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Abstract – Controllable series line compensation by series flexible 

ac transmission system (FACTS) devices can provide significant 

transient stability improvement and effective power oscillation 

damping. The work presented in this paper gives an overview of 

control issues of series FACTS devices contributing to stable 

power system operation when applying suitable controllers with 

appropriately selected system measurements. Firstly, this paper 

describes two internal control schemes, which are based on the

automatic power flow control mode and line impedance 

compensation mode, for a switching converter type based series

FACTS device. Secondly, it shows that the external (secondary)

control can give a solution for overall system optimization by

providing well-established supplementary controls and adaptive 

reference changes to the internal controller. Case studies are

presented with simulation results by applying the proposed 

controllers to the series FACTS device on a power system. 

I. INTRODUCTION 

Power systems sometimes have flexible alternating current

transmission system (FACTS) devices to enhance the

capability of the electric power network. Various members of

the FACTS family can be used to re-route active power from

one part of a network to another, thus eliminating congestion,

increasing utilization of lowest cost generation, improving the

damping of power system oscillations, and providing voltage

stability. Both theoretical and practical studies for gate turn-

off thyristors (GTOs) based FACTS devices have been 

proposed in the literature [1]-[25]. This paper focuses on a 

representative switching converter type based series FACTS

device, which is the static synchronous series compensator

(SSSC).

There are two important control issues to be considered

for the SSSC, namely the internal and external controls. The

internal control defines the operation of the inverter in order 

to produce the commanded series injected voltage by

providing gating signals to the converter valves such that the

converter output voltages correctly respond to the internal

reference variables. The objectives of the external control are 

to improve dynamic damping performance by applying

suitable supplementary controls and to adapt the internal

reference variables to changed operating conditions.

This paper presents an overview of overall control

schemes for switching converter type based series FACTS

device. Case studies are given to show the effectiveness of 

various controllers for the SSSC on improving system

dynamic performances.

II. INTERNAL CONTROL OF SERIES FACTS DEVICE 

The main internal control objectives of the SSSC shown in 

Fig. 1 are to ensure that the injected voltage at the ac terminal

of the inverter is in quadrature with the transmission line

current and to keep the dc capacitor voltage Vdc constant

during steady state operation. There are two representative 

internal control schemes, which are based on the automatic

power flow control mode and the line impedance

compensation mode.
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Fig. 1.  The simplified schematic of the SSSC in a power system.
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A. Automatic power flow control mode The inverter is assumed to have no conduction losses in

(1). By the same synchronously rotating reference frame

based transformation, the following d-q vector representation

can be obtained from (1) for modeling of the internal

controller.

The SSSC converter can control the reactive and/or active

power on an ac system by rapidly changing both the phase

angle and the magnitude of the converter’s output voltage.

Especially, the exchange of active power, which is the

particular characteristic of the SSSC, is accomplished by 

controlling the dc voltage inside the SSSC. The P-Q (real and 

reactive power) automatic power flow control [1] diagram is

shown in Fig. 2. )(
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In Fig.2, P* and Q* are the desired reference values of 

transmitted real power and reactive power at the ac terminals

of the inverter, respectively. An instantaneous three-phase set 

of injected line voltages, vca, vcb, and vcc is used for the inputs

of the vector phase-locked loop (PLL). Also, the transmission

line currents isa, isb, and isc are transformed to d-q current

components, which are used in the feedforward control path

(this is therefore called the current-control mode), using the

synchronously rotating reference frame.

(2)

Assuming the practical situation that xe >> re, equation (2) 

gives the steady state line current components as 
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The real and reactive powers in per unit can be expressed

as follows using (3) 
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Equation (4) shows that the real power P and reactive 

power Q depend on vcq (the quadratic component of injection

phase voltage vc) and vcd (the in-phase component of injection

phase voltage vc), respectively. It is now possible to define

feedback loops and proportional-integral (PI) compensation

from (3) and (4) for the SSSC based on the automatic power 

flow control mode as follows  [19]Fig. 2.  Automatic power flow control diagram for SSSC. 
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For modeling of automatic power flow control, the

associated equations can be represented in terms of s,

(synchronous speed of system) is, vs (the sending-end

voltage), vr (the receiving-end voltage), re (the transmission

line resistance), and xe (transmission line reactance plus

leakage reactance of connected transformer) in per unit as 

follows (see Fig. 1). 
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B. Line impedance compensation mode 

The internal control scheme based on the line impedance

compensation mode is shown in Fig. 3. For the operation of 

the line impedance compensation mode, the transmission line

currents isa, isb, and isc are first transformed by Park’s

transformation [1] into d-q axes components id and iq in a 

synchronously rotating reference frame. Then, the peak value
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of the current vector 22
qd ii  is calculated. The desired 

magnitude
pkcv ,

of the compensating voltage vector is now

determined by multiplying the magnitude of the current

vector 22
qd ii  by the factor 

dcV/22

CX

 and the total

commanded value of capacitive reactance , and the result

is the modulation index mi for the sinusoidal PWM inverter

[8].
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Fig. 3.  Internal control based on line impedance compensation mode. 

Also, there are an inner power control loop and an outer

voltage control loop. The dc capacitor voltage Vdc is fed back 

and subtracted from the reference value V  to form the 

voltage error 

*
dc

V
 in the outer loop, which is used to produce

the commanded power P*. The action of the SSSC in 

maintaining a constant voltage Vdc at steady state ensures that 

no real power is exchanged between the inverter and the 

transmission line, thereby ensuring that the line current leads

the injected voltage by 90 . Meanwhile, the instantaneous

real power Pr at the ac terminal of the inverter is fed back and

subtracted from the commanded power P* to form the error 

P for the inner loop, which is thereafter converted to the

commanded phase angle for the PWM inverter after 

passing through the power/angle conversion block and PI

compensator. For the detailed dynamics of the feedback 

regulator in Fig. 3, the associated differential equations are 

given in [8] and [16].

C. Case study

Example-1

To evaluate the dynamic performance of the SSSC with

internal control (by automatic power flow control mode), a

three phase short circuit of 100 ms is applied to the receiving-

end in Fig. 1 at t=1 s. The generator at the sending-end

operates with a pre-fault rotor angle of 53.6  in a steady-state 

operating point of (Pt=1.0 pu, Qt=0.59 pu). The result in Fig.

4 shows that the SSSC internal control improves the damping

performance of the system effectively. 
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Fig. 4.  A 100 ms three phase short circuit test:  [ ].

III.   EXTERNAL CONTROL OF SERIES FACTS DEVICE 

The objective of the external controller is to give a 

solution for the overall system optimization by providing

well-established supplementary controls and adaptive

reference changes to the internal controller. Focusing on the

SSSC based on the line impedance compensation mode,

design issues for the external controller are discussed in this

section.

A. Selection of input signals

Damping is improved by adding an external control loop

to the compensator, but a remaining open question is the

selection of the input signals for the external loop [21]. It is

suggested in [20] that the speed deviation signal  from a 

nearby generator somewhere in a power system could be used 

to generate the supplementary control signal
CX . The SSSC 

can be placed at some distant location forming the remote

feedback loop, and in addition to , the active power 

deviation signal
SP is also considered as an input to the

external controller as shown in Fig. 5. This is therefore a dual

input-based controller design.

CsT1

1

W

WC

sT1

sTK

Filtering Damping

Controller

CsT1

1

CsT1

1

pK

Filtering

CsT1

1

+

+

Damping

Gain

SSSC

Internal

controller

 Fig. 5.  External controller with two inputs. 
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C. Case studyThe active power deviation signal  exhibits the

derivative behavior of the speed deviation signal

SP

from

the dynamic swing equations [26] as shown in (6)~(8).
Example-2

The dynamic performance of the external controller is

evaluated by a 100 ms three-phase short circuit applied to 

receiving-end as shown in Fig. 1 at t=1 s. However, there are 

two transmission lines flowing the same amount power

between the sending and receiving-ends. The generator at the 

sending-end operates with a rotor angle of 16.9  (Pt=0.25 pu, 

Qt=0.16 pu) at the pre-fault steady-state operating point. The 

results are shown in Fig. 6 for the PI based linear controller

and Fig. 7 for the ACD based nonlinear intelligent controller. 
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where M is the machine inertia coefficient, P is the 

mechanical power, Pe is the electrical power, D is the 

machine-damping coefficient, and subscript i is the generator 

number at each local system.

From the Barbalat lemma [27] (which states that if a 

function f: [0, )  is uniformly continuous and bounded,

then it follows that / t  0 as t ), the convergence of

 in dynamics is guaranteed as long as 
SP is bounded 

within some stability limits. Its usefulness is therefore 

theoretically feasible, and the result given in section III-C

shows that the dual inputs (  and 
SP ) can provide more

effective damping compared to the case when the external 

controller uses only  as one input. 
Fig. 6.  Dynamic performance: comparison of external controller 
(linear PI compensator) with dual input and one input.

B. Selection of control methodologies 

0 1 2 3 4 5 6 7 8

5

10

15

20

25

30

Time [s]

 [
D

e
g
re

e
]

w ithout external controller

w ith external controller (adaptive  critic designs
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The linear PI compensator in Fig. 5 operates well at one

particular operating point where the external controller has 

been tuned. In other words, its transient and dynamic

performances might be degraded at any other operating point, 

or its parameters have to be re-tuned. Instead of a linear 

controller tuned by an ad-hoc approach, the following various 

advanced control techniques can be applied to the controller 

design.

Nonlinear control 

Optimal control 

Robust control 

Model reference adaptive control 

Hybrid control 
Fig. 7.  Dynamic performance of the ACD based nonlinear-intelligent 
optimal controller. 

Intelligent control, etc. 

As a nonlinear optimal-intelligent control method, the 

adaptive critic designs (ACD) algorithm [28]-[36] has been 

successfully applied for the design of the external controller

[20]. The study carried out in [20] proved that the functional 

operations by the external controller for a FACTS device can 

contribute towards eventual hierarchical control and possible 

global dynamic optimization in large-scale power networks. 

As mentioned in section III-A, the result in Fig. 6 proves 

that the external controller with dual inputs (
SP  and )

has a better damping performance than with only one input 

( ). Fig. 7 shows that the well-designed optimal-

intelligent controller (by the ACD algorithm reported in [20]) 

improves the system dynamic damping performance very

effectively.
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IV. CONCLUSIONS Example-3

For the case of a transmission line change in practice, the 

transient performance of the optimal-intelligent controller is 

tested by applying step changes in the value of  (reference 

input of the internal controller in Fig. 3) as shown in Fig. 8.

The first reference value  of 0.089 pu is decreased to 0.05 

pu at t=1 s and restored to the original value of 0.089 pu at 

t=10 s. The result in Fig. 9 shows that the ACD based

optimal-intelligent controller still works for effective 

dynamic transient response. In case that the operating

condition is changed, the new correct value of  can be 

calculated by formulating the corresponding sending and 

receiving-end active powers (  and ) as given in (9) or 

by forming look-up tables. 

CX

X

CX

C

sP rP

This paper presented an overview of internal and external

control schemes for the switching converter type based series 

flexible ac transmission system (FACTS) device, which is the 

static synchronous series compensator (SSSC).  The internal 

control was implemented based on the automatic power flow 

control mode and line impedance compensation modes. Also,

it was shown that external control could give a solution for

overall optimization for a dynamic power system by

providing supplementary controls. With appropriately

selected input variables, various advanced control techniques 

can be applied for the design of external controllers.
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