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Abstract—Wide-area coordinating control is becoming an 
important issue and a challenging problem in the power industry. 
This paper proposes a novel optimal wide-area monitor and 
wide-area coordinating neurocontroller (WACNC), based on 
wide-area measurements, for a power system with power 
system stabilizers, a large wind farm, and multiple flexible ac 
transmission system (FACTS) devices.  The wide-area monitor is 
a radial basis function neural network (RBFNN) that identifies 
the input-output dynamics of the nonlinear power system. Its 
parameters are optimized through a particle swarm 
optimization (PSO) based method. The WACNC is designed by 
using the dual heuristic programming (DHP) method and 
RBFNNs. It operates at a global level to coordinate the actions of 
local power system controllers. Each local controller communicates 
with the WACNC, receives remote control signals from the 
WACNC to enhance its dynamic performance, and therefore 
helps improve system-wide dynamic and transient performance.  

I. INTRODUCTION 
OWER systems are large-scale, nonlinear, non-stationary, 
multivariable, complex systems distributed over large 

geographic areas. System-wide disturbances in power systems 
are a challenging problem for the utility industry. On the 
other hand, because of new constraints placed by economical 
and environmental factors, the trend in power system 
planning and operation is toward maximum utilization of 
existing electricity infrastructure, with tight operating margins, 
and increased penetration of renewable energy sources such 
as wind power. Under these conditions, power systems become 
more complex to operate and to control, and, thus, more 
vulnerable to a disturbance [1]. When a major disturbance 
occurs, protection and control actions are required to stop 
the power system degradation, restore the system to a 
normal state, and minimize the impact of the disturbance. 

The standard power system controllers, such as the generator 
exciter and automatic voltage regulator (AVR) [2], speed 
governor [2], PSS [2], and power electronics based FACTS 
devices [3], are local non-coordinated linear controllers. 
Each of them controls some local quantity to achieve a local 
optimal performance, but has no information on the entire 
system performance. Further, the possible interactions between 
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these local controllers might lead to adverse effects causing 
inappropriate control effort by different controllers. As a 
result, when severe disturbances or contingencies occur, these 
local controllers are not always able to guarantee stability [4]. 

During the past two decades, much effort has been made 
by power engineers and control researchers to improve 
power system stability. With the increased availability of 
advanced computer, communication and measurement 
technologies (e.g., synchronized phasor measurement units 
(PMU) based on a global positioning satellite (GPS) system) 
[1], the development of wide-area coordinating control 
(WACC) is becoming feasible. A WACC based on wide-area 
measurements coordinates the actions of local controllers to 
achieve system-wide dynamic optimization and stability. 
Each local controller communicates with the WACC, reports 
to and receives coordination/control signals from the WACC, 
to help attain system-wide performance goals.  

Designing the WACC needs knowledge of the entire power 
system dynamics to be available to the designers. Due to the 
large-scale, nonlinear, stochastic, and complex nature of 
power systems, the traditional mathematical tools and control 
techniques are not sufficient to design such a WACC. This 
problem can be overcome by using neural networks (NNs) 
and adaptive-critic-design (ACD) [5], [6] based intelligent 
optimal nonlinear control techniques. However, previous 
works on NNs and ACDs based controllers focused on the 
local control of individual power system devices [7]-[9]; no 
work has been reported on WACC for different types of 
devices in a power system with renewable energy generation. 

This paper proposes a novel optimal WACNC for a power 
system with PSSs, a large wind farm, and FACTS devices. 
First, an optimal wide-area monitor is designed by using a 
RBFNN [9] and PSO [10], to identify the input-output 
dynamics of the nonlinear plant. Based on this optimal wide-
area monitor, the DHP method [5], [6] and RBFNNs are 
then used to design the WACNC. It uses wide-area 
measurements and operates at a global level to coordinate the 
actions of the local synchronous generator (with PSS), wind 
farm, and FACTS controllers. Each local controller 
communicates with the WACNC, and receives remote 
control signals from the WACNC as external input(s), to help 
improve system-wide dynamic and transient performance. 

II. POWER SYSTEM MODEL 
The 4-machine 12-bus power system in [11] was proposed 

as a platform for studying FACTS device applications and 
integration of wind generation, and was extended in [12] to 
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include a large wind farm, a static synchronous compensator 
(STATCOM) [3] and a static synchronous series compensator 
(SSSC) [3], as shown in Fig. 1. The system covers three 
geographical areas. Area 1 is predominantly a generation 
area with most of its generation coming from hydro power 
(G1 and G2). Area 2, located between the main generation 
area (Area 1) and the main load center (Area 3), has a large 
wind farm (G4), but it is insufficient to meet local demand. 
Area 3, situated about 500 km from Area 1, is a load center 
with some thermal generation (G3). Further, since the 
generation units in Areas 2 and 3 have limited energy 
available, the system demand must often be satisfied through 
transmission. The transmission system consists of 230 kV 
transmission lines except for one 345 kV link (line 7-8) 
between Areas 1 and 3. 

The STATCOM is a shunt connected FACTS device. It is 
placed at bus 4 in the load area (Area 3), for steady state and 
transient voltage support. This relieves the under-voltage 
problems in Area 3 [11]. The SSSC is a series FACTS 
device. It is placed at the bus 7 end of line 7-8 to regulate its 
power flow. This arrangement can relieve the possible 
transmission congestion on line 1-6 caused by some 
contingencies in Area 3 [11], [12]. Both synchronous 
generators G2 and G3 are equipped with PSSs to improve 
damping of the local generator rotor oscillation modes. The 
synchronous generator (with PSS), wind farm, SSSC, and 
STATCOM controllers are each designed at the local level 
using standard linear control techniques and local signals, 
but are coordinated by the WACNC at a global level to 
achieve the system-wide performance goals. 
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Fig. 1. Single-line diagram of the 4-machine 12-bus power system with a 
large wind farm, a STATCOM and an SSSC coordinated by a WACNC. 

 
The system is simulated in the PSCAD/EMTDC 

environment. G1 is modeled as a three-phase infinite source, 
while the other two synchronous generators (G2 and G3) are 
modeled in detail, with the turbine governor and 
AVR/exciter (with PSS) dynamics taken into account. The 
function of each PSS is to improve the damping of its 
generator rotor oscillations by controlling its generator’s 
excitation using auxiliary stabilizing signal(s), e.g., the 
deviation of generator rotor speed. A block diagram of a PSS 
is provided in [2]. The STATCOM and the SSSC are each 
modeled as a GTO PWM converter with a dc-link capacitor 
[12]. The detailed models and control schemes of the SSSC 

and STATCOM are given in [12].  
The wind farm consists of over one hundred individual 

wind turbines. Each wind turbine is equipped with a doubly 
fed induction generator (DFIG) [12]. In this paper, the wind 
farm is represented by an aggregated model, namely, one 
equivalent DFIG driven by a single equivalent wind turbine 
[12], as shown in Fig. 2. Here the block “Grid” denotes the 
power network in Fig. 1 to which the wind farm is connected. 
The wound-rotor induction machine is fed from both stator 
and rotor sides. The stator is directly connected to the grid, 
while the rotor is connected to the grid through a variable 
frequency converter (VFC). The VFC consists of two IGBT 
PWM converters (the rotor-side converter RSC and the grid-
side converter GSC) connected back-to-back by a dc-link 
capacitor. The crow-bar is used to protect the RSC from 
over-current in the rotor circuit during grid faults. Control of 
the DFIG is achieved by control of the RSC and GSC. The 
detailed control schemes of the RSC and the GSC are 
provided in [12]. 
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Fig. 2. Aggregated wind farm model: one equivalent DFIG driven by a 
single equivalent wind turbine. 

III. DESIGN OF THE WACNC 
Figure 3 shows the schematic diagram of the proposed 

WACNC which coordinates different local controllers of the 
synchronous generators, wind farm, STATCOM, and SSSC. 
The WACNC operates at a global level, e.g., the control 
center of a power system. It receives remote signals from 
different devices over wide areas in the power system, such 
as signals from G2 (speed deviation ∆ω2), G3 (speed 
deviation ∆ω3), wind farm G4 (output active power 
deviation ∆Pg4 and voltage deviation ∆V6 at bus 6), SSSC 
(active power deviation ∆P78 of line 7-8 to which the SSSC 
is connected), and STATCOM (active power deviation ∆P54 
of line 5-4 that is connected to the STATCOM bus 4). These 
remote signals contain the important dynamic/transient 
information of these devices and the power network. The use 
of ∆V6 is because of its direct coupling with the wind farm 
reactive power. The remote signals, ∆ω2, ∆ω3, ∆V6, ∆Pg4, 
∆P78, ∆P54, are fed into the WACNC to generate a set of 
global optimal control signals, ∆VT2, ∆VT3, ∆Qs, ∆Qg, ∆V4, 
∆XC. They are then used as the auxiliary input signals to 
coordinate the actions of local controllers. When a 
disturbance occurs, the coordination by the WACNC ensures 
that the power system returns back to the desired operating 
point as fast as possible after the disturbance with a 
minimum control effort. At local level, each local device is 
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controlled by its local controllers. These local controllers use 
both local signals and auxiliary remote control signals from 
the WACNC to achieve local as well as global dynamic and 
transient performance improvement of the power system.  

For instance, for the reactive power control of the wind 
farm RSC, the command Qs

* is the summation of two terms, 
Qs0 and ∆Qs. The fixed set-point value Qs0 is determined by 
the local reactive power demand while taking into account 
the limit of the RSC rating. The supplementary command 
∆Qs is a remote signal generated by the WACNC, which 
enhances the dynamic performance of the local controller. 
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Fig. 3. Schematic diagram of the synchronous generator, wind farm, 
STATCOM, and SSSC local controllers coordinated by the WACNC. 
 

The transfer functions between (∆VT2, ∆VT3, ∆Qs, ∆Qg, 
∆V4, ∆XC) and (∆ω2, ∆ω3, ∆V6, ∆Pg4, ∆P78, ∆P54) are 
complicated, nonlinear and depend on the network topology. 
To avoid having to derive such analytical functions, an ACD 
approach – DHP, and RBFNNs are used to design the 
WACNC. By employing the GPS synchronized PMUs, it is 
possible to deliver remote synchronized real-time signals to 
the control center at a speed of as high as 60 Hz sampling 
rate [1]. In this paper, the sampling rate for the WACNC 
implementation is chosen as 50 Hz in order to meet the PMU 
requirements for delivering the synchronized signals. Design 
of the WACNC should take into account the dynamics of 
local controllers. Therefore, the plant to be controlled 
includes the power network, the local devices and their 
controllers, as shown in the dash-dot-line block in Fig. 3. 

A. Radial Basis Function Neural Network 
The neural networks used in this paper are three-layer 

RBFNNs with a Gaussian density function as the activation 
function in the hidden layer. The overall input-output 
mapping of the RBFNN, mn RYRXf ∈→∈:ˆ is 

∑
=

⎟
⎠
⎞⎜

⎝
⎛ −−+=

h

j
jjjiii Cxvby

1

22
/expˆ β      (1) 

where x is the input vector; Cj∈Rn and βj∈R are the center 
and width of  the jth RBF units in the hidden layer, 
respectively; h is the number of RBF units; bi and vji are the 
bias term and the weight between hidden and output layers, 
respectively; and ŷi is the ith output. 

B. Adaptive Critic Designs and DHP 
Adaptive Critic Designs, proposed by Werbos [5], is a 

neural network based optimization and control technique 
which solves the classical nonlinear optimal control 
problems by combining concepts of reinforcement learning 
and approximate dynamic programming. 

The DHP, belonging to the family of ACDs, requires three 
NNs for its implementation, one for the model (called wide-
area monitor in this paper), one for the critic, and one for the 
action network [5]-[8]. The wide-area monitor is used to 
identify the input-output dynamics of the plant. The critic 
network estimates the derivatives of the cost-to-go function 
J with respect to the states of the plant Y, and J is given by 

∑
∞

=
+=

0
)()(

q

q qkUkJ γ                (2) 

where U(·) is the utility function or one stage cost (user-
defined function), and γ is a discount factor for finite horizon 
problems (0<γ<1). The ACD method determines optimal 
control laws for a system by successively adapting the critic 
and action networks. The adaptation process starts with a non-
optimal control by the action network; the critic network then 
guides the action network towards the optimal solution at 
each successive adaptation. During the adaptations, neither of 
the networks needs any information of the desired control 
trajectory, only the desired cost needs to be known. 

C. Design of the Optimal Wide-Area Monitor 
The wide-area monitor is a three-layer RBFNN. The plant 

inputs A = [∆VT2, ∆VT3, ∆Qs, ∆Qg, ∆V4, ∆XC] and outputs Y 
= [∆ω2, ∆ω3, ∆V6, ∆Pg4, ∆P78, ∆P54] at time instants k, k-1 
and k-2 are fed into the wide-area monitor to estimate the 
plant outputs ]ˆ,ˆ,ˆ,ˆ,ˆ,ˆ[ˆ

54784632 PPPVY g ∆∆∆∆∆∆= ωω  at time 
k+1, as shown in Fig. 4. The wide-area monitor is an essential 
part for designing the WACNC because it provides a 
dynamic plant model for training the critic and action networks. 
 

 
Fig. 4.  Structure of the wide-area monitor: TDL denotes time delay lock. 
 

The wide-area monitor is firstly pre-trained offline using a 
suitably selected training data set from two sets of training: 
forced training and natural training [7]-[9], over a wide 
system operating range. 

The performance of RBFNNs relies on a set of parameters, 
including the number of RBF units, the RBF centers, widths, 
and the output weights. Given the number of RBF units, the 
locations of RBF centers are determined by a k-means 
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clustering algorithm [13] using the data from the training 
data set. After locating the RBF centers, a good method to 
determine the RBF widths is the p-nearest neighbors heuristic 
[14], in which the width βi of the ith RBF unit is given by: 

2/1

1

21
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=

p

j
jii CC

p
β        (3) 

where Cj are the p-nearest neighbors to the center Ci. In this 
paper, p is chosen the same as the number of RBF units h in 
the hidden layer. After determining the RBF centers and 
widths, the output weights of the RBFNN are then calculated 
by singular value decomposition (SVD) method [16]. 

However, the widths given by (3) are still non-optimal. In 
[15], the authors have shown that the RBF widths can be 
optimized to achieve an optimal RBFNN with fewer RBF 
units and better performance. This section presents a method 
to design an optimal wide-area monitor by using PSO. 

Suppose an initial width βi = βi,ini of the ith RBF unit has 
been calculated using (3), then the optimal width βi,opt can be 
defined by a set of equations, given by 

βi,opt = si,opt · βi,ini  i = 1, 2, ···, h      (4) 
where si,opt∈R is the optimal scaling factor for βi. Now the 
problem becomes using PSO to find out the set of optimal 
scaling factors sopt = {si,opt} in the problem space. This is 
achieved by optimizing the following mean-square error 
(MSE) in dB over the training data set: 

⎟⎟
⎠

⎞
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⎝

⎛
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=

TN

k
TNkYkYMSE

1

2 /||)(ˆ)(||log10     (5) 

where NT is the number of data samples in the training set, 
Y(k) is the kth output data sample in the training set; Ŷ(k) is 
the kth output sample from the wide-area monitor. The MSE 
in (5) is employed as the performance measure function for 
PSO implementation. 
 The MSEs over the selected training data set are plotted in 
Fig. 5 to show the performance of the wide-area monitor with 
the optimized widths but different numbers of RBF units. The 
minimum MSE is around -64 dB that can be achieved by using 
35 or more RBF units, and any further increase over 35 does 
not improve the MSE significantly. Therefore, the optimal 
number of RBF units is chosen as 35 for the wide-area monitor. 

Figure 6 shows the MSE as a function of the number of 
iterations in PSO during the RBF width optimization 
procedure for the wide-area monitor with 35 RBF units. The 
MSE at iteration no. 0, which denotes the RBFNN with 
initial widths form (3), is 280 dB. After 10 iterations, the 
MSE decreases to about -63 dB. These results indicate that 
the performance of the wide-area monitor is significantly 
improved by the proposed method. Further optimization 
using PSO with more than 10 iterations only slightly 
improves the MSE. Therefore, the optimal RBF widths can 
be found by PSO within only 10 iterations. 

The final optimal wide-area monitor therefore has 35 RBF 
units, the RBF centers determined by k-means clustering 
algorithm, the optimized RBF widths found by PSO, and the 
output weights calculated by SVD method. It is now used for 
further implementation of the DHP. 
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Fig. 5.  Performance of the wide-area monitor with the optimized widths. 
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D. Design of the Critic Network 
The critic network is a three-layer RBFNN. The inputs to 

the critic network are the estimated plant outputs, Ŷ (from 
the wide-area monitor) and their two time-delayed values. 
The outputs of the critic network are the derivative, λ = 
∂J/∂Ŷ, of the function J in (2) with respect to the estimated 
plant outputs Ŷ, as shown in Fig. 7. The critic network learns 
to minimize the following error measure over time [6]: 
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Fig. 7.  Adaptation of the critic network in DHP 
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The utility function is defined as 
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where Y is the vector of the plant outputs, and wi is a 
weighting factor for Yi. Generally, two critic networks are 
required in DHP to estimate ∂J/∂Ŷ arising from the present 
state Ŷ(k) and the future state Ŷ(k+1). The adaptation of the 
critic network in DHP takes into account all relevant 
pathways of backpropagation as shown in Fig. 7. The output 
weights of the critic network are then updated by 

)()(ˆ
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where ηC is a positive learning gain. 
 

E. Design of the Action Network 
As shown in Fig. 8, the inputs to the action network are 

the plant outputs, Y, at time k-1, k-2 and k-3. The outputs of 
the action network are the plant inputs, A, at time k. The 
adaptation of the action network, is achieved by propagating 
λ(k+1) back through the model to the action network [6]. 
The objective of such adaptation is to find out the optimal 
control trajectory A* in order to minimize the cost-to-go 
function J over time, given by 

)]1()([minarg)]([minarg)(* ++== kJkUkJkA
uu
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The output weights of the action network are then updated by 
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The detailed training procedure of the critic and action 
networks can be found in [6]-[8]. 
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Fig. 8.  Adaptation of the action network in DHP 

IV. SIMULATION RESULTS 
Simulation studies are carried out to demonstrate the 

effectiveness of the WACNC during transient disturbances. 
The power system in Fig. 1 is operated at a normal operating 
condition (OP-I) as specified in [12], where the active power 
generated by the wind farm is Pg4 = 300 MW. Thereafter at t 
= 51 s, a three-phase short circuit is applied to the bus 7 end 
of line 7-8, which is a critical transmission line connecting 
Area 1 and Area 3. The fault is cleared after 150 ms. 

A. Online Monitoring Results 
The proposed optimal wide-area monitor with the fixed 

parameters obtained from the offline training is applied to 
track the plant output dynamics online during this transient 
event. Figure 9 compares the estimated values of the plant 
outputs from the wide-area monitor, 2ω̂∆ , 3ω̂∆ , 4

ˆ
gP∆ , with 

the actual plant outputs, ∆ω2, ∆ω3, ∆Pg4. These results show 
that the wide-area monitor tracks the dynamics of the plant 
outputs online with good precision, without the need of any 
online adaptation at this operating point. This provides a 
good plant model for the adaptation of the critic and action 
networks in the DHP. 
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Fig. 9.  Online monitoring results by the optimal wide-area monitor. 

B. Power System Dynamic Performance Improvement 
Using the WACNC 
The dynamic performance of the power system, reinforced 

with the WACNC, is compared with the case without the 
WACNC. Figure 10 shows the responses of ∆ω2, ∆ω3, and 
∆Pg4 with and without the WACNC. The WACNC improves 
rotor oscillation damping of synchronous generators (G1 and 
G2) and power oscillation damping of the wind farm (G4). It 
is well known that synchronous generators are key 
components for power system stability. In addition, with the 
increased penetration of wind generation, the transient 
behavior of wind farms during grid disturbances begins to 
influence the stability of the associated power system. 
Figure 10 shows important results that the WACNC has the 
capability to improve the transient performance of all 
generation units in a power system, and therefore the overall 
power system stability. These results are expected because 
the WACNC is designed at a global level to optimize the 
entire power system performance. This system-wide 
damping performance improvement, however, could not be 
achieved by any single local controller.  
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Fig. 10. Comparison of power system dynamic performance with and 
without the WACNC. 
 
 The same 150 ms three-phase short circuit test as for OP-I 
is applied at another operating condition (OP-II), where the 
active power generated by the wind farm becomes Pg4 = 350 
MW. Applying Prony analysis on the simulation waveforms, 
the eigenvalues, frequencies, and damping ratios of the 
dominant oscillation modes in ω2 and ω3 can be obtained, as 
shown in Table I. At both operating conditions, the WACNC 
improves the rotor oscillation damping of both synchronous 
generators. This indicates that the WACNC increases the 
stability margin of the entire power system, and therefore 
more active power can be transmitted to the loads while 
maintaining the system stable during transient disturbances. 
 

TABLE I 
DOMINANT MODES OF OSCILLATIONS IN ω2 AND ω3 

  Signal Eigenvalues 
λ = σ ± jω 

Frequency 
(Hz) 

Damping 
ratio (%) 

ω2 -0.539 ± j5.174 0.83 10.36 Without 
WACNC ω3 -0.874 ± j7.320 1.17 11.85 

ω2 -0.893 ± j5.344 0.86 16.48 
OP-I 

With 
WACNC ω3 -1.141 ± j7.740 1.24 14.59 

ω2 -0.732 ± j5.232 0.84 13.86 Without 
WACNC ω3 -0.683 ± j5.890 0.94 11.52 

ω2 -1.054 ± j5.443 0.88 19.01 
OP-II 

With 
WACNC ω3 -0.806 ± j6.435 1.03 12.44 

V. CONCLUSION 
Wide-area coordinating control is becoming an important 

issue in power industry. This paper proposes a novel wide-
area measurements based optimal wide-area monitor and 
WACNC, for a power system with PSSs, a large wind farm, 

and FACTS devices. The wide-area monitor, which identifies 
the input-output dynamics of the nonlinear power system, is 
a PSO-optimized RBFNN. Based on the optimal wide-area 
monitor, the DHP method and RBFNNs are employed to 
design the WACNC. It operates at a global level to coordinate 
the actions of local power system controllers. Each local 
controller receives remote control signals from the WACNC to 
help improve system-wide dynamic and transient performance. 

Simulation studies are carried out to evaluate the dynamic 
performance of the WACNC during transient events. Results 
show that the WACNC improves damping of all the generating 
units in the power system and therefore the entire power system 
transient performance. To the authors’ knowledge, this is the 
first paper on neural network based wide-area coordinating 
control for different types of devices in a power system 
which includes considering renewable energy generation. 
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