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Abstract-- This paper presents the comparative application of 

two metaheuristic approaches: Differential Evolution (DE) and 
Particle Swarm Optimization (PSO) to the solution of the 
reactive power and voltage control problem. Efficient 
distribution of reactive power in an electric network leads to 
minimization of the system losses and improvement of the system 
voltage profile. It can be achieved by varying the excitation of 
generators or the on-load tap changer positions of transformers 
as well as by switching of discrete portions of inductors or 
capacitors etc. This constitutes a typical mixed integer non-linear 
optimization problem for the solution of which metaheuristic 
techniques have proven well suited in principle. The feasibility, 
effectiveness and generic nature of both DE and PSO approaches 
investigated are exemplarily demonstrated on the Nigerian grid 
system and the New England power system.  Comparisons were 
made between the two approaches in terms of the solution quality 
and convergence characteristics. The simulation results revealed 
that both approaches were able to remove the voltage limit 
violations, but PSO procured in some instances slightly higher 
power loss reduction as compared with DE; on the other hand 
DE required a lower number of function evaluations as 
compared with PSO. Consideration of computational effort is 
relevant for potential real time on line application. 
 

Index Terms--Reactive power / voltage control, Differential 
evolution, Particle swarm optimization, Metaheuristic. 

I.  INTRODUCTION 
Due to the steady increase in the complexity of power systems 

and the continuous high loading of network components, 
abnormal operating conditions such as under voltage may occur 
more frequently. Hence, the need for appropriate reactive power 
and voltage control of the power system is evident. The reactive 
power dispatch has two-fold objectives thus: to improve the 
system voltage profile and to minimize system losses at all times. 
The reactive power flow can be controlled by suitably adjusting 
the following facilities: 
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• On-load tap changers of transformers; 
• Generating units’ reactive power capability; 
• Switched capacitors and inductors; 
• Static Var Compensators (SVC); 
• Flexible AC Transmission System (FACTS) devices and 
• Switching of transmission line. 

The foregoing control devices have their lower and upper 
permissible limits and are distributed system-wide. It is therefore 
evident that the reactive power and voltage control problem for a 
real large power system is very complex encompassing different 
control devices, some of which are continuously adjustable whilst 
others are of discrete steps that are numerous, asymmetrical and 
geographically located dispersed. The existence of multiple 
optimum solutions is inevitable most especially when there are 
many reactive power control devices to be manipulated in order 
to secure desired target system voltages in a typically large power 
system. Thus, there is a need to develop intelligent technology to 
achieve the global optimum solution of the reactive power 
dispatch problem.  

Several numerical optimization techniques have been 
proposed within the framework of optimal power flow to assist 
the operator in reaching the optimal decision. Among these 
techniques, Nonlinear Programming (NLP), successive linear 
programming, mixed integer programming, Newton and 
quadratic techniques have been proposed for solving the Var 
control problem [1]. The drawbacks of these techniques have 
been extensively discussed in [2]. In an attempt to circumvent the 
deficiencies of the conventional methods, several search 
techniques have been proposed; they are Expert System (ES), 
Genetic Algorithm (GA), Tabu Search (TS), Simulated 
Annealing (SA), Evolution Strategy (ES), Particle Swarm 
Optimization (PSO), etc. [2 - 8]. 

In this paper, two metaheuristic techniques: Differential 
Evolution (DE) and Particle Swarm Optimization (PSO) are 
explored as optimization tools for controlling the reactive power 
for improvement of the voltage profiles and reduction of system 
losses. Generators, on-load tap changer positions of transformers 
and shunt inductors were considered as reactive power control 
devices in this study. 

 Differential Evolution is an improved version of GA for 
faster optimization [9]. The main advantages are simple structure, 
ease of use, robustness and effectiveness. As a robust and 
powerful adaptive tool for solving search and optimization 
problems they have been proposed for various power system 
problems such as generation expansion [11], capacitor placement 
[12], etc.. 
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Particle Swarm Optimization is an evolutionary computation 
technique which has been found to be robust in solving 
continuous nonlinear optimization problems [5,8]. The PSO 
algorithm is simple in concept, easy to implement and 
computationally efficient. 

The DE and PSO tools for reactive power and voltage control 
of power system have been developed using MATLAB Version 
7.1 R14 and were demonstrated on two networks: the Nigerian 
transmission grid and the New-England system modeled on the 
power world simulator in detail. This provides a platform to 
preset a multitude of scenarios under operational 
realism.nomenclature list, if needed, should precede the 
Introduction. 

II.  PROBLEM FORMULATION 
The mathematical model for the optimal reactive power /  

voltage control problem is formulated as follows: 
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Where: Pj are the real power losses in line j, nl is the number of 
transmission lines. 
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X is the vector of dependent variables, comprising load bus 

voltages VL and generator reactive power outputs Qg. U is the   
vector of control variables, comprising generator voltages Vg, 
transformer tap settings T, and shunt Var compensation QC.  
G(X,U) = 0 and H(X,U) ≥ 0 are the typical load flow equations 
[13]. They are solved using the Newton Raphson load flow.  

III.  METAHEURISTICS CONCEPT 
A.  Differential Evolution 

Differential evolution was introduced by Storn and Price in 
1995 as heuristic optimization method which can be used to 
minimize nonlinear and non-differentiable continuous space 
functions with real-valued parameters [9]; it uses floating point 
numbers to encode the parameter variables in contrast with 
conventional GA that uses binary coding. It has been extended to 
handle mixed integer discrete continuous optimization problems, 
too [10]. Design principles in DE’s are [9]: 
• Simple structure, ease of use and robustness. 
• Operating on floating point format with high precision. 
• Effective for integer, discrete and mixed parameter 

optimization. 
• Handling non-differentiable, noisy and/or time dependent 

objective functions. 
• Effective for nonlinear constraint optimization problems with 

penalty functions, etc.. 

Like the other evolutionary algorithm family, DE also relies on an 
initial random population generation, which is then improved 
using selection, mutation, and crossover repeated through 
generations until the convergence criterion is met. 

An initial population composed of vectors U0
i, i=1,2,….np, is 

randomly generated within the parameter space. The adaptive 
scheme used by the DE ensures that the mutation increments are 
automatically scaled to the correct magnitude. For reproduction, 
DE uses a tournament selection where the offspring vectors 
compete against one of their parents. The parallel version of DE 
maintains two arrays, each of which holds a population of np, D - 
dimensional, real value vectors. The primary array holds the 
current population vector, while the secondary array accumulates 
vectors that are selected for the next generation. In each 
generation, np competitions are held to determine the 
composition of the next generation. Every pair of randomly 
chosen vectors U1 and U2 defines a vector differential: (U1-U2). 
Their weighted differential is used to perturb another randomly 
chosen vector U3 according to (5). 
                      ( )213

'
3 - UUF UU ⋅+=                                  (5) 

Where: F is the scaling factor for mutation and its value is 
typically )2.10( ≤≤ F . It controls the speed and robustness 
of the search; a lower value increases the rate of convergence but 
also the risk of being stuck at a local optimum. The crossover is a 
complementary process for DE. It aims at reinforcing the prior 
successes by generating the offspring vectors out of the object 
vectors. In every generation, each primary array vector Ui, is 
targeted for crossover with a vector like U3  ́ to produce a trial 
vector Ut according to (6): 
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Where: CR is a crossover constant and its value is 
typically )0.10( ≤≤ CR . The newly created vector will be 
evaluated by the objective function and the corresponding value is 
compared with the target vector. The best fit vector is kept for the 
next generation as given by (7). The best parameter vector is 
evaluated for every generation in order to track the progress made 
throughout the minimization process; thus making the DE elitist 
method: 
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B.  Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population based 
stochastic optimization technique developed by Kennedy and 
Eberhart [5,8]. The method is derived from simulation of a 
simplified social model of swarms such as fish schooling and bird 
flocking, is based on a simple concept, has been found to be 
robust for solving problems featuring non-linearity and non-
differentiability, multiple optima and high dimensionality through 
adaptation, and provides high quality solutions with stable 
convergence.   

The individuals (particles) persist over time, influencing one 
another’s search of the problem space, as compared with genetic 
algorithms where the weakest chromosomes are immediately 
discarded. Instead of using evolutionary operators to manipulate 
the individuals as in other evolutionary computation algorithms, 



 

each individual in the swarm flies in the search space with a 
velocity which is dynamically adjustable according to its own 
flying experience (velocity, inertia, gravity) and its companion 
flying experience. Each particle keeps track of its coordinates in 
the problem space, which are associated with the best solution 
(fitness) it has achieved so far. This value is called pbest. Another 
best value that is tracked by the global version of the particle 
swarm optimizer is the overall best value, and its location, 
obtained so far by any particle in the population. This is called 
gbest. The basic concept of PSO technique lies in accelerating 
each particle towards its pbest and gbest locations at each time 
step. The modified velocity of each particle can be computed 
using the current velocity and the distance from pbest and gbest 
according to (8). The positions are modified using (9). 
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Where:  
rand1, rand2: uniformly random numbers between 0 and 1. 
vk

id: current velocity of individual i in dimension d at iteration k. 
vk+1

id: velocity of individual i in dimension d at iteration k+1. 
maxmin
id

k
idid vvv ≤≤ : maximum and minimum velocity. 

xk
id: current position of individual i in dimension d at iteration k. 

xk+1
id: position of individual i in dimension d at iteration k+1. 

pbestid: dimension d of the pbest of individual i. 
gbestd: dimension d of the gbest of the swarm. 
c1 and c2 : the weighting of the stochastic acceleration that pull 
each particles towards pbest and gbest (cognitive and social 
acceleration constant respectively). 
wk: inertia weight factor that controls the exploitation and 
exploration of the search space by dynamically adjusting the 
velocity and it is computed using (10). 
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itermax   : maximum number of iterations; 
iter       : current iteration number; 
wmax      : maximum inertia weight; 
wmin      : minimum inertia weight. 

The particle velocity is limited by the maximum value vmax. 
Thus, the resolution and the fitness of search depend on vmax. If 
vmax is too high, then particles will move in larger steps and so the 
solution reached may not be optimal. If the vmax is too low, then 
particles will take a long time to reach the desired solution or 
even get captured in a local minimum. The maximum velocity is 
characterized by the range of the ith parameter and is given by 
(11). 
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Where, N is a chosen number of intervals in the ith parameter. 

IV.  REALIZATION OF THE METAHEURISTIC TOOLS 
Both the differential evolution and particle swarm based 

reactive power and voltage control tools were developed as 
follows: 
A.  Initial Population and Parameters Selection 

For both methods, an initial population comprising control 
devices  

Ui=[Vi, Ti , nci] ; i=1,2,….np 
is randomly generated within the parameter space using (12). 

 
                 )( minmaxmin
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Where: ui

min and umax are respectively the minimum and the 
maximum values of the parameter variables, np is the population 
size and rand is a uniform random number generator in [0, 1]. 
 
B.  Treatment of Control Variables 

Within the DE and PSO algorithms, mixed integer nonlinear 
programming formulation was used. The distinction between the 
continuous and discrete control variables is made as follows: 
• Generating units’ voltage set-points as continuous variables 

are assumed to operate within the range (0.9 ≤ Vgi ≤ 1.1). 
• On-load tap changer transformers are considered to have 21 

tap positions with a discrete step of 0.01 within the range  
(0.9 ≤ Ti ≤ 1.1). 

• The number of reactors/condensers is assumed to vary 
between 0 and the step size (nci) on each bus. Each step 
value is also specified, e.g., for the Nigerian grid system, the 
values of reactors are 30 MVar, 50 MVar and 75 MVar with 
step sizes ranging between 1 and 4 located at 8 different 
buses.  

 
C. Handling of Constraints  

The reproduction operation of DE can extend the search 
outside the range of the parameter. A simple strategy to ensure 
that the parameter values lie within the allowable range after 
reproduction was adopted in this study. Any parameter that 
violates the limits is replaced with random values using (13). 
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A penalty function approach proposed in [10] was adopted in 

this study to handle the voltage limits violations. The objective 
function is formulated according to (14): 
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si ≥ 1 and bi ≥ 1. The constant a is used to ensure that only non-
negative values are assigned to the objective function. Constant s 
is used for appropriate scaling of the constraint function value. 
The exponent b modifies the shape of the optimization surface.   
 
D. Realization of DE Based Reactive Power Dispatch 

The computational procedure of the developed tool is 
described as follows: 
Step I: At the initialization stage, the relevant DE parameters as 
shown in Table I are defined. Also relevant power system data 
required for the computational process are actualized from the 
data files. 
Step II: Run the base case Newton Raphson load flow [14] to 
determine the initial load bus voltage and active power losses 
respectively. 
Step III: Each control device is treated as described in sub-section 
B above. The randomly generated initial population comprises the 
control device variables within the parameter space using (12). 
The objective function for each vector of the population is 
computed using (14). The vector with the minimum objective 
function value (the best fit) so far is determined. 
Step IV: Update of the generation count. 
Step V: Mutation, crossover, selection and evaluation of the 
objective function as described in Section III are performed. If 
parameter violation occurs, (12) is applied appropriately to 
generate randomly the parameter value. The elitist strategy is also 
applied: keeping track of the fittest vector. 
Step VI: If the generation count is less than the preset maximum 
number of generations, go to step IV. Otherwise the parameters of 
the fittest vector are returned as the desired optimum settings. 
With the optimal settings of the control devices, run the final load 
flow to obtain the final voltage profiles and the corresponding 
system power losses. 
 
E. Realization of PSO Based Reactive Power Dispatch 

The computational procedure of the PSO based approach is 
described as follows: 
Step I: Read the relevant PSO parameters as shown in Table I. 
Also relevant power system data required for the computational 
process are actualized from the data files. 
Step II: Run the base case Newton Raphson load flow [14] to 
determine the initial load bus voltage and active power losses 
respectively. 
Step III: Each control device is treated as described in sub-section 
B above. Then randomly generate an initial swarm of particles 
with random positions and velocities. Each candidate solution 
should be within the feasible decision variable space. 
Step IV: For each individual set of control variables of the 
population run the load flow to obtain the transmission losses and 
voltage profile. Compute the fitness values of the initial particles 
in the swarm using the objective function (14). Set the initial 
pbest to current position of each particle, and the initial best 
evaluated values among the swarm is set to gbest. 
Step V: Increase the generation number. 
Step VI: Update the velocities and positions according to (8) and 
(9) respectively. 
Step VII: Compute the fitness values of the new particles in the 
swarm using the objective function (14). Update the pbest with 
the new positions if the particles’ present fitness is better than that 

of the previous ones. Also update the gbest with the best particle 
in the population swarm.  
Step VIII: Repeat steps V to VII until the preset convergence 
criterion (maximum number of generations) is achieved. 
Step IX: The parameters of the gbest at the end of the run are 
returned as the desired optimum settings. With the optimal 
settings of the control devices, run the final load flow to obtain 
the final voltage profile and the corresponding system power 
losses. 
 

TABLE I: OPTIMAL PARAMETER SETTINGS FOR DE AND PSO 
DIFFERENTIAL EVOLUTION PARTICLE SWARM 
Maximum generation, itermax: 200 
Population size, np: 15 
Scaling factor, F: 0.4 
Object. function scaling const, a:7 
Constraint  scaling constant, s:1 
Opt. surface shape modifier, b: 1 
Crossover constant, CR:0.6 
 
 
 

Maximum generation, itermax: 200 
Swarm size, np: 50 
Object. function scaling const, a:7 
Constraint  scaling constant, s:1 
Opt. surface shape modifier, b:1 
Cognitive constant c1: 2 
Social constant c2: 2  
Maximum inertia weight, wmax: 0.9 
Minimum inertia weight wmin : 0.2 
Maximum velocity vmax resolution 
N: 2 for Nigerian grid & 5 for New-
England system 
 

V.  SIMULATION RESULTS AND DISCUSSION 
The above described procedures for both DE and PSO were 

implemented using MATLAB V 7.1 R14 for Windows. The 
feasibility, effectiveness and generic nature of the approaches 
were demonstrated on two power systems: Nigerian 330 kV, 31-
bus transmission grid and New England 39-bus, 10 machines 
system. 

  
A. Example1: Nigerian 330 kV Grid System 
  The replicated power system comprises: 7 generating units (4 
thermal units and 3 hydro), 7 machine transformers equipped 
with tap changers, and compensation reactors of different discrete 
values located at 8 different nodes. The single line diagram of the 
network is depicted in [2] and the network data can be obtained 
from [15]. For comparison purpose, two samples of the 
multitudes of studies conducted on this power system using both 
DE and PSO are presented here. The results are compared in 
terms of convergence characteristics and solution quality. 
 
A.I. Case Study 1: Tap Settings of Transformer and Inductor 

With all the 33 transmission lines operated, a scenario was 
preset on the power world simulator by heuristic based wrong 
settings of the machine transformer taps.  Furthermore, two 75 
MVar reactors at different buses were wrongly switched on. 
There were also load reductions at some load points. These 
actions altogether led to voltage limit violations at 10 nodes. 

The developed DE and PSO tools were applied to solve this 
problem with the parameter settings as shown in Table I.  The 
results of the voltage profile corrections for both methods are 
comparatively shown in Fig. 1.  It can be seen that both 
approaches were able to bring the voltage at all buses within the 
limits. The convergence characteristics of the two methods are 
comparatively depicted in Fig. 2. 

It can be seen that a power loss reduction of 13.55% (from 
40.07 MW to 34.64 MW) was accomplished in 162 
generations using the DE approach while the PSO achieved 
16.62% (from 40.07 MW to 33.41 MW) in 193 generations. 



 

The corresponding total number of function evaluations to 
obtain the minimum power losses are 2,230 and 9,650 for DE 
and PSO respectively. It can be seen that DE requires 
remarkably less function evaluations since the population size 
was set at 15 while it was 50 for PSO. 

Fig. 1: Voltage profile correction for DE and PSO 
 

Fig. 2: Comparison of convergence characteristics for DE and PSO 
 

A.II. Case Study 2: Disconnection of a transmission line 
Here, the system was initially operating as in scenario 1. 

Interrupting a transmission line broke up a mesh and resulted in 
voltage limits violations at 12 nodes. 

The developed reactive power dispatch tools were used to 
solve this problem. The voltage profile corrections for both 
methods are comparatively shown in Fig. 3. Both approaches 
succeeded in solving the voltage problem connected with 15.34% 
power loss reduction (from 42.05 MW to 35.60 MW) for DE 
while the PSO achieved 15.15% power loss reduction (from 
42.05 MW to 35.68 MW). These values were obtained in 185 and 
174 generations for both DE and PSO respectively, Fig. 4. The 
required numbers of function evaluations were 2,775 for DE and 
8,700 for PSO. 

Fig. 3: Voltage profile correction for DE and PSO (Case study 2) 

Fig. 4: Convergence characteristics for DE and PSO (Case study 2) 
 

B. Example 2: New England System 
This is a 39-bus system and has also been simulatively 

replicated. It comprises: 10 generating units, 12 transformers 
equipped with tap changers for voltage control. A scenario was 
preset on the simulator that led to high voltage limit violations on 
three buses. The results of the application of the both DE and 
PSO based tools for voltage corrections and loss reductions are 
shown in Figs. 5 & 6 respectively. 

Fig. 5: Voltage profile correction for DE and PSO (New-England system) 
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It can be seen from these figures that both approaches 
succeeded in solving the voltage problem connected with 1.60% 
power loss reduction (from 42.01 MW to 41.34 MW) for DE 
while the PSO achieved 4.14% power loss reduction (from 42.01 
MW to 40.07 MW). These values were obtained in 188 and 109 
generations and required 2,820 and 5,450 function evaluations for 
both DE and PSO respectively. 

 
Fig. 6: Convergence characteristics for DE and PSO  

(New-England system) 
 

C. Discussion of Results 
Results of the case studies on the two power systems 

considered here have shown that both approaches succeeded in 
achieving the goals of voltage profile correction and power loss 
reduction within less than 200 generations. In the implementation 
phase few preparative calculations sufficed to find appropriate 
parameter settings for both approaches; DE generally requires 
less settings than PSO (see Table I). PSO procured little better 
power loss reduction in some cases as compared with DE but 
connected with considerably higher number of function 
evaluations (load flow calculations) which strongly influences the 
overall computation effort and time. Regarding the performance it 
must be respected that both approaches compared here are based 
on stochastic search; thus, definite statements concerning the 
computational efficiency would require systematic investigation 
based on a multitude of test runs.  Furthermore, the influence of 
swarm size and population size  respectively could also be studied 
in order to achieve optimal computational efficiency. 

VI.  SUMMARY AND CONCLUSIONS 
In this paper, both Differential Evolution (DE) and Particle 

Swarm (PSO) based reactive power and voltage control have 
been comparatively investigated on two networks. The simulation 
results revealed that both approaches were able to remove the 
voltage limit violations, but PSO procured in some instances 
slightly higher power loss reduction as compared with DE. On the 
other hand, in the observed test cases DE required a considerably 
lower number of function evaluations as compared with PSO; if 
this observation could be substantiated by further investigation, 
the DE approach seems more viable for potential real time 
application in a control centre where the computation time is most 
relevant.  

From the practical point of view, it is pertinent to curtail the 
number of control devices employed to alleviate bus voltage 
problems. It is also feasible to integrate a pre-selection 
mechanism or the sensitivity matrix into the algorithms to select 
the most appropriate control devices a priori, thus bringing an 
added advantage to the computational time of the algorithms. 
This will be pursued in subsequent research thrust. 
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