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Decentralized Discrete-Time Neural Network Controller for 
a Class of Nonlinear Systems with Unknown 

Interconnections1

S. Jagannathan 

Abstract— A novel decentralized neural network (NN)
controller in discrete-time is designed for a class of uncertain
nonlinear discrete-time systems with unknown
interconnections.  Neural networks are used to approximate
both the uncertain dynamics of the nonlinear systems and the
unknown interconnections.  Only local signals are needed for 
the decentralized controller design and the stability of the
overall system can be guaranteed using the Lyapunov
analysis. Further, controller redesign for the original
subsystems is not required when additional subsystems are
appended.  Simulation results demonstrate the effectiveness of 
the proposed controller. The NN does not require an offline
learning phase and the weights can be initialized at zero or
randomly.  Simulation results verify the theoretical
conclusions.

I. INTRODUCTION
any physical systems, such as power grid, computer
and communication networks, networked dynamic
systems, transportation systems, etc., are complex

large-scale interconnected systems [2,6].  To coordinate the
control activities of such large scale systems, centralized
control schemes are proposed in the literature by assuming
that global information of the overall system is available.
While there are obvious theoretical advantages, control
centralization is very difficult for a complex large scale 
system with interconnections due to technical and
economic reasons [2].  Furthermore, centralized control
designs are dependent upon the system structure and cannot
handle the structural changes. If new subsystems are added 
or removed, the controller for the overall system has to be 
redesigned.

To overcome the problems of centralized control,
decentralized schemes are currently being addressed in the 
literature [2,6]. Instead of an overall controller,
decentralized control design aims at designing controllers 

for each subsystem.  Thus subsystem controllers only 
require local information with a minimum amount of
information from other subsystems.

S. Jagannathan is with the Department of Electrical and Computer
Engineering, University of Missouri-Rolla, Rolla, MO 65409 
sarangap@umr.edu.

1 This research supported in part by NSF #0296191 

Earlier works on decentralized control of nonlinear 
systems assumed that the interconnection dynamics are 
linear in the unknown parameters (LIP) and bounded with
first order terms. To overcome this assumption on the
interconnection terms and to further relax the LIP 
assumption on the nonlinear system, recently, neural 
network (NN) have been utilized to design decentralized 
controllers [2,6] by assuming that the interconnections can
also be approximated by using the nonlinear in the
parameter NNs. Further, the direct controller designs
require neither the knowledge of nor the direct estimation
of the unknown input gain matrix. Finally, it is very
important to note that all available decentralized schemes
are developed to control nonlinear continuous-time
systems.  To the knowledge of the author, decentralized 
control scheme in discrete-time is currently not available in
the literature.

On the other hand, discrete-time implementation of
controllers is of importance since all the controllers have to
be implemented on today’s embedded hardware.  As 
indicated in [4], discrete-time adaptive control design is far 
more complex than continuous-time due primarily to the
fact that discrete-time Lyapunov derivatives are quadratic
in the state, not linear as in the continuous-case.  This has 
led to traditional techniques where the parameter
identification problem is decoupled from the control
problem using so called certainty equivalence (CE)
assumption.

Motivated by the advancements in the area of 
centralized nonlinear discrete-time NN control, this paper
introduces a decentralized NN controller design for a
control of a class of large-scale unknown nonlinear
discrete-time systems with unknown interconnections.  The 
NNs are used to approximate the unknown nonlinear
dynamics of the subsystems and to compensate the
unknown nonlinear interactions. The first or higher order 

M

Proceedings of the 2005 IEEE
International Symposium on Intelligent Control
Limassol, Cyprus, June 27-29, 2005

0-7803-8936-0/05/$20.00 ©2005 IEEE

MoM02-1

268



polynomial bound assumption of earlier works [2] on the
unknown interconnection terms can be treated here as 
special cases. The developed controller is robust to
perturbations in the system dynamics and interconnections.
Lyapunov analysis is demonstrated for the closed-loop
system and boundedness of all the closed-loop signals is
shown. Simulations results on nonlinear discrete-time
systems demonstrate the effectiveness of the proposed 
decentralized NN controller. 

II. BACKGROUND

The following mathematical notion is required for the
development of adaptive critic NN controller. First the
universal approximation property of two-layer NN is
presented. Then actual controller development is
introduced.
A. Approximation property

A general function can be approximated
by using a two-layer neural network [7] as 

sCxf

kkxVWkxf TT
12   (1) 

where W and V are constant weights and 
kxkxV T

112 , denote the vectors of activation
functions at the instant k, with k  being NN functional
reconstruction error vector and 

Mk .  The net output
is defined as 

kxVWkxf TT
12

ˆˆˆ   (2) 

From now on kx1 is denoted as k1
and

kxV T
12 is denoted as k2 .

B. Stability of Systems

To formulate the discrete-time controller, the following
stability notion is needed. Consider the nonlinear system
given by [5]

kxhky
kukxfkx ,1                                             (3) 

where x(k) is a state vector, u(k) is the input vector and 
is the output vector. The solution is said to be

uniformly ultimately bounded (UUB) if for all
ky

00 xkx
there exists a 0 and a number 0, xN  such that 

kx  for all .Nkk 0

C. Nonlinear System Description 

Consider the following nonlinear system, to be
controlled, given in the following form

1 2

1 2

1

1

1 ( , ...., )

( ); 1, 2,.... ,

i i

in i i i i n i

i i

x k x k

x k f x k u k x x x d

y x k i m

k

 (4) 

with
1 2, , ,

T

i i i inx k x k x k x k the state vector at 

time instant k,
i if x k  the unknown nonlinear

function,
1 2, ,.....,i nx k x k x k  the interconnection term,

iu k the input and
id k  is the unknown but bounded 

disturbance vector, whose bound is assumed to be a known 
constant,

i id k d M
.

The nonlinear system presented in (3) is in general form.
For the sake of convenience, the nonlinear system in
general form can be expressed into several classes.
Equation (4) presents a simplified scenario of a specific
class of nonlinear system.

Given a trajectory, indx k , and its delayed values for the
ith subsystem, define the tracking error

in in inde k x k x k ,                  (5) 
and the filtered tracking error,

ir k , as 

i i ir k I e k ,   (6) 
with

1 2, , ,
T

i i i ine k e k e k e k ,
1 21i ie k e k ,

where
1 1ie k is the future value for the error

1ie k ,

1 , ,in ie k e k1
are delayed values of the error ine k

for the ith subsystem and is a 

constant diagonal positive definite matrix selected such that 
the eigen values are within the unit disc.  Equation (6) can
be expressed as 

, 1 , 2 ,1, , ,
T

i i n i n i

,1 , 1 21 1i i i ind i in i n i i ir k f x k x k e k e k u k d k

+ (.)i
(7)

Assumption 1: The interconnection terms of the ith
subsystem 1 2( , ,..., )i nx x x  are bounded, whose bounds
are given by

1 2 0
1

( , ,..., ) ( )
m

i n i ij
j

jx x x r

where 0i are unknown positive constants and ( )ij jr  are 

unknown smooth functions.
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Define the control input as( )iu k

1 2
ˆ ˆ1 , ,....,i ind i i i nu k x k f x k x k x k x k

, ,1 , 1 2i v i i in i n ik r k e k e k   (8) 

where
îf x k is an estimate of the unknown function

( ( ))i if x k ,
1 2

ˆ , ,....,i nx k x k x k is an estimate

of 1 2, ,....,i nx k x k x k ,i vk

)i

, and is a diagonal gain
matrix for the ith subsystem. Then, the closed-loop system
becomes

,1  ( ) ( ) (.) (i i i i i ir k k r k f x k d k ,   (9) 
where the functional estimation errors are given
by ˆ

i i i i i if x k f x k f x k and ˆ. .i i i . .

Equation (9) relates the filtered tracking error with both
the functional estimation error resulting from uncertain
dynamics and unknown interconnection estimation error. 
In the remainder of this paper, (9) is used to focus on 
selecting NN tuning algorithms that guarantee the stability
of the filtered tracking error

ir k .  Then since (6) with the

input considered as and the output as ir k ie k describes
a stable system, standard techniques [1,4] guarantee that

ie k exhibits a stable behavior.

Define
1, , 1[ ,...., ] , (.) [ (.),...., (.)] ,T

v v m v mk k k f f f T

m

)

1 1(.) [ (.),...., (.)]  and d( ) [ ( ),...., ( )]T T
m k d k d k . Then 

the closed-loop tracking error system (9) can also be 
expressed as 

, (10)
01 ( ) (vr k k r k k

where .  If the unknown
dynamic, interconnection estimation errors, and bounded 
distuebances,

0 .k f x k d k

, . and d(k)f x k  are bounded above such

that , . andM M Mf x k f d k d , for some

known bounding function , then next
stability results hold.

M, ,  and dM Mf

Theorem 2.1: Consider the system given by (4).  Let the
control action for ith subsystem be provided by (8). The 
closed-loop tracking error system (10) is stable provided

.   (11) T
v vk k I

Proof: Let us consider the following Lyapunov function
candidate

( ) ( ).TJ r k r k               (12) 
The first difference is 

( 1) ( 1) ( ) ( ).T TJ r k r k r k r k                (13)
Substituting the tracking error dynamics (9) along with the 
auxiliary input results in 

( ( ( )) (.) ( ) ( ( ( )) (.) ( )))T

v vJ k r k f x k d k k r k f x k d k

.Tr k r k

This further implies that 0J  provided
( ( ( )) ( ( )) ( )vk r k f x k x k d k

max .v M M Mk r k f d r k

or

max1
M M M

v

f d
r k

k
       (14)

The closed-loop system is bounded.

III. ADAPTIVE NN CONTROLLER DESIGN

In the remainder of this paper, a three-layer NN is
considered both for the uncertain dynamics and unknown 
interconnections.  Stability analysis using a Lyapunov 
direct method is carried out for the closed-loop system (9)
using novel weight tuning updates.  Assume that some
constant weight updates, V and W such that

( ( )) 2 1i i
T T

if x k W V x k k (15)

where  is the vector of hidden layer activation
functions, is a vector linear function and the NN

functional estimation errors are given by

)(2 k

)(1 k

( )i k . Here for 
the sake of convenience, the estimation errors for the the
NN approximating the uncertain dynamics and the NN 
approximating the interconnection term are combined into
one term and its bound is given by

i k iN
 with the

bounding constant iN  known.  This error is referred to as
reconstruction error or functional approximation error. 

For suitable approximation properties, it is necessary to
select a large enough number of hidden-layer neurons. It is
not known how to compute this number for general multi-
layer NN. Typically, the number of hidden layer neurons is
selected by a trail and error procedure. To overcome this
limitation, the first layer of weights is selected initially at 
random to provide a basis [3] and then they are kept
constant through out the tuning process as they are not
dependent upon time.

A. Adaptive NN Structure

The actual NN output is given by
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1 1 1 1 1
ˆ ˆ ˆ(.) ( ) ( ( )) ( ) (.)T T T
i i i i i i if w k v x k w k

)

1i 2i

, (16)
and

(17)2 2 2 2 2
ˆ ˆ ˆ(.) ( ) ( ( )) ( ) (.T T T

i i i i i iw k v x k w k
where  and  represent the matrix of
weight estimates. Here only the hidden layer NN weights
are a function of time whereas the input layer weights are
selected initially at random and held constant. The
according to [3], the NNs can approximate the nonlinear 
functions over the compact set.  Tuning one layer of 
weights will ensure that the computational complexity is
tractable.

1ˆ ,iw k v 2ˆ ,iw k v

Let and  are the unknown target NN weights
for the NNs in the ith subsystem and assume that they are
bounded so that

1iw 2iw

1 1max 2 2m,i i i iw w w w ax .                    (18) 

where and are the maximum bound on the
unknown weights. Then the error in weights during
estimation is given by

1maxiw 2maxiw

ˆ( ) ( ),i i iw k w w k                    (19) 

where and .1

2

0
,

0
i

i
i

w w
w

1

2

0
ˆ

0
ˆ

ˆ
i

i
i

w w
w

Fact: The activation functions are bounded by known
positive values so that

2 2ma(.)i i x and
1 1max.i i

.                 (20) 

Remark: Though the development is done for the ith
subsystem, similar analysis can be done for the other
subsystems.

Let the control input, , is selected as ( )iu k

,
ˆ ˆ1 (.)i ind i i i i v iu k x k f x k k r k

,1 , 1 2i in i n ie k e k       (21)
yields the tracking error dynamics for the ith subsystem as 

, 1 21 ( ) ( ) (i i v i i ir k k r k k k k d k)i .    (22) 
where the functional estimation errors are defined by

1 1
T

i i ik w k k ,       (23a) 
for the unknown nonlinear dynamics and 

. (23b)
2 2 2

T
i i ik w k k

for the unknown interconnections with the combined NN 
approximation error for both NN is denoted by ( )i k . The 
bound on the approximation error is defined above. 

An inner action generating NN loop eliminates the
nonlinear dynamics of the system as well as compensates
for the interactions.  The outer loop designed via Lyapunov
guarantees the stability and accuracy in following the 
desired trajectory.  The next step is to determine the weight
updates so that the performance of the closed-loop tracking
error dynamics are guaranteed. 

B. Weight Updates for Guaranteed Performance

It is required to demonstrate that the performance
criterion in terms of tracking error, ( ); 1,2,...ir k i m , is 
suitably small and that the NN weights,

1 2ˆ ˆ, ; 1,2,..i iw k w k i m.  , remain bounded. In the
following theorem, a discrete-time weight tuning algorithm
based on the tracking error is given, which guarantees that
both the tracking error and the NN weight estimates are 
bounded not only for the ith subsystem but also to the
overall nonlinear discrete-time system.

Theorem 3.1: (with PE Condition): Let the desired
trajectory vector, ; 1,...,indx k i m , and its delayed
values be bounded. Also, let the NN approximation error
be bounded above by iN  for the ith subsystem, and the

disturbance bound  a known constant. Let the NN 
weight tuning for approximating the unknown subsystem
dynamics be provided by

iMd

1 1 1 1ˆ ˆ( 1) ( ) (.) ( 1); 1,...,T
i i i i iw k w k r k i m , (24)

and the NN weight tuning for approximating the
interconnection terms is provided by

2 2 2 2 2 2 ,ˆ ˆ ˆ( 1) ( ) (.)( ( ) ) ; 1,...,T
i i i i i i i v iw k w k y k B k r k i m ,

(25)
where ,2 2 2ˆ ˆ( ) ( ) ( )T

i i iy k w k k ,2 2i iB and 1,i i2 ;i=1,..

,m are NN adaptation gains.  Then the filtered tracking
error, , 1,....,ir k i m , and the NN weight estimates,

1 2ˆ ˆ, , 1,...,i iw k w k i m  are UUB provided (a) output
vectors of the hidden layers for the NN

1( ) and ( )i ik 2 k are persistently exciting (PE) and the
bounds specifically given by (35) through (37) (b) the
design parameters are selected as:

(1) 1
2

11 i ki , i=1,…,m                     (26) 
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(2) 2
2

2,2 i ki  i=1,…,m (27)

(3)
max

1
vk , (28)

where
2
2

2 2
1 1 1 2 2

1[ ]
(1 ( ) ) (2 ( ) )

m
i

i i i i ik k
  (29) 

and is the maximum singular value of the gain matrix,

.
maxvk

vk
Remark:  Note it is very easy to verify conditions (1)
through (3) and therefore the proof is omitted. And the 
upper bound on is independent of the choices of NN 
activation functions.

maxvk

Remark: The selection of the gain matrix is done on an 
individual subsystem basis and the controller design uses
local signals only. However, the overall gain matrix must
be satisfy (28) in order to keep the overall system stable.
Proof: Define the Lyapunov function candidate

1 1 2 2
1 1 2

1 1[ ( ) ( ) ( ( ) ( )) ( ( ) ( ))]
m

T T T
i i i i i i

i i i

J r k r k tr w k w k tr w k w k ,

(29)
whose first difference is calculated as 1 2J J , where 

1
1
[ ( 1) ( 1) ( ) ( )

m
T T

i i i i
i

J r k r k r k r k

1 1 1 1
1

1 ( ( 1) ( 1) ( ) ( ))T T
i i i i

i

tr w k w k w k w k ]  (30) 

2 2 2 2
1 2

1[ ( ( 1) ( 1) ( ) ( ))]
m

T T
i i i i

i i
2J tr w k w k w k w k .(31)

The first difference is obtained by using the tracking
error dynamics (22) and weight tuning updates from (24)
and (25) as

J

22 max
max 2 2

max max

(1 )[ ( ) 2 ]
(1 ) (1 )

v
v

v v

k
J k r k

k k

1 1 1
1

(1 ( ) ( ))
m

T
i i i

i

k k

2

1 1 1 1 1 2 2
1 2

1 1 1

( ) ( ) ( )( ( ) ( ) ( ) ( ))( ( ) ( ))
(1 ( ) ( ))

T T T
vi i i i i i i i i i i

i i T
i i i

k r k k k w k w k k d k
k k

k k

2 2 2
1

(2 ( ) ( ))
m

T
i i i

i

k k

2

1 1 1 2 2
2 2

1 1 1

(1 ( ) ( ))( ( ) ( ))ˆ( ( ) ( ))
(2 ( ) ( ))

T T
T i i i i i vi i
i i T

i i i

k k w k k r k
w k k

k k
 (32) 

where is given in (29) with k the maximum singular

value of  and 
maxv

vk

2 2 2max
1max 1max 2max 2max2 2

1 2 2

( )1[ ( ) ]
(1 ) (2 ( )

m
i i

i i i i iN iM
i i i

k w
w w d

k k1 1( )i i

(33)
and

2 2
2 2max2

1max 1max 2max 2max2 2
1 1 1 2 2

( )1[ ( )
(1 ( ) ) (2 ( )

m
i

i i i i iN iM
i i i i i

k w
w w d

k k
]

(34)
This further implies that the first difference 0J as long
as (26) through (28) holds and 

2 2 2 2
max max max2

max

1 [ (1
(1 ) v v v

v

r k k k k
k

)]   (35) 

In general 0J in a compact set as long as (26) through
(28) are satisfied and (35) holds. According to a standard
Lyapunov extension theorem [5], this demonstrates that the
filtered tracking error vector is bounded and hence 
individual subsystem filtered tracking errors,

( ); 1,....,ir k i m  are bounded. It remains to show that the
weight estimates kw1

~  and kw2
~ ; i=1,….,m are 

bounded.
The dynamics relative to error in weight estimates using

(25) are given by
2 2 2 2 2 2 2 2 2 2 ,( 1) [ ( ) ( )] ( ) ( )[ ( ) ( )]T T

i i i i i i i i i i i vw k I k k w k k w k B k r k T
i

T
i

)

;i=1,….,m   (36) 
where the filtered tracking error for the ith subsystem is 
bounded.  Applying the PE condition [4] and using the 
tracking error bound (35), the boundedness of  and2 ( )iw k

hence is assured. Now the dynamics relative to the
weight estimates using (24) are given by

2ˆ ( )iw k

1 1 1 1 1 1 1 1 1 , 2( 1) [ ( ) ( )] ( ) ( )[ ( ) ( ) ( ) ( ) ( )]T T
i i i i i i i i i i v i i iw k I k k w k k w k k r k k k d k

                     (37)
Applying the PE condition, and using the filtered

tracking error bound (35) and the weight estimation error 
bound for the interconnection subsystem from (36), the
boundedness of  and hence is assured. 2 ( )iw k 2ˆ ( )iw k
Theorem 3.1: (without PE Condition): Assume the 
hypothesis presented in Theorem 3.1 and take the NN 
weight tuning for approximating the unknown subsystem
dynamics as 

1 1 1 1ˆ ˆ( 1) ( ) (.) ( 1T
i i i i iw k w k r k ,

1 1 1 1ˆ(.) (, ) ( ); 1,...,T
i i i iI w k i m (38)

and the NN weight tuning for approximating the
interconnection terms are provided by

2 2 2 2 2 2 ,ˆ ˆ ˆ( 1) ( ) (.)( ( ) )T
i i i i i i i v iw k w k y k B k r k ,

2 2 2 2ˆ(.) (.) ( ); 1,...,T
i i i iI w k i m (39)

where ,2 2 2ˆ ˆ( ) ( ) ( )T
i i iy k w k k ,2 2i iB and 1,i i2 ;i=1,..,m

are NN adaptation gains.  Then the filtered tracking
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error, , and the NN weight estimates,

are UUB.
, 1,....,ir k i m

1 2ˆ ˆ, , 1,...,i iw k w k i m

IV. SIMULATION RESULTS

The nonlinear system is described by:
Subsystem 1: 

11 12
2 2

12 1 1 21 22 1

( 1) ( )

( 1) ( ( )) ( ) (

x k x k

)x k f x k x x u k

)

, (40)

Subsystem 2: 

21 22
2 2

22 2 2 11 12 2

( 1) ( )

( 1) ( ( )) ( ) (

x k x k

x k f x k x x u k
(41)

where with1 11 12 2 21 22[ ]  and [ ]T Tx x x x x x

11
1 12

12

3.
16 1

x k
2f x k

x k
.         (42)

and
21

2 2
22

3.
16 1

x k
f

x k
            (43)

The objective is to track a reference signal using the proposed
adaptive NN controller. The reference signal used for the first 
subsystem is with a sampling interval 

of T=1sec. The reference signal for the second system
is

1 sin , 2,ndx kT

1 sin , 3ndx kT . The gains of the PD controller are 

taken as k=0.15 with 2.0 .

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

time(s)

x1
 v

s.
x1

d

x1
x1d

Figure 1:  Actual vs. desired trajectory.

Both the NNs contain 10 nodes in the hidden layer. For
weight updating, the learning rate is selected
as

11 12 21 22 0.1 . All the initial weights are 
selected randomly from [0,1] and all the activation
functions are hyperbolic tangent sigmoid functions. The 
NN weights are initialized at random but they can be 
initialized at zero.  No offline training is performed.
Figures 1 and 2 illustrate the performance of the adaptive

NN controller.   From the figure, it is very obvious that the
system tracking performance is satisfactory with the NN 
controller even though local information is used by the
subsystem controllers.  Moreover, the overall system
stability is guaranteed even in the presence of unknown 
interconnections.

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

1.5

time(s)

x2
 v

s.
 x

2d

x2
x2d

Figure 2:  Actual vs. desired trajectory.

V. CONCLUSIONS

This paper proposes an adaptive decentralized NN based
controller for a class of nonlinear systems. This adaptive NN-
based approach neither requires the information about the system
dynamics nor the interconnection dynamics. No initial learning
phase is needed.  Novel weight tuning methods are derived using 
a rigorous mathematical analysis.  The adaptive NN controller 
includes two inner loops one for compensating the unknown 
dynamics of the subsystem and the other for the unknown
interconnections and an outer PD control loop for tracking.  The 
tuning of the NNs is performed online and guarantees 
performance as shown through the Lyapunov analysis.
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