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Evolutionary Algorithms, Markov Decision Processes, Ada tive Critic Designs, and 
Clustering: Commonalities, Hybridization, an ip Performance 

Donald C. Wunsch I1 and Samuel Mulder 
Applied Computational Intelligence Laboratory 

University of Missouri - Rolla 
Rolla, MO 65409 USA 
ww w.ecc. unirxddacil 

Abstract 

We briefly review and compare the mathematical 
formulation of Markov Decision Processes 
(MDP) and Evolutionary Algorithms (EA). In so 
doing, we observe that the Adaptive Critic 
Design (ACD) approach to MDP can be viewed 
as a special form of EA. This leads us to pose 
pertinent questions about possible expansions of 
the methodology of ACD. This expansive view 
of EA is not limited to ACD. We discuss how it 
is possible to consider the p o w e h l  Chained Lin- 
Kemighan (chained LK) algorithm for the 
Traveling Salesman Problem (TSP) as a 
degenerate case of EA. Finally, we review some 
recent TSP results, using clustering to divide- 
and-conquer, that provide superior speed and 
scalability. 

Formulation of MDP 

An MDP consists of the following: 
Epochs: Typically numbered from t = 0, 1, . . . 
N, where N is the horizon, possibly infinite. 

States: Indicated by a variable, say, x, which 
can be continuous or discrete. The discrete 
state space is typical, even if infinite. 
Continuous state spaces are equivalent to 
Partially Observable Markov Decision 
Processes. 

The Markov property implies that. this is 
independent of previous x and a values. In the 
general case, when the probabilities do not 
reduce to binary, deterministic values, this 
implies that (1) is suppressing a conditional 
expectation operator on the right hand side of the 
equation. 

We also need to introduce the notion of a policy 
xi = [ai(x,O), ai(x,l), . . . ai(x,N)], defined for all 
x, t. If xi is independent of t, we call it a 
stationary policy. 

Adaptive Critic Designs 

An ACD uses a critic element to mediate 
learning. Most implementations to date used two 
or more (typically three) neural networks, where 
an Action network generated an output to 
indicate the action ai, and a Critic network 
estimated the cost-to-go function J(t) or, 
alternatively, its derivative with respect to the 
state. The training signal for the Critic is of 
interest. In the perfect case, (1) applies alway:. 
Since the Critic’s output is only an estimate, J, 
we consider the quantity: 

e = Qt) - [u(t) + j(t+l>l. (2) 

Since this would be equal to zero in the ideal 
case, any deviation is used as an error signal to 
train the Critic network. Actions: Represented by a set A = {al, a2, a3, 

. . . 1. The ai can be functions of x andor t. 

Rewards (often punishments or costs): Formulation of EA 

Incrementally giveh by u(x(t), a(t)), and 
cumulatively, by the cost-to-go function: , An EA approach to a problem consists of: , 

Data Structure: 
A function X: Solutions -+Data Structure. 
This mapping needs to be chosen in such a 
way as to provide information that will be 
useful in improving the solution iteratively. 

J(t) = u(t) + J(t+l). (1) - 

Thus, J(0) = u(0) + u(1) -t . . . + u(N). 

Transition Probabilities: P[x(t + 1) 1 x(t), a(t)]. 
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Time is therefore implicitly included, SO at any 
time, the function is denoted x(t). 
Initialization: Size of population of candidate 
solutions, related characteristics. 
Variation operators: Number of parents, 
number of offspring, type of crossover, 
probability of applying the operator - all can 
be denoted v(x(t)). 
Scoring the offspring and selection pressure, 
whether proportional to fitness, truncating the 
most fit, or a combination (called toumament), 
all denoted by s(v(x(t))). 

The whole process can compactly be 
represented x(t+l) = s(v(x(t))). (3) 

Implicit in the above, but worth mentioning 
explicitly, is the factor of randomness in the 
functioning of the above process. Although it is 
possible to specib the above deterministically, 
this is considered a degenerate case, which 
eliminates much of the advantage of EA. 

Reformulation of an ACD as an Instance of EA 

To consider an ACD in the light of EA, we first 
must resolve some issues of notation. The 
notion of time in the two formulations, for 
example, has different meanings. For MDP and 
ACD, time is part of the problem specification, 
that is, we are required to find optimal actions 
over time, for the defined horizon. For EA, time 
is an itcration variable to scarch for, hopefully, 
increasingly fit solution populations. This is 
easily resolved by replacing t in the EA 
formulation by an iteration variable i. Also, for 
EA, x indicates a population of solutions, but it 
is a state of the external system for MDP and 
ACD. The appropriate notation for a population 
of solutions is n( i )  = [nl, n2, . . . nm], where m 
can vary from iteration to iteration. Now, we can 
focus on the fitness and selection criteria from 
(3) and the cost function estimate in (2). (3) 
becomes: 

So, the ingredients for an EA - ACD are: 
Initial population: 
One parent, the initial Action network mapping, 
Ti@). 

Fitness function: 
.? (From the Critic network. Should be as small 
as possible.) 

Variation Function: 
The variatio? induced by backpropagation on 
NA(t) using J as an error signal. Training of the 
Critic indirectly acts as a variation as well by 
changing J. 
This variation function can be simple, as in 
(Widrow, 73), (Watkins, 89), (Werbos, 90) or 
quite complex (Werlaos, 90), (Prokhorov and 
Wunsch, 97). 

Selection Pressure: 
A binary fimction: If the neural network has not 
converged yet, keep the child. If the network has 
converged, keep the parent. A variety of 
mechanisms are usecl to determine& whether the 
network has converged, such as: J sufficiently 
small, weight changes sufficiently small, or 
training set error equal to validation set error. 

This section has reinterpreted an ACD as an EA. 
In the next section, we will examine what this 
means for future potential ACD. 

Alternative Formulati.on for ACD 

It is straightforward to observe that there is no 
need for some of the constraints in the above 
formulation. By removing these, we 
automatically expand the definition of an ACD 
to allow a broader family of EA. Basically, 
anything except the fitness function can change 
and still serve the intcended purpose of an ACD. 

Initial Population: N parents. 

Fitness function: j 
Il(i+l) = s(v(n(i))). (4) 

We can thus view the Action network of an ACD 
as a mapping from the state space to a policy, 
that is, at any time t, from any state x in X, to 
any of the 7ci. We can denote the time 
dependence of the policy by making the index of 
the policy dependent on time, i.e. ?ti(t). Thus: 

Variation function: 
Virtually anything. Examples are 
backpropagation on N neural networks in 
parallel, crossover of weights, or any training 
algorithm. 

Selection Pressure: 
Also open to ch2ice. Anything tending to favor 
lower values of J should work. 
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Memetic EA and the TSP 

In general, EA, are mostly useful on problems 
where no good algorithms are known. EA have 
been applied to the TSP before, but havc been 
generally unsuccesshl as compared to state of 
the art heuristic algorithms. A good overview of 
the current state of the art in TSP optimization is 
given in (Gutin and Punnen, 2002). EA receive 
barely a passing mention, because they have not 
been competitive with this type of problem. 
(Fogel, 1994) and (Larranaga ct al, 1999) present 
a good overview of straightforward 
implementations of gcnetic algorithms for the 
TSP. While they do give decent tours on small 
problem instances (less than 100 cities), the 
times rcquired to solve such instances are very 
large compared to other heuristic approaches. 

Until recently, the best rcsults on large-scale TSP 
instances came from variations on an algorithm 
proposed by Lin and Kcmighan in 1973 (Lin and 
Kemighan, 1973), (Rego and Glover, 2002). 
This algorithm takes a randomly selected tour 
and optimizes it by stages until a local minimum 
is found. This result is saved and a new random 
tour selectcd to begin thc process again. Given 
enough time, the optimal tour can be found for 
any instancc of the problem, although in practice 
this is limited to small instances for an absolute 
result duc to time constraints. Even with 
extremely large instances, however, reasonably 
short tours can typically be found (Johnson and 
McGeoch, 2002). A popular variant, responsible 
for the best performance of this class of 
algorithms, is called chained-LK. This, instead 
of beginning with a random tour at each new 
iteration, perturbs the previous tour and 
optimizes from there. This perturbation 
generally consists of a process known as a 
double bridge (Applegate et. al., 2000). This 
consists of a 4-edge exchange that is never found 
by the basic LK algorithm and is illustrated in 
Figure 1. 

c---+#-# 
Figure 1. Double Bridge 

This exchange has the effect of changing the 
global shape of the tour and starts the basic LK 
algorithm in a position that should find a 
different minimal tour, increasing the chance that 
the actual minimum tour is found. 

A new approach to evolutionary algorithms 
(Ulder et al, 1990) combines local search 
algorithms with evolutionary algorithms to 
create a new hybrid. These algorithms use local 
search as a learning function to create a memetic 
algorithm. A memetic algorithm is one in which 
parents pass on not only their genetic material, 
but also learned characteristics. By applying a 
local search operator to members of the 
population, the search space is explored more 
efficiently. To see how this works, consider the 
space of possible tours as a high dimensional 
search space. If we consider local search as a 
hill-climbing technique, then the evolutionary 
approach places new population members in the 
space and the local search climbs to the nearest 
hill. This greatly reduces the size of the space to 
be searched, and insures that good solutions are 
found at each generation. We can also think of 
the chained LK algorithm as a special case with 
one population member and one child created 
each generation using the double bridge as a 
mutation operator. It remains to be seen whether 
increasing the population size brings any 
advantage in terms of search speed. At the very 
least, it makes a parallel implementation trivial 
to code. 

Clustering Divide-and-Conquer TSP Algorithm 

The algorithm presented in this paper combines 
ART (Carpenter and Grossberg, 1987, 88) and 
LK local optimization to divide and conquer 
instances of the TSP. We begin by reading in 
the cities, stored in TSP-LIB format (Mostcoto, 
2002). The ordering of the cities in memory 
represents the current tour. This is known as a 
permutation representation. This permutation 
representation is chosen because weight-matrix 
representations become intractable for large 
values of n, i.e. a 250k-city problem would 
require around 62.5 GB of memory to store an 
edge-weight matrix. Since the problem is 
Euclidean, it is sufficient to store (x,y) 
coordinates for each city and calculate distances 
on the fly. 

The first stage of the algorithm involves sorting 
the cities into clusters using the ART algorithm 
described previously. Our variation of ART uses 
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the vigilance parameter to set a maximum 
distance from the current pattern. A vigilance 
parameter between 0 and 1 is considered and 
used as a percentage of the global space to 
determine the vigilance distance. Values were 
chosen based on the number and size of 
individual clusters desired, but typical values 
ranged from 0.80 to 0.97. The learning rate was 
set to 0.02. The clusters at this point were still in 
a random order. The individual clusters were 
then each passed to a version of the LK 
algorithm also described above. Since the size of 
the tours was controlled and kept under a 
thousand cities, we allowed the LK search depth 
to be infinite as long as the total improvement 
for a given swap series remained positive. 

Now we are faced with the problem of 
combining a number of subtours back into one 
complete tour. This may be accomplished by 
adding the cluster tours into a combined tour, 
one at a time. Obviously the order in which the 
tours are added back is important. To minimize 
the cost added by inter-tour edges, it is important 
to add tours that are adjacent to the current 
combined tour. Our method for accomplishing 
this is to add the tours in order of increasing 
distance from the origin. It is not clear whether 
this is best, and this is an area for future research. 
The other major factor involved with merging 
the tours is running time. Since this a potentially 
global operation, care must be exercised in the 
nature of the algorithm. For example, attempting 
to find an optimal linking between thc two tours 
could be at least an O(n;) algorithm, which is 
unacceptable, because the n involved would be 
the total number of cities, not just the cities in a 
tour. To avoid the O(n;) global operation, we 
first find the centroid of the cluster to be added. 
This is just the average of the x and y 
coordinates of each city in the cluster, and is 
easily calculated in O(n,), where the n involved 
is the size of an individual cluster. We then find 
the k nearest cities to that centroid in the 
combined tour. Clearly, this operation requires 
O(n& time. Next, we consider each of the k 
cities from the main tour to determine the cost of 
inserting the cluster tour in place of the 
following edge. This involves the comparison of 
k cities to n, cities to determine the lowest cost 
matching, yielding a running time of O(k*n,), 
where k << ng. Finally, the cluster tour is 
inserted into the merged tour at the best location 
discovered. Some illustrative results are 
provided in Figure 2. The advantage over 
chained LK becomes apparent for large 

instances. For example, for the ten million city 
problem, the Clustering Divide-and-Conquer 
algorithm runs in 10,529 seconds on a PC, while 
chained LK takes 43,631 seconds, to achieve 
virtually identical quality tours (within 1 %.) For 
the twenty-five million city tour, Clustering 
Divide-and-Conquer takes 13,500 seconds, whilc 
chained LK can not solve the problem at all 
within the memory constraints of the machine. 
Superior memory management guarantees 
improved scalability for the Divide-and-Conquer 
approach. 

Figure 2. TSP resulting tours for (a) lk, (b) 10k, 
(c) 1M cities. 
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Conclusion 

We have examined and compared the 
fundamental definitions of ACD and EA. In so 
doing, this allowed us to see an ACD as a special 
case of an EA. It is important to note that the 
overlap is not complete, for example, it excludes 
deterministic decision processes. However, this 
interpretation does include many of the richest 
and most interesting problem representations in 
ACD. This allows us to expand the notion of 
ACD, whereby we create a representation based 
on fundamental principles, as opposed to 
arbitrary hybrids. We also discuss how this 
expansive view of EA applies to other 
techniques, such as the chained LK for TSP. 
Finally, we introduce a clustering divide-and- 
conquer algorithm that combines ART networks 
with chained LK, for superior performance on 
large TSP instances. 
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