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Abstract² We investigate the problem of identification of 

genes correlated with the occurrence of diseases in a 

given population.  The classical method of parametric 

linkage analysis is combined with newer tools and results 

are achieved on a model problem.  This traditional 

method has advantages over non-parametric methods, 

but these advantages have been difficult to realize due to 

their high computational cost.  We study a class of 

Evolutionary Algorithms from the Computational 

Intelligence literature which are designed to cut such 

costs considerably for optimization problems.  We 

outline the details of this algorithm, called Particle 

Swarm Optimization, and present all the equations and 

parameter values we used to accomplish our 

optimization.  We view this study as a launching point 

for a wider investigation into the leveraging of 

computational intelligence tools in the study of complex 

biological systems. 

I. INTRODUCTION 

ARAMETRIC linkage analysis is a traditional tool 

employed by geneticists to discover the location of genes 

which contribute to diseases.  The major advantage of 

this approach is a significant increase in statistical power 

when compared to non-parametric models.  This particular 

tool has fallen out of favor in recent years due to the fact that 

in order to adequately model a complex biological system 

using the requirements of parameterization one must accept 

a highly computationally expensive algorithm.  If models 

can be formulated that allow for looser restrictions and fewer 

assumptions no matter how many parameters may be 

involved in the model, then maximum likelihood methods 

may be employed with a high degree of success if computed 

using a feasible algorithm.  Using methods that are known in 

the literature but which are just now being applied to 

complex biological problems, we show the utility of these 
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parametric models.  It is typical to use expectation 

maximization as the optimality criterion in various models 

of population genetics.  Such uses range from haplotyping 

algorithms to modeling LD to non-parametric linkage 

models. In this paper, we show that the tools of 

computational intelligence can be brought to bear on this 

difficult biological problem and help to overcome the 

observed weaknesses associated with computational 

expense. 

      Population-based optimization methods are a topic of 

much current research effort.  These algorithms seek to 

provide non-traditional approaches to standard optimization 

frameworks.  In particular we investigate Particle Swarm 

Optimization (PSO) [3] in conjunction with the parametric 

linkage analysis problem.  Introduced by Kennedy and 

Eberhardt and itself drawing upon principles observed in 

biological systems (primarily those of birds in flight) it has 

found application in a wide range of industrial domains. 

Properly situated as a specialization of the computational 

intelligence paradigm of Evolutionary Algorithms [1], we 

believe that PSO is ideally positioned to spearhead our 

investigations into applying a new series of computational 

tools to classical problems in biology and genetics.  

   Sections II and III detail our biological model, presuming 

familiarity with the basics of linkage analysis. Section IV 

gives an overview of our computational approach as well as 

explicit equations and parameters that we used, and section 

V concludes with remarks on advancing this line of research. 

II. GENETIC SIMULATION MODEL 

     In our parameterization we assume a single unknown 

disease locus with alleles &and @.  We also assume a single 

marker locus with an arbitrary (however, for simulation 

purposes, defined and fixed) number of alleles.  We assume 

a normally distributed quantitative trait that is governed by 

the status of the disease locus.  for the trait we assume three 

independent means ä&& , ä&@ , and ä&&  and a common 

variance ê2.  We further require that the disease locus be 

genetically linked to the marker locus.  Additional model 

parameters used for simulation include a minor allele 

frequency M of the disease locus and a genetic distance 

between the marker and the unobserved disease gene given 

by à such that 0 < à < .50.  When performing linkage this 

parameter à becomes the most interesting because it 

indicates the proximity of the unobserved disease locus to 

the observed marker locus. 

     Nuclear family data was generated using the above 

parameters which could be fixed beforehand but blinded to 
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the MLE/PSO deconvolution program.  Additionally, the 

number of families and the number of kids in each family 

could be easily controlled.   

     To simulate the data as we have described above, the 

basic process was to fix the components of the model (ä&& , 

ä&@ , ä&& , ê2, M , and à), the desired number of families, the 

number of kids per family to generate, and the number of 

alleles of the observed marker locus and their frequencies, 

and to use M to simulate disease genotypes for mother and 

father.  From the determined marker allele frequencies we 

can simulate marker genotypes.  This must be done in an 

ordered fashion so LQLWLDOO\�WKH�IDWKHU¶V�RU�PRWKHU¶V�JHQRW\SH�

has a given disease gene allele on the same chromosome as a 

given marker allele.  These can be generated randomly but 

must be tracked in haplotype fashion.   

     $� IDWKHU¶V� JHQRW\SH� FRQVLVWV� RI� WZR� KDSORW\SHV Þ1 F
ç1||Þ2 Fç2.  However, we are only able to witness 

genotypes and the data consists of marker allele genotypes 

as the quantitative trait.  Therefore, the unobserved 

biological state is of the form (Þ12ç12) without the 

observer knowing which Þ goes with which ç.  For 

simulation purposes, this hidden state must be recorded to 

accurately make use of the recombination frequency à and 

to generate disease-allele/marker-allele haplotypes for the 

parents of the nuclear families.  Then a single parental 

haplotype is dropped for each child.  This process is carried 

out for each parent, dropping one of their chromosomes to 

each child. Thus, the probability of no recombinations 

occurring in a family of J kids is (1 F à)2J , the probability 

of exactly one recombination is à(1 F à)2JF1, and so on. 

     Once each child has an intact or recombined haplotype 

from each parent, we then generate the quantitative 

trait/phenotype.  These traits are drawn from a distribution 

dependent on the disease genotype: && draws from 

0(ä&& ,ê2), &@ or @& draw from 0(ä&@ ,ê2), and @@ draws 

from 0(ä@@ ,ê2). Of course, when generating the input for 

the MLE/PSO solver, one would simply output the marker 

genotypes and familiar relationships. 

III. MAXIMUM LIKELIHOOD ESTIMATION METHOD 

     One can accurately solve for the best estimates of the six 

model parameters given the data by setting up a likelihood 

HTXDWLRQ�� � 7KLV� WUDQVODWHV� WR� WKH� LGHD� RI� ³ZKDW� LV� WKH�

probability that we see the data we actually observe given 

WKDW� WKH�SDUDPHWHUV�DVVXPH�D�SDUWLFXODU�VHW�RI�YDOXHV"´� �2U��

2(&=P=|ö) where ö is a particular value in 96describing 

the values of the three phenotypic means and their common 

variance, the minor allele frequency, and the genetic 

distance or recombination fraction.  To solve such a 

likelihood equation analytically would be feasible only in 

the simplest of models.  However, it is relatively 

straightforward to apply Elston-6WHZDUW¶V� DOJRULWKP� WR� UH-

write this likelihood in a manageable form that can readily 

be converted into computer code for simulation purposes.  

Matters simplify if we take a log likelihood to maximize.   

     For each nuclear family the likelihood of that family can 

EH�ZULWWHQ�DV�D�SURGXFW�RI�HDFK�LQGLYLGXDO¶V�SKHQRW\SH�JLYHQ�

their disease genotype and marker alleles over all possible 

unknown disease genotypes.  Thus,  

 

.B=P DAN :LDAJKPULA; = Í 2:E,I�LDAJKPULA;.
(&& ,&@ ,@& ,@@ )

 

 

Since the marker genotypes are equally likely, we can factor 

them out when maximizing the family likelihood.   

     With the frequency of & being M and the other 

aforementioned parameters, this sum takes the form 
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where 2 is the IDWKHU¶V phenotype.  The exact same sum 

holds for the mother.  For each child, the likelihood is 

VLPLODU� EXW� FRQGLWLRQHG� RQ� WKH� SDUHQW¶V� JHQRW\SHV� PDUNHU��

disease locus, and chance of recombination included 

(effectively a loop inside each possible parent genotype.)  

The reason we have to consider &@ and @& as separate in 

the parents is because this is where we are assuming & 

corredsponds to observed marker 1 and @ with observed 

marker 2, but the other haplotype combination is possible as 

well, so in the summation these must also be included. 

     With the mother and father each having four possible 

haplotypes (given their marker genotypes) we are nesting the 

child possibilities across all 16 possible parental haplotypes.  

Within the 16 possible parental haplotypes, 3 possible cases 

for the disease haplotypes for the children arise. 

     In the first case the matings are not informative for 

linkage, but are still helpful in estimating all parameters 

aside from à. These matings are && × &&, @@ × @@, and 

&& × @@ (or @@ × &&).  In this case the likelihood of each 

FKLOG¶V� SKHQRW\SH� JLYHQ� WKHLU� PDUNHU¶V� SKHQRW\SH� LV�

independent of which marker alleles they receive.  Their 

likelihood nested under these parental mating types is  

 

1

4

1
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2
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where äB  represents the forced mean.  In each of these 

matings the children¶V� GLVHDVH� JHQRW\SHV� ZLOO� EH &&, @@, 

&@, and @&d, respectively.  That is, their disease genotypes 

are forced.  Similarly for the other two cases for parental 

haplotypes in the case of doubly heterozygous (for the 

disease locus²&@ × &@, &@ × @&, @& × @&, and @& ×

&@) parents there are 16 possible child haplotype pairs.  

Each one will have a probability dependent on the familiar 

phenotypic likelihood given a disease genotype and the 

likelihood that each haplotype resulted from an intact 

disease-locus/marker-locus haplotypic transmission from 

parent to child or from a novel (recombined) haplotype.  

Then it is the case that each child has two haplotypes, one 
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derived from each parent.  Each of the 16 possibilities then 

for each child has a different likelihood. 

     The last disease locus mating type has one heterozygous 

parent and one homozygous parent.  There are 8 examples 

here: && × &@, && × @&,  @@ × &@, @@ × @&,  &@ × &&, 

 @& × &&, &@ × @@, and @& × @@.  This case is a hybrid of 

the first two cases with one of the disease locus haplotypes 

of the child being completely determined.  Within each of 

the 8 matings above there are 8 possible disease 

locus/marker locus haplotype pairs.  Each of these is 

accounted for in likelihood terms for each child.  Finally, the 

family likelihood is calculated by multiplying every possible 

scenario of marker and disease locus haplotypes for every 

member of the family and summing the results over all 

families.  This gives the likelihood for a given set of 

parameters ä&& , ä&@ , ä&& , ê2, M , and à, given the data we 

observe. Because all of these parameters are unknown, they 

factor into the likelihood of each family to varying degrees.  

     The final step in maximizing this likelihood equation is to 

search 96 for the combination of parameter values that 

maximizes the complete likelihood data.  One could do this 

over a grid of pre-specified increments, but this grid quickly 

expands as a power of 6 for each additional division of each 

parameter, making such search computationally infeasible 

for a high degree of discretization of the search space.  This 

also only allows specific grid values to be chosen as optimal 

parameterizations and is therefore limited in its accuracy.  

Alternatively, one could use a method such as Newton-

Raphson or expectation maximization to optimize this 

likelihood.  The modern tools of computational intelligence 

provide more options when faced with such complex 

optimizations.  In the next section, we describe the PSO 

algorithm used to successfully solve our linkage problem. 

IV. TOOLS OF COMPUTATIONAL INTELLIGENCE 

     Recent years have seen a rise in the development and 

application of computational algorithms inspired by nature.  

For optimization problems, the most relevant of these are 

Evolutionary Algorithms (EA) [1], based in spirit upon 

observed processes which drive certain biological and 

ecological systems.  The EA paradigm includes genetic 

algorithms [4] and swarm intelligence [2].  The core 

elements of EA are outlined as follows: 

 

  1.  Initialize a population of agents in the search space 

  2.  Apply evolutionary operations to the agents 

  3.  Advance the population to the next generation 

 

Depending on the problem domain, the agents can take a 

variety of representations.  In the case of genetic algorithms, 

HDFK�DJHQW�LV�FRQVLGHUHG�D�³FKURPRVRPH´�DQG�KDV�WKH�IRUP�

of a solution to the optimization problem.  For example, if 

we are optimizing a function of J variables, then the agent is 

a vector in 9J .  Governing the search are a number of 

evolutionary operations.  Typical for genetic algorithms are 

operations categorized as  cross-over and mutation. 

     In cross-over operations, two agents (called parents) are 

selected and their structure used to create an agent for the 

next generation (called the offspring.)  In uniform crossover, 

the  elements of the offspring correspond to those of the 

parents with equal probability.  In one-point crossover, a 

selection point in the agent representation is chosen; all 

information to the left of the point is copied directly from 

one parent and all information to the right is copied directly 

from the other parent.  Thus, the offspring retains entire 

sequences of data representation from the parents.  One-

point crossover can be extended to multi-point crossover, 

where any number of points are chosen and alternating 

strings from the parents are inserted wholesale into the 

offspring.  In retaining information that proved the parent 

offspring were fit in their generation (where fitness is 

measured by some objective function), cross-over operations 

ensure useful information is passed on to the offspring so 

that they, too, may be fit.  The end goal, of course, being to 

zero in on the combination of fitness genes with the highest 

utility for the given optimization problem. 

     Mutation operations, instead of copying information 

directly from the agents in the previous generation, modify 

the new agent in a way that may diverge significantly from 

the genetic information contained within the parents.  In this 

way, the new generation is assured of an increase in 

FKURPRVRPH� GLYHUVLW\�� � 7KLV� LV� WKH� ZD\� ($¶V� WDFNOH� WKH�

exploitation vs. exploration problem.  We desire an 

algorithm which will exploit its current knowledge of the 

solution space in an effort to hone in on the optimal value. 

However, it is also advantageous for the algorithm to 

adequately explore said search space before settling on a 

final target.  After all, what may seem like a global optimum 

in the first few generations may turn out to be nothing but 

the blip of a local optimum once a wider section of the 

search space is charted.  Therefore, mutation operators are 

key to a successful EA implementation.  Mutation can be as 

simple as the random shuffling of a given element of the 

offspring or as complicated as adding some measure of noise 

(Gaussian or otherwise) or some other nonlinear function to 

randomly selected parameters.  There is a vast literature on 

the design and application of mutation operators [1].  For our 

purposes, this overview will suffice. 

     Genetic programming algorithms take the form of the 

general EA but instead of each agent representing the 

solution to an optimization problem, each agent is instead an 

encoding of a complete computer program, whose execution 

is evaluated by a fitness function.  In this way entire 

programs can be evolved which will run and calculate the 

solution for a wide range of problems.   

    Other population-based algorithms are inspired by the 

emergent coordination seen among certain animals in nature.  

Ant colony optimization calculates the next generation of 

agents based on update equations which model the way ants 

lay a trail of pheromones to seek out stores of food and other 

desirable locations.  Particle swarm optimization (PSO) [2] 

emulates the patterns of birds in flight, maintaining their 
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positions based on signals both social and individual in 

origin.   

     In PSO, the evolution operations take the form of two 

update equations²one for the influence of the other 

members of the swarm and one which reflects the experience 

of the individual agent itself.  This combination of individual 

drive and social coordination is the basis for what turns out 

to be a quite powerful optimization algorithm. 

     The individual agents, or particles, of the PSO algorithm 

take the form of vectors in 9J .  In our case these are six-

dimensional vectors.  Their initial positions TEF  are 

distributed randomly throughout a given subset of 9J .  For 

our problem, the admissible ranges for the parameters are as 

follows:  the means ä&& , ä&@ , and ä&& , are locked between 

the largest and smallest value, ê2 is bounded below by 

. 000001 and above by the population standard deviation,  

the parameter M is in [.000001, .5] as a value of 0 indicates 

we are no longer in a biallele system and any value greater 

than . 5 is isomorphic to renaming our disease alleles from 

#$ to $#, and the final parameter, à, is allowed to range 

over [0, .5], allowing our system to model a continuum of 

perfectly unlinked to perfectly linked genes. 

     In addition to a vector in 9J  which indicates the 

particle¶s position in the solution space, each particle E also 

has a velocity RE  and personal best L>AOPE .  The velocity 

indicates the change in position this particle will undergo 

upon entering the next generation and the personal best 

stores the value of the particOH¶V�previous positions with the 

highest fitness level.  A parameter maintained by the entire 

swarm called global best represents the maximum of the 

pbests.  The social element of the PSO update, then, pulls 

the swarm towards gbest while the individual update zeroes 

in on pbest.  The equations are given as follows: 

 

EJ@EF :P + 1; = EJ@EF :P; + ?1N1(L>AOPE(P) F TEF :P;) 

 

OK?EF :P + 1; = OK?EF :P; + ?2N2(C>AOPE(P) F TEF :P;) 

 

REF :P + 1; = EJ@EF :P + 1; + OK?EF :P + 1; 
 

where ?1 and ?2are the individual and social constants and 

N1and N2are draws from a uniform random variable on [0,1].  
Together, the use of current particle information and a 

random effect correspond to the crossover and mutation 

RSHUDWRUV�RI�WKH�JHQHUDO�($¶V���2QFH�YHORFLW\�LQIRUPDWLRQ�LV�

updated, the new positions are calculated by  

 

TEF :P + 1; = TEF :P; + REF (P + 1) 

 

In our implementation, we took parameter values of 

?1 = ?2 = .75.  We also constrain velocities to be within 

85% of the total range of the given dimension.  We use a 

ring topology where gbest is calculated based on the closest 

6 particles, and set the swarm size to 30 particles. 

    An entire industry has sprung up to modify, flavor, and 

advance PSO algorithms in every imaginable direction.  For 

further details and current research the interested reader is 

directed to [3] and [5].  Our results were achieved using a 

reasonably vanilla version of PSO in only a few minutes of 

computation time running in SAS on a desktop PC. 

V. CONCLUSION 

     In this study we consider parametric linkage analysis in 

the case of a likelihood model with six parameters.  To 

circumvent the problems historically associated with solving 

such models, we utilize the tools of computational 

intelligence to perform our optimization successfully. 

     Many biological systems are vastly more complex than 

the one governed by our six-parameter model.  The fact that 

PSO scales well with dimension is important for these 

problems. Therefore, if the complexity of the likelihood 

function of a model can be effectively reduced through the 

introduction of more parameters (consistent with parametric 

linkage analysis) then these likelihoods, even though they 

will be of higher complexity, may be successfully optimized 

using tools such as those demonstrated herein. 

     The further development of biologically-inspired 

computational algorithms (in the EA vein) will also provide 

a boon to researchers studying actual biological systems. 

The symmetry here is impossible to miss.  It is even the case 

that these algorithms themselves provide a framework in 

which to study the relevant  biological system itself.  Often it 

happens in engineering that a new application motivates a 

change to a given solution technique, only to discover that 

this change has significant utility beyond the original 

problem domain.  The study of biological systems using 

nature-inspired algorithms is an area ripe for taking 

advantage of such positive externalities. 

    All that remains is for biological researchers to generate 

the complex models with many parameters whose likelihood 

can be coded using PSO or other evolutionary algorithmic 

approaches.  One could even use a genetic algorithm to first 

come up with such a complex model with many parameters 

and then employ PSO to accurately estimate the parameters 

so that the likelihood of the observed data is then 

maximized.  With data collection ongoing in the biological 

sciences we only need to be sure that we have many more 

data points than parameters. This is something that is 

becoming easier and easier to achieve in short generation 

time animals and plants, and this approach holds the 

potential to address complex and important biological issues. 
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