural network. IEEE Computer, March, 47-88.

P. Moscoto (2002). TSPBIB Home Page.
http:Nwww.densis. fee.unicamu.br/-moscatoITSP
BIB homchtml

D. Applegate, R. Bixby, V. Chvatal, W. Cook
(2001). Concorde - a code for solving Traveling
Salesman Problems.
httr, :Nwww. math .princeton .edu/tsp/concorde. htm
1

N. Vishwanathan, D. Wunsch (2001). A Hybrid
Approach to the TSP. IEEE International Joint
Conference on Neural Networks, Washington,
DC.

C. Rego, F. Glover (2002). Local Search and
Metaheuristics. In G. Gutin and A. Punnen
(Eds.), The Traveling Salesman Problem and Its
Variations @p. 309-368). Boston: Kluwer
Academic Publishers.

D. Johnson, L. McGeoch (2002). Experimental
Analysis of Heuristics for the STSP. G. Gutin
and A. Punnen (Eds.), The Traveling Salesman
Problem and Its Variations @p. 369-487).
Boston: Kluwer Academic Publishers.

G. Gutin and A. Punnen eds. (2002). The
Traveling Salesman Problem and It’s Variations.
Kluwer Academic Publishers, Netherlands.

D.B. Fogel (1988). An Evolutionary Approach
to the Traveling Salesman Problem. ,Biological
Cybernetics, 60, @p 139-144).

48 1 IClSlP 2004

http://www.keck.caam.rice.edu/reports
http:Nwww.densis

P. Larranaga, C. M. H. Kujipers, R. H. Murga, I.
Inza and S. Dizdarevic (1 999). “Genetic
Algorithm for the Traveling Salesman Problem:
A Review of Representations and Operations,”
Artificial Intelligence Review, vol. 13, no. 2,

.

(pp. 129-170).

N.L.J. Ulder, E.H.L. Aarts, H.J. Bandelt, P.J.M.
Van Laarhoven, and E. Pesch (1990). Genetic
Local Search Algorithms for the Traveling
Salesman Problem, in Parallel Problem Solving
from Nature. Springer-Verlag, Berlin
Heidelberg, (pp. 106- 1 16).

N. Visliwanathan, D. Wunsch (2001). “A Hybrid
Approach to the TSP”, IEEE International Joint
Conference on Neural Networks, Washington,
DC.

S. Mulder and D. Wunsch (2002). “Large-scale
Traveling Salesman Problem via Neural Network
Divide and Conquer”. ICONIP.

S. Mulder and D. Wunsch (2003). “Using
Adaptive Resonance Theory and Local
Optimization to Divide and Conquer Large Scale
Traveling Salesman Problems”. IJCNN,
Portland, OR.

S. Mulder and D. Wunsch (2003). “Million City
Traveling Salesman Problem Solution by Divide
and Conquer Clustering with Adaptive
Resonance Neural Networks”. Neural Networks.
Vol. 16, no. 5-6, (pp. 827-832).

Barto, A., Sutton R. and Anderson, C.,
“Neuronlike elements that can solve difficult
learning control problems,” ZEEE Trans. on
Systems, Man and Cybernatics, vol. 23, pp. 834-
846,1983.

Bellman, R., Dynamic Programming, Princeton
University Press, Princeton, NJ, 1957.

Fogel, D., “An introduction to simulated
evolutionary optimization,” ZEEE Trans. on
Neural Networks, Vol. 5, no. 1, pp. 3-14, 1994.

Fogel, D., “Evolution, neural networks, ‘games
and intelligence,” Fogel, D., Proceedings of the
ZEEE, Vol. 87, no. 9, pp. 1471-1496, 1999.

Sutton, R., “Learning to predict by the method of
temporal differences,” Machine Leaming, no. 3,
pp. 9-44, 1988.

Venayagamoorthy, G., Harley R. and Wunsch,
D., “Comparison of Heuristic Dynamic
Programming and Dual Heuristic Programming
Adaptive Critics fior Neurocontrol of a
Turbogenerator”, ZEE,E Transactions on Neural
Networks, Volume: 13 Issue: 3, Page(s): 764 -
773,2002.

Watkins, C , Leaming from Delayed Rewards,
Ph.D. dissertation, Cambridge University,
Cambridge, England, 1989.

Werbos, P., “A menu of designs for
reinforcement learning over time,” Werbos, P.,
in W. T. Miller, R. Sutton and P. Werbos (Eds.),
Neural Networks jbr Control, MIT Press,
Cambridge, MA, 1990.

White, David A., and Donald A. Sofge,
Handbook of Intelligence Control: Neural,
Fuzzy, and Adaptive Approaches, editors,
Multiscience Press, 1992. I

Widrow, Bernard, Nerendra Gupta, and
Sidhartha Maitra, “Punish /reward: Leaming
with a critic in adaptive threshold systems,”
IEEE Transactions on Systems, Man and
Cybernetics, vol. 3, no. 5, pp. 455-465, 1973.

Wunsch, D., “The cellular simultaneous
recurrent network adaptive critic design for the
generalized maze problem has a simple closed-
form solution,” Proceedings of International
Joint Conference on Neural Networks, Como
Italy, Vol. 3, pp.79-8;!, 2000.

Carpenter, G., and S. Grossberg, “A massively
parallel architecture for a self-organizing neural
pattern recognition machine,” Computer Vision,
Graphics, and Image Processing, vol. 37, pp. 54-
115,1987.

Carpenter, G., and S. Grossberg, “The ART of
adaptive pattem recognition by a self-organizing
neural network,” ZEEE Computer, vol. 21, no. 3,
pp. 77-88, 1988.

Prokhorov, D. and Wunsch, D., “Adaptive Critic
Designs,” ZEEE Transactions on Neural
Networks, vol. 8, no. 5, pp. 997-1007,
September, 1997.

482 IClSlP 2004

	Evolutionary Algorithms, Markov Decision Processes, Adaptive Critic Designs, and Clustering: Commonalities, Hybridization and Performance
	Recommended Citation

	Evolutionary algorithms, Markov decision processes, adaptive critic designs, and clustering: commonalities, hybridization and performance

