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Comparison of Heuristic Dynamic Programming and Dual Heuristic
Programming Adaptive Critics for Neurocontrol of a Turbogenerator

Ganesh K. Venayagamoorthy, Ronald G. Harley, and Donald C. Wunsch

Abstract—This paper presents the design of an optimal neuro- Governor_[% Infinite
controller that replaces the conventional automatic voltage regu- P Ao Bus
lator (AVR) and the turbine governor for a turbogenerator con- 3

nected to the power grid. The neurocontroller design uses a novel S! 2§ % +
AP,

{ Z=R+iX I—E

technique based on the adaptive critic designs (ACDs), specifically  ap,, Vo
on heuristic dynamic programming (HDP) and dual heuristic pro-
gramming (DHP). Results show that both neurocontrollers are ro-
bust, but that DHP outperforms HDP or conventional controllers,

especially when the system conditions and configuration change.

P

rof el

This paper also shows how to design optimal neurocontrollers for C HDP/DHP —
nonlinear systems, such as turbogenerators, without having to do AP © Neuro- L,
continually online training of the neural networks, thus avoiding . ODEL av, (| Controller AV(t)
risks of instability. Av,£t+1)<— ow> E o

Index Terms—Adaptive critics, artificial neural networks Ao(t+1)4—|_Network |«

(ANNSs), neurocontrol, optimal control, turbogenerator control.

Fig. 1. The single machine infinite bus configuration with the conventional
AVR and governor controllers, and neurocontroller. The micro-alternator, AVR

|. INTRODUCTION and exciter, and governor and microturbine parameters are given in Tables |-,
respectively.

URBOGENERATORS are highly nonlinear, fast acting,
multivariable systems with dynamic characteristics that

vary as operating conditions change. As a result, the generdggtonal ability of nonlinear maps, fault tolerance, and the ca-
voltage and delivered power have to be coordinated to sati§fPility to generate quick, robust, suboptimal solutions from
the requirements of the rest of the power system. Effective cdifural networks, make the latter an ideal candidate for carrying
trol of turbogenerators is important, since these machines &t such a sophisticated identification or control task. Problems
responsible for ensuring the stability and security of the electiit nonlinear identification and control can be seen as the deter-
power grid. Conventional automatic voltage regulator (AVRination of the interactions between the inputs and outputs of
and turbine governors (callecbnventional controllersn the multivariable systems.
rest of this paper) are designed (using linearized mathematicaln the specific case of a turbogenerator, a multilayer feedfor-
models) to control, the turbogenerator optimally around one ogard neural network using deviation signals as inputs jaam-
erating point; at any other operating point, the generator’s péify or estimate the complex and nonlinear dynamics of a single
formance is degraded [1]. machine infinite bus (SMIB) (see Fig. 1) configuration with

In recent years, there has been considerable research indiicient accuracy [4], and pass this information to a second
use of artificial neural networks (ANNS) for identification ancheural network which acts as a multiple-input—multiple-output
control of nonlinear systems [2], [3]. An increasing deman(MIMO) controller. The combination of the identifier and the
in the performance specifications and the complexity of dyontroller neural networks is callech@urocontrollerin the rest
namic systems mandate the use of sophisticated informatifithe paper. Unlike the conventional controllers, the neurocon-
processing and control in almost all branches of engineeritrgller therefore does not require any mathematical model, linear
systems. The promise of fast computation, versatile represennonlinear, for the SMIB system.

A number of publications have reported on the design of such

) . ) neurocontrollers for turbogenerators, and presented both simu-
Manuscript received November 29, 2000; revised October 26, 2001. Th|st. d . | | h h h h h
work was supported by the National Science Foundation, USA, National d@-'on and experimental results to show that they have the po-

search Foundation, South Africa, and the University of Natal, Durban, Sodigntial to replace conventional controllers [5]-[7]. However, all

Africa. o , these neurocontrollers require continual online training of their
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the system. Furthermore, to update weights of the ANN idearitic method determines optimal control laws for a system
tifier online, gradient descent algorithms are commonly uselay successively adapting two ANNs, namely, an action neural
However, it is well known in adaptive control that a brute forcaetwork (which dispenses the control signals) and a critic neural
correction of controller parameters, based on the gradientsnaftwork (which “learns” the desired performance index for some
output errors, can result in instability even for some classesfahction associated with the performance index). These two
linear systems [8], [9]. Hence, to avoid the possibility of inneural networks approximate the Hamilton—Jacobi—Bellman
stability during online adaptation, some researchers propossfliation associated with optimal control theory. The adaptation
using ANNs such as radial basis functions, where variable nptocess starts with a nonoptimal, arbitrarily chosen, control by
work parameters occur linearly in the network outputs, such thtéde action network; the critic network then guides the action
astable updating rule can be obtained [10]. To date, the develaptwork toward the optimal solution at each successive adap-
ment of nonlinear control using ANNSs is similar to that of lineatation. During the adaptations, neither of the networks need
adaptive control. Unfortunately, unlike linear adaptive controhny “information” of an optimal trajectory, only the desired
where a general controller structure to stabilize a system cast needs to be known. Furthermore, this method determines
be obtained with only the knowledge of relative degrees, stabptimal control policy for the entire range of initial conditions
lizing controllers for nonlinear systems are difficult to desigrand needs no external training, unlike other neurocontrollers.
As a result, most research on ANN based controllers has fo-Dynamic programming prescribes a search which tracks
cused on nonlinear systems, whose stabilizing controllers @ygckward from the final step, retaining in memory all sub-
readily available once some unknown nonlinear parts are idejptimal paths from any given point to the finish, until the
tified, such as starting point is reached. The result of this is that the procedure
n et is too computationally expensive for most real problems. In
eh=fE )t b (1) supervised learning, an ANN training algorithm utilizes a
with full state feedback, whergis to be estimated by an ANN. desired output and, having compared it to the actual output,
Even though some methods have been Suggested for usgﬁgerates an error term to allow the network to learn. The
ANNS in the context of a general controller structure [11], [12Packpropagation algorithm is typically used to obtain the
the stability implication of updating a network online is unnecessary derivatives of the error term with respect to the
known. Furthermore, since an ANN controller can have maii§aining parameters and/or the inputs of the network. However,
weights, it is questionable whether the network can convergackpropagation can be linked to reinforcement learning via
fast enough to achieve good performance. Besides, in C|OS&E critic network which has certain desirable attributes.
loop control systems with relatively short time constants, the The technique of using a critic, removes the learning process
computational time required by frequent online training coul@ne step from the control network (traditionally called the
become the factor that limits the maximum bandwidth of th&ction network” or “actor” in ACD literature), so the desired
controller. trajectory is not necessary. The critic network learns to approx-
This paper extends earlier work and presents a new tedfate the cost-to-go or strategic utility function (the function
nique for designing a turbogenerator neurocontroller, which of Bellman’s equation in dynamic programming) and uses
overcomes the stability issues [13], the problem of residu&le output of the action network as one of its inputs, directly or
error in the system identification [14], input uncertainties [15]ndirectly. Different types of critics have been proposed. For ex-
and the computational load of online training. In this neMmple, Watkins [17] developed a system known as Q-learning,
technique the neurocontroller uses a so-called adaptive crigiplicitly based on dynamic programming. Werbos, on the
based on reinforcement learning and dynamic programmir@§her hand, developed a family of systems for approximating
The reasons behind these good and important features @g8amic programming [16]; his approach subsumes other
discussed in Section IV. The neurocontroller is trained in #esigns for continuous domains. For example, Q-learning
offline mode prior to commissioning. Two different types oPecomes a special case of action-dependent heuristic dynamic
adaptive critics are discussed, heuristic dynamic programmipgpgramming (ADHDP), which is a critic approximating tife
(HDP) and dual heuristic programming (DHP). Results afgnction (see Section II-B below), in Werbos’ family of adap-

presented, showing that DHP produces the best results. tive critics. A critic which approximates only the derivatives
of the function.J with respect to its states, called the DHP,

II. ADAPTIVE CRITIC DESIGNS and a critic approximating botl and its derivatives, called
the globalized dual heuristic programming (GDHP), complete
this ACD family. These systems do not require exclusively

Adaptive critic designs (ACDs) are neural-network designseural network implementations, since any differentiable
capable of optimization over time under conditions of noise astructure is suitable as a building block. The interrelationships
uncertainty. A family of ACDs was proposed by Werbos [16] asetween members of the ACD family have been generalized
a new optimization technique combining concepts of reinforcand explained in detail by Prokhorov [18], [19], whose results
ment learning and approximate dynamic programming. Forhave been modified for the study in this paper as shown in
given series of control actions that must be taken sequentiaections II-B, 1I-C and IV. This paper compares HDP and DHP
and not knowing the effect of these actions until the end of tlypes of critics for neurocontroller implementations, against
sequence, it is impossible to design an optimal controller usittge results obtained using conventional PID controllers [20] for
the traditional supervised learning neural network. The adapti&gurbogenerator plant.

A. Background
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fommomomm oo moommm oo oo Network [+

AY(t-1), AY(1-2), AY(t-3 . . . . . .
[AY(-D), AY(-2), AY(EI)] Fig. 4. Model neural-network structure with 12 inputs, 14 sigmoidal hidden

. . L . layer neurons, and two linear output neurons.
Fig. 2. Action adaptation in HDRA(t) is the control vector. The constant

8J/oJ = 1, is the error signal for training the action network in order to

minimize J. The backpropagation path is shown by dashed line. networks. The backpropagation algorithm [21] is used for up-
dating¥,, in the ANN model based on the erreg; (¢) atE in
V,(1)+AV, (1) [Aw(t), AV(D)] Fig. 3 given in (2)
Turbogenerator .
Pre) +APrst (0 en(t) = {[aVi(t) - AVi)] s [aw(t) - 201}, @
AV (D) DL L . L .
— )  E_ The training is carried out to minimize (3). The change in the
APref(t) 7 @ i i i i H
TDE —> / R . weights is calcu]ated using the backpropaggtlon 'algonthm
| MODEL [An(), AV, based on a gradient descent method and is given in (3). The
[___; Neural ANN identifier weight update equation is given in (4) [21].
> /I,“Ietwork More details on the ANN model developments can be found in
> [4]
Fig. 3. Neural-network modeling of the plant in Fig. 1, using the EM(t) = % Z C?\{(t) (3
backpropagation algorithm. t
_ 861\4@)
B. Heuristic Dynamic Programming Neurocontroller AWn =—men(t) OW s “)

Fig. 2 shows a HDP critic neural network connected to thgherey, is a positive learning rate.
action neural network through a neural network model of the 2) Critic Neural Network: The critic network estimates the
plant, and is therefore called a model-dependent critic desigfinction./ (cost-to-go) in the Bellman equation of dynamic pro-
All three these different neural networks are described in ti@amming, expressed as follows:
following sections.

1) Model Neural Network:Fig. 3 illustrates how the ANN 4
model/identifier is trained to identify the dynamics of the plant. J(t) = Z YU+ k) )
The ANN identifier structure is a three-layer feedforward neural =
network with 12 inputs, a single hidden layer with 14 sigmoidavhere~ is a discount factor for finite horizon probleni8 <
neurons, and two linear output neurons as shown in Fig. 4. The< 1), andU(.) is the utility function or local cost. The
inputs are thectual deviation in the input to the excitekV,, configuration for training the critic network is shown in Fig. 5.
the actual deviation in the input to the turbinA P..¢, theac- The critic network is a neural network trained forward in time,
tual terminal voltage deviatior\ V; and theactual speed devi- which is of great importance for real-time operation. The struc-
ation of the generataiw. These four inputs are time delayedure of the critic neural network is shown in Fig. 6, and consists
by a sample period of 20 ms and together with the eight prewt a three-layer feedforward network with six inputs, a single
ously delayed values form the 12 inputs to the ANN identifiehidden layer with 13 sigmoidal neurons, and a single linear
The ANN identifier outputs are the one step aheatimated output neuron. The inputs to the critic are #simatedspeed
terminal voltage deviation\V; and estimatedspeed deviation deviation andestimatederminal voltage deviation (outputs of
A of the turbogenerator. Pseudorandom signals are appliedite model neural network), and their two time-delayed values,
the exciter and the microturbine of the plant with the switchasspectively, forming the six inputs. The critic network tries to
S1 and S2 in position 1 in Fig. 1, in order to train the ANNninimize the following error measure over time:
model/identifier, for a period of time at different operating con-
ditions until satisfactory identification results are obtained. The | Ec1ll = % Z g (t) (6)
input and output weight®/;,, of the ANN model are then fixed ¢
during the further development of the critic and the action neural ec1(t) = J[AY ()] — vJ[AY (¢ + 1)] — U(¥) 7

k=0
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A

AY(t+1) —> JAY(r+1)) v re)
CRITIC
AAY (#) = Neural Network Aofi-l)
AT —— Aa(t-2)
Target = dait-3)
yJA Y+ 1)) + U(A V(D) av-1)
AV (t-2)
) P AV (t-3)
are  ——s JAY®Y)
AT D) CRITIC >
A( Neural Network +
AY(t-2) —» error = e(t) E
om0 Fig. 7. Action neural network structure for both HDP and DHP schemes with

. . L . . six inputs, ten sigmoidal hidden layer neurons, and two linear output neurons.
Fig. 5. Critic adaptation in HDP. The same critic network is shown for two

consecutive timeg, andt + 1. The critic’s output/(t + 1) at timet + 1, is
necessary to generate a target signa{t + 1) + U(t), for training the critic  of the action neural networkA(t) — [AVe, APref]y the

{'Segggxﬁ Egihd;gg;?ééﬁf;gr_ Is chosen to be 0.5. The backpropagation patr('jeviatio'nirj the exciter voltage, augments the exciter voltage
anddeviationin the turbine power, augments the turbine input

power. The objective of the action neural network in Fig. 2, is

to minimize.J in the immediate future, thereby optimizing the

jgg{ 0 overall cost expre;se_d as a sum of Ia[I.t).over the horizon
A6-2) of the proplem. This is gchleved by training the aCtI.OI’l neural
4P network with an error sygnaﬂj(t)/aA(t). The gradient of
A,A,:(,_U the cost functionJ/(¢), with respect to the outputd(t), of
AV (1-2) the action network, is obtained by backpropagatihfyd./

(i.e., the constant 1) through the critic neural network and
then through the pretrained model neural network to the action
neural network. This give8.J(t)/9A(t) anddJ(t)/OW 41 (1)
Fig. 6. HDP critic neural network structure with six inputs, ten sigmoiddlor all the outputs of the action neural network, and all the
hidden layer neurons, and one linear output neuron. action neural network’s weightd’.s , respectively. The action
neural network is trained to minimize (11). The expression for
where AY'(t) is a vector of observables of the plant (or théhe weights’ update in the action neural network is based on an
states, if available). The necessary condition for (6) to be migrror feedback from the critic neural network backpropagated

imum is given in (8) through the model neural network using the backpropagation
algorithm, and is given in (13) and (14)
1 8 2 _ 8601 (t) _
5 OWer (eci(t)) = <Cc1 Wy | = 0. (8) B =1 Zefu(t) (11)
t
The expression for the weights’ update for the critic neural aJ(t)
network is as follows: ca(t) = 9A() (12)
- 8601(t) a t
AWer =—mec(?) Wy ©) AWy = —nzear(t) 53;,51) (13)
AWey =—m{J[AY (¥)] - vJ[AY (E +1)] - U(H)} AW aJt)y a8 [dJ() "
A0 - WAY (4 D] U@} MG AM) oW <8A(t)> (4
OWen

wherers is a positive learning rate and ; is the weights of
wheren:, is a positive learning rate andc; is the weights of the HDP action neural network.
the HDP critic neural network.

The same critic neural network is shown in two consecutie. Dual Heuristic Programming Neurocontroller
moments in time in Fig. 6. The critic neural network’s output The critic neural network in the DHP scheme in Fig. 8, esti-
J(t + 1) is necessary in order to provide the training signghates the derivatives of with respect to the vectahY’, and

vJ(t +1) + U(#), which is the target value faf(¢). learns minimization of the following error measure over time:
3) Action Neural Network:The action neural network in

Figs. 2 and 7 is a three-layer feedforward neural network with | Ecal|| = Z edo(t)eca(t) (15)

six inputs, a single hidden layer with ten sigmoidal neurons, t

and two linear output neurons. The inputs to the action neurall1

network are the turbogeneratorsetual speed deviation and where

actual terminal voltage deviation, and their two time-delayed AJ[AY ()] AJ[AY (t+1)]  oU()
values respectively, forming the six inputs. The two outputseCQ( )= IAY (1) -7 IAY (1) - IAY (1)

(16)
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Fig. 8. Critic adaptation in DHP. This diagram shows the implementation of (10). The same critic network is shown for two consecutivariohhes,1. The
discount factory is chosen to be 0.5. Backpropagation paths are shown by dashed lines. The output of the critic hgtwotlk is backpropagated through the
model network from its outputs to its inputs, yielding the first term of (9) addt + 1)/9A(t). The latter is backpropagated through the action network from its
outputs to its inputs forming the second term of (9). Backpropagation of the \&€tan /9 A(t) through the action network results in a vector with components
computed as the last term of (10). The summer produces the error ¥agtorused for training the critic network.

Aa)

A
Acg( t-1) e
AD(t-2) R

A oV ()
AV EY0)
A%(t-] ) ~
AV (-2) da(r)

Fig. 9. DHP critic neural network structure with six inputs, ten sigmoidal hidden layer neurons, and two linear output neurons.

whered( .)/dAY (¢) is a vector containing partial derivativeswhere\;(t+1) = 8J[AY (¢+1)]/0AY;(¢+1), andn, m are the

of the scalar . ) with respect to the components of the vectonumbers of outputs of the model and the action neural networks,
AY. The DHP critic neural network structure is similar to thatespectively. By exploiting (17), each af components of the

of the HDP critic's, except that the DHP critic has two lineavectorec2(t) from (16) is determined by

output neurons as shown in Fig. 9. The critic neural network’s

training is more complicated than in HDP, since there is a negd ) _ 9J[AY ()]  9J[AY(t+1)]  OU(Y)
to take into account all relevant pathways of backpropagation as OAY;(t) OAY;(t) OAY;(t)
shown in Fig. 8, where the paths of derivatives and adaptation TQU() OAR(E)

(18)

of the critic are depicted by dashed lines.

OAR(t) OAY;(t)”
In the DHP scheme, application of the chain rule for deriva- (?) i)

k=

tives yields The adaptation of the action neural network in Fig. 8, is il-
N lustrated in Fig. 10 which propagat&§& + 1) back through the
OJAY(E+1)] _ SN+ 1) dY;(t +1) model network to the action network. The goal of such adapta-
IAY(t) o ‘ JAY(t) tion can be expressed as follows [18]:
+ Ai(t+1) (17) (t) t+1)
kz::l ; 04i(t)  9AY;(H) aA(1) aan 0 VE (19)



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002 769

Y,ef —
TDL | PLANT > @)
aU(1)
AY() c===171 o
) D 24(r)
ACTION '
—>  Neural ¥ A !
Network LoJa+1) Atrl)
¥  0A(@)
[TDL | 7------"
I
b < =
| MODEL AY(@+) M CRITIC
* Neural > A1)
Network | 1DL 46 —> Neural 0.
R : J(t+1
TDL. A¥ (1)~ Network = #

dAY(t+1)

Fig. 10. Action adaptation in DHP. The discount factds chosen to be 0.5. The backpropagation path is shown by dashed line. The output of tiétctitic
attime(t + 1) is backpropagated through the model network from its outputs to its inputs (output of the action network), and the resulting vector multiplied by
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The weights’ update expression [18], when applying back- TABLE |
propagation, iS as fO”OWS: MICRO-ALTERNATOR PARAMETERS
T T =669s | T =025 Xg =0205 pu
AW o = —, gzgg 8.{3(;1(42)1) gﬁ/(jz (20) Ts =066s | Tq'=27ms X" =0.164 pu
Tg” =33 ms Tig =38 ms Xq=1.98 pu
wherery is a positive learning rate ai#l > is the weights of the Tg"=264ms | Xa=2.09pu Xq"=0213pu

action neural network in the DHP scheme. The structure of the
action neural network is identical to that of the action network
in the HDP scheme. The general derivation of the equationsdasigned to have all its per-unit parameters, except the field
this section are shown in [18] in detail. winding resistance, the same as those normally expected of
The word “dual” is used to describe the fact that the target 30—1000 MW alternator. The micro-alternator parameters,
outputs for the DHP critic training are calculated using backietermined by the IEEE standards are given in Table | [23]. A
propagation in a generalized sense; more precisely, it does tigee constant regulator is used to insert negative resistance in
dual subroutines (states and co-states) to backpropagate degeaies with the field winding circuit [23], in order to reduce the
tives through the model and action neural networks, as shoagtual field winding resistance to the correct per-unit value.
in Fig. 8. The dual subroutines and more explanations are foundrhe practical system uses a conventional AVR and exciter

in [16], [21]. combination of which the transfer function block diagram is
shown in Fig. 11, and the time constants and gain are given in
D. Global Dual Heuristic Programming Neurocontroller Table 1l [6]. The exciter saturation factét. is given by

The GDHP critic minimizes the error with respect to bdth
and its derivatives. Training the critic neural network in GDHP
utilizes an error measure which is a combination of the err

meases of HDP and DHP [se () and (19, The aing b, [+, 11 ancl, rethe e contarts of e P olage
GDHP critic is a complex task and the resulting behavior is e -9 P ve X ¢

pected to be superior. More detail on GDHP and its impleme{rif—e exc!tgr time Con_StanK“'” Is the AVR gain;Vya,, is th_e ex-
tations can be found [18], [19], [22]. citer C(_all_mg voltag_e, andy,,,, andV,,; are the AVR maximum
and minimum ceiling voltages.

A separately excited 5.6 kW thyristor controlled dc motor
is used as a prime mover, called the micro-turbine, to drive

The neurocontroller is evaluated by applying it to a specitiie micro-alternator. The torque-speed characteristic of the dc
scaled down laboratory power system of which the mamotor is controlled to follow a family of rectangular hyperbola
components are described in this section. The power systa@remulate the different positions of a steam valve, as would
in Fig. 1 consists of a micro-alternator, driven by a dc motarccur in a real typical high pressure (HP) cylinder turbine. The
whose torque-speed characteristics are controlled by a poweee low pressure (LP) cylinders’ inertia are represented by ap-
electronic converter to act as a micro-turbine, and a single shpropriately scaled flywheels attached to the microturbine shaft.
transmission line which links the micro-alternator to a voltagéhe microturbine and governor combination transfer function
source which has a constant voltage and frequency, calleddock diagram is shown in Fig. 12, wherg,.; is the turbine
infinite bus. The 3 kW, 220V, three phase micro-alternator wasput power set point valud;,, is the turbine output power, and

Se = 0.6093 exp(0.2165 Viela). (21)

Ill. PRACTICAL TURBOGENERATORSYSTEM
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Fig. 11. Block diagram of the AVR and exciter combination. AVR and exciter parameters are given in Table Il.

TABLE I for the critic, and the other for the action. An important measure

AVR AND EXCITER TIME CONSTANTS, AND GAIN is that the action neural network is pretrained with conventional
Aol Valie controllers controlling the plant in a linear region. The critic’s

adaptation is done initially with the pretrained action neural net-

Tu 06165 work, to ensure that the whole system, consisting of the ACD

and the plant remains stable. Then the action neural network is
trained further while keeping the critic neural network weights
Tu 0.189s fixed. This process of training the critic and the action one after
the other, is repeated until an acceptable performance is reached.
It is assumed that there is no concurrent adaptation of the pre-
Tos 0.0235 s trained model neural network, aftl- andW 4 are initialized

to small random values.

In the critic’s training cycle, an incremental optimization of
0003 (6) and/or (15) is carried out using a suitable optimization tech-
nique. The following operations are repeatéd times.

1) Initialize t = 0 and AY(0).

] o 2) Compute output of the critic neural network at titng(¢)
Aw is the speed deviation from the synchronous speed. The tur- = A1) = fo(AY(2), We).

bine and governor time constants and gain are given in Table 11| 3) Compute output of the action neural network at titme
[6]. e val " A in Tabl ; A(t) = fa(AY (), Wa).

_ The values of thef{,, and K, in Tables Il and lll, respec- 4y compute output of the model neural network at tine,
tively, were obtained by suitable choices of the gain and phase AY (£ +1) = fa(AY (£), A(t), Way).

margins in each case, as described in [20]. Transmission Iiness) Compute output of the critic neural network at time 1,
are represented by using banks of lumped inductors and capac- J(t+1)or At + 1) = fe(AY (£ + 1), We).

itors. ) o ) ) 6) Compute the critic neural network error at timex«(¢)
The nonlinear time-invariant equations for the block labeled from (7) or (16)

plant in Fig. 1 are of the form

Tv 2.266s

Tw 0.039s

T, 0.47s

7) Update the critic neural network’s weights using the
. backpropagation algorithm.
= 22
&= Jla )+ (@) (22) 8) Repeat steps 2) to 7).
where g(z) contains the nonlinear terms. Equation (1) repréthe  functions fo(AY (t), W), fa(AY(¢), W4) and
sents a 13-order nonlinear system and is developed from the tfup(AY (¢), A(t), W),) represent the critic, the action and the
axis machineig-equations [1] combined with those of Figs. 1dmodel neural networks with their weighg;, respectively.

and 12, with the following selected states: In the action neural network’s training cycle, an incremental
o o learning is also carried out using the backpropagation algorithm,
r=[6 Aw g iy ira iq kgl (23)  asinthe critic neural network’s training cycle above, and the list

of operations for the action neural network’s training cycle is al-
#¥Gst the same as that for the critic network’s cycle above [steps
1) to 7)]. However, (12) and/or (19) are used for updating the
action neural network’s weights instead of using (6) and/or (15)
andd.J/8W . The action’s training cycle is repeatdd,; times
while keeping the critic’s weight¥V fixed. N and N4 are
the lengths of the corresponding training cycles. It is important
that the whole system consisting of the ACD and the plant re-
The training procedure is that suggested in [18] and it is appiitains stable while both of the critic and action neural networks
cable toany ACD. It consists of two separate training cycles: onadergo adaptation.

where the first two states are the rotor angle and the speed d
ation, and the other states are the currents inlthg field, and
damper coils. The plant is simulated in MATLAB/SIMULINK
and details of this can be found in [5].

IV. GENERAL TRAINING PROCEDURE FOR THECRITIC AND
ACTION NETWORKS
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Fig. 12. Block diagram of the microturbine and governor combination. Governor and micro-turbine parameters are given in Table IlI.

TABLE Il The dynamic and transient operation of the action neural net-
MICROTURBINE AND GOVERNOR TIME CONSTANTS, AND GAIN work (neurocontroller) is compared with the operation of a con-
ventional PID controller (AVR and turbine governor), under two
different conditions=4-5% step changes in the terminal voltage
Phase advance compensation, Tg) 0264 setpoint, and a three-phase short circuit at the infinite bus. Each
of these is investigated for the turbogenerator operating at dif-
ferent power factors and transmission line impedances.
Servo time constant, Te3 0.15s Figs. 13 and 14 show the performance of the different con-
trollers for 5% desired step changes in the terminal voltage

Actual Value

Phase advance compensation, Ty 0.0264 s

Entrained steam delay, Tes 0.59s with the turbogenerator operating at 1 pu real po@&y and
Steam reheat time constant, Tgs 3663 s 0.85lagging power factdp /) (at the generator terminals), with
the transmission line impedangg = 0.02 + j0.4 pu. Fig. 15
pu shaft output ahead of reheater, F 03225 shows a turbogenerator operating under the same conditions but
005 experiencing a temporary 50 ms three phase short circuit at the

Governor gain, Kg infinite bus. Fig. 16 shows a turbogenerator under the same ter-

minal conditions as in Fig. 15 but experiencing a temporary 50
ms three phase short circuit at the infinite bus, with an increased
V. HDP VERSUSDHP transmission line impedandg = 0.0254-j0.6 pu. The results
with the conventional AVR and governor controllers, and those

The use of derivatives of an optimization criterion, rather thgf} ihe HDP and the DHP neurocontrollers. are labeled as CONV.
the optimization criterion itself, is known as being the mostimypp and DHP respectively, in these figl;res. '

portantinformation to have in order to find an optimal trajectory. Figs. 13 and 14 show that with step changes in the terminal

In HDP, this information is obtained indirectly by baCkprOpaga\70Itage, the DHP based neurocontroller has a faster rise time

tion throu_gh the critic neur.al network.. .It has a potential p_roble an the HDP-based neurocontroller. However, for this distur-
of not being too smooth since the critic neural network in HD .
. . . e . ance both neurocontrollers react slower than the conventional
is not trained to approximate derivatives.bflirectly.

ontroller. The response of the DHP based neurocontroller can

DHP has an important advantage over HDP since its critEc

neural network builds a representation for the derivativ?ge improved by using a different utility function and discount

: : by . ctor in the Bellman equation (5). On the other hand, Figs. 15
gf[]‘(]t);jg&;l}l( tl):)]y agglg[gj(t:)x /%llzl(tg tlgzlrn?ncfstgl: C;h??tggrgl:(g:and 16 show that for the short circuit disturbances, the DHP-
of model-based control, as in the case of this paper, a pretrair?@(?ed neurocontroller has the best damp!ng compared to both
model neural network and well-defingtl/(¢) /[AY (#)] and the HDP neurocontroller and the conventional controller. The
AU(t)/dA(t) exist. To adapt the action neural network, onl esigner/power station engineer has the final choice on whether
the derivatives).J(t)/8[AY (+)] or 8.J(t)/A(t) are required, erminal voltage or rotor angle dgm'p'lng is more important. It
rather than the/ function itself. However, the approximationmUSt be emphasized that these significant results have been ob-

of these derivatives is alreadydirect output of the DHP critic. {@néd with training in an offline mode only, hence, avoiding
continually online training.

The HDP and DHP neurocontroller tested above under the
different tests all have fixed parameters for their neural networks
A discount factory of 0.5 and the utility function given in which are trained off-line. This leads to the fact that there are
(24) are used in the Bellman equation [(5)] and in the trainingy adaptive parameters with the neurocontroller and therefore
of the critic neural network [see (6) and (15)], and of the actiogyoids the risk of instability. The convergence guarantee of the
neural network [egs. (12) and (19)]. Once the critic and actijfiitic and action neural networks during offline training has been
neural networks’ weights have converged, the training stops agi¢bwn in [24], [25]. In addition, the heavy computational load

the action neural network is connected to the plant (Fig. 1) only arises during the offline training phase and therefore makes
the online real-time implementation cost of the neurocontrollers

U(t) = AV (£)+4AV (t-1)+16AV (t-2)]? cheaper. In this paper, HDP and DHP neurocontrollers, based

+[0.4Aw(t)+0.4Aw(t—1)+0.16 Aw(t—2)]?. (24) on a model-based adaptive critic design approach, have been

VI. RESULTSWITH THE TRAINED ACTION NETWORK
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demonstrated to have superior performance (compared to con]
ventional controllers) with just an approximate model (using a
neural network) of the plant being controlled. This benefit of a 8
neural-network model agrees with the conclusions on the com-
parison of using exact and approximate models in adaptive critid®]
designs which was explicitly shown in [14]. With regard to han-
dling uncertainties, a Lyapunov based theory for robust stability10]
of the adaptive critic design-based controllers with input uncer-
tainty has been developed in [15]. All these features are desif!
able and important for industrial applications which require g12]
neurocontroller technology that is nonlinear, robust, and stable.
(13]
VIl. CONCLUSION
This paper has presented a new and novel technique in whiéllﬁll]
adaptive critic design based neurocontrollers can be in the feed-
backloops ofturbogenerators without needing continually onlinét®!
training. This avoids risks of instability due to continual online
training. DHP performed excellently during the short circuit testg16]
compared to HDP and the conventional controller. This paper
has therefore demonstrated that there is a potential for adaptiyp,]
critic designs for real-time optimal control of turbogenerators.
(18]
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