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Fatigue Testing of a Composite Propeller Blade Using
Fiber-Optic Strain Sensors

Virgil E. Zetterlind III, Steve E. Watkins, Senior Member, IEEE, and Mark W. Spoltman

Abstract—The performance of surface-mounted extrinsic
Fabry–Perot interferometric (EFPI) sensors during a seven-
teen-million-cycle, high-strain fatigue test is reported. Fiber-optic
strain measurements did not degrade during the test. The sensors
were applied to a composite propeller blade subject to a constant
axial load and a cyclic bending load. Strain measurements were
taken at four blade locations using two types of EFPI sensors and
co-located electrical resistance strain gages. Static and dynamic
strain measurements were taken daily during the 65 days of this
standard propeller-blade test. All fiber-optic sensors survived the
fatigue test while most of the resistive gages failed. The suitability
of fiber-optic monitoring for fatigue testing and other high-cycle
monitoring is demonstrated.

Index Terms—Aerospace systems, fatigue testing, fiber-optic
strain sensors, smart structures.

I. INTRODUCTION

F IBER-OPTIC sensors are becoming important tools in ma-
terial and structural testing. They are used for measurement

of strain and temperature to assess load performance, struc-
tural integrity, and cure conditions [1], [2]. Their advantages
include environmental ruggedness which offers the potential of
long-term monitoring and operation in extreme conditions [3],
[4]. Also, fiber-optic sensors are well suited for use with com-
posite materials due to their small size and temperature toler-
ances. The resulting smart-composite-structures technology is
an active area of research. In particular, Fabry–Perot interfer-
ometric fiber-optic sensors have been used in many composite
applications [5], [6]. Their performance and accuracy have been
favorably compared to that of traditional electrical resistance
strain gages in both static and dynamic applications [7]. The in-
formation from these smart systems [8] can monitor structural
performance [9], control composite cure processes [10], assess
delamination damage [11], [12], and characterize wing behavior
[13]. Coupon tests of embedded Bragg-grating fiber-optic sen-
sors have shown that the sensors do not degrade through one
million cycles for less than 250strain deltas [9]. The fatigue
characteristics of intrinsic Bragg-grating sensors may not be
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representative of Fabry–Perot sensors since the latter sensors re-
quire bonding of optical fibers and capillary tubes. Some work
has been done evaluating Fabry–Perot fiber-optic sensors for
aerospace fatigue tests [14] and for civil engineering structures
[15]. In the latter test, the Fabry–Perot interferometric fiber-
optic sensors survived 100 000 cycles. However, more work is
needed to establish confidence in the fiber-optic sensors them-
selves with regard to fatigue life-time and performance.

One aerospace application of composites is in the manu-
facture of propeller blades from Kevlar® and carbon-graphite.
Composite propeller blades offer many advantages over more
common aluminum blades including lighter weight, lower
inertia, better reparability, and longer service life. Fatigue
testing of propeller blades is required per FAA regulations [16]
and follows a standard test method. Strain sensing is required
to establish the required loads for a fatigue test and can be
used to monitor the part during the test. However, cycle life
for resistive strain gages decreases dramatically as the strain
delta increases. Strain deltas of 2000–4000strain are not un-
common. Consequently, traditional resistive strain gages often
fail early in testing and the general structural performance is
inferred from load and deflection control. The ability to directly
measure local strains throughout a test, and particularly during
failure, can provide valuable insight into the blade behavior.

In this study, an experimental investigation of the sensor
performance is done during a fatigue test of a composite
propeller blade. The blade was subject to a constant axial load
and a cyclic bending load. The loading and test parameters
were the same throughout the test, i.e., the blade did not fail
during the test. Strain measurements from surface-mounted
extrinsic Fabry–Perot interferometric (EFPI) fiber-optic sensors
are presented and compared to measurements from electrical
resistance gages. The sensors at different locations on the blade
experienced a variety of strain conditions. The extreme case
was a cyclic strain of roughly 0–4000strain. The fiber-optic
measurements were consistent with the electrical measure-
ments and their response suffered no apparent degradation
during the 17 725 000-cycle fatigue test. None of the fiber-optic
sensors failed, however most of the electrical resistance gages
did fail. These fiber-optic sensors can enhance the procedure
for propeller fatigue tests and serve reliably in other high
cycle applications. EFPI sensors have already been shown to
provide strain information during structural failure [17]. The
suitability of fiber-optic sensors, especially EFPI sensors, for
structural testing and monitoring applications is demonstrated.
In particular, the sensors excelled in a high-strain environment
and provided consistent measurements multi-million cycles.

1530-437X/03$17.00 © 2003 IEEE
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Previous work, as noted in the literature, was limited to
one-million-cycle, low-strain testing of Bragg-grating fibers [9]
and to 100 000-cycle applications of Fabry–Perot sensors [13].

II. FIBER-OPTIC STRAIN INSTRUMENTATION

A. Commercial Implementation Issues

Fiber-optic-based smart instrumentation for composite pro-
pellers has three potential areas of commercial application. The
first is quality control during cure. Cure consistency can be
improved by direct in-situ measurement of internal conditions
[10]. Preliminary experiments show that fiber-optic sensors sat-
isfy measurement needs in an industrial setting and that they
do not impose significant manufacturing and testing concerns
[18]. The second application is developmental testing such as
the fatigue test described in this work. The required fatigue and
failure tests produce high cycle and high strain levels. The time
and effort needed to carry out these tests could be reduced by use
of sensors with longer fatigue life. Implementation and the as-
sociated instrumentation investment require confidence that the
sensors have the needed performance. The third application is
long-term health monitoring. A permanent sensing system could
reduce maintenance costs by reducing the labor involved with
periodic inspections while providing pilots an early indication
of a structural problem before the onset of a catastrophic failure.
Again, the sensors must be shown to have good fatigue and en-
vironmental characteristics, as well as other technical solutions
for signal processing and spinning platform issues, for commer-
cial implementation and regulatory acceptance.

B. EFPI Fiber-Optic Sensors

An EFPI fiber-optic sensor is schematically shown in
Fig. 1(a). The EFPI fiber-optic sensor utilizes multiple-beam
interference [19] between two polished end-faces of a single
mode fiber and a multimode fiber [20]–[25]. A capillary tube
is bonded to the two fibers and maintains the alignment of their
end faces. The tube is bonded to a material under strain. As the
material and attached tube is strained, the reflected interference
signal varies in response to changes in cavity spacing. The
sensor has little transverse coupling and effectively evaluates
the axial component of strain [26]. The gage length is de-
termined by the length of this capillary tube rather than the
cavity and can be built to varying lengths. A variation of this
configuration is an extensometer in which the capillary tube is
not bonded to the optical fibers. Instead, the fibers are bonded
to the material under test at discrete points. The gage length
is then determined by the effective distance between bonding
points. The extensometer can measure a larger strain than the
standard EFPI sensor, but the extensometer requires special
handling during installation and its accuracy depends on the
bonding characteristics.

Fig. 1(b) displays the schematic of source/detector system for
the EFPI fiber-optic sensors. An LED source provides the input
light beam into the single mode fiber. A coupler and wavelength
demodulator branches the reflected interference fringes to a de-
tector. The interference response at several wavelengths can de-
termine the absolute cavity displacement and hence the absolute
strain.

(a)

(b)

Fig. 1. (a) Extrinsic Fabry–Perot interferometric (EFPI) sensor with an
external air-gap cavity and coated high-reflectance fiber surfaces. (b) EFPI
fiber-optic sensor and support instrumentation for absolute strain measurement.

The fiber-optic instrumentation used in this experiment was
manufactured by Luna Innovations (formerly F&S, Inc.). Stan-
dard EFPI AFSS sensors and prototype EFPI extensometer sen-
sors were used. The first type were high-finesse sensors with
gage lengths of approximately 8 mm. The second type were
also high-finesse sensors. The effective gage lengths for the ex-
tensometer-type sensors were set during installation and were
calculated as approximately 4.5 mm. Both sensors used a multi-
plexed AFSS system. Absolute strain was demodulated for each
sensor from multiple measurements at several different wave-
lengths around 830 nm. The system was capable of scanning
multiple sensors at 1 Hz per sensor channel.

C. Propeller Instrumentation

A Kevlar® composite propeller blade was the focus of this fa-
tigue study [27]. The blade is typical of a design used on com-
muter turbo-prop aircraft and its length was roughly 1.5 m. The
blade consists of a composite laminate shell formed around a
foam core and bonded to an aluminum plug. Retention of the
composite to the metal plug is strengthened by using a glass
wrapping over the Kevlar® in the plug region. To simulate ex-
pected flight forces, the FAA fatigue test [16] subjects the blade
to a steady, centrifugal load along the blade’s center axis cou-
pled with a steady, vibratory bending load.

Strain sensors were surface mounted on both sides of the pro-
peller, i.e., camber and face. Standard EFPI sensors, EFPI exten-
someter sensors, and electrical resistance strain gages were ap-
plied with epoxy according to manufacturers’ instructions. They
were grouped at six locations near the base of the propeller and
aligned as near the center of radius as possible. In total, four
standard EFPI sensors and two prototype EFPI extensometers
were surface mounted to the composite propeller blade. Fig. 2
illustrates sensor placement. Note that the tip of the propeller
blade was removed and a special fixture attached for load appli-
cation.

A resistive strain gage was co-located at each station with
fiber-optic sensors for strain comparison. Electrical resistance
strain gages are the typical instrumentation for fatigue tests
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Fig. 2. Sensor locations on propeller blade during fatigue test. Resistive
sensors were located on the camber and the face of the blade at all six positions.
Standard EFPI sensors were located on the camber at positions #4, #5, and #6
and on the face at position #6. Extensometers were located on the camber at
position #4 and the face at position #6.

Fig. 3. Propeller fatigue test apparatus showing directions of applied loads.

and are used primarily during the beginning of the tests. They
are not expected to survive the entire test. These sensors were
Micro-Measurements model EA-13-250-BF-350 strain sensors.
They had a nominal resistance of 350and a gage length of
6.35 mm. The measurement instrumentation was a Hewlett
Packard Wheatstone bridge system. Besides the four resistive
gages co-located with fiber-optic sensors, eight other resistive
gages were used at other station locations to calibrate the test.

III. PROPELLERFATIGUE TEST

A. Fatigue Test Setup

Fig. 3 is a diagram of the fatigue test setup. The propeller was
mounted horizontally in a test hub. A grip box was attached to
the tip end so that both axial (or centrifugal) and bending loads
could be applied. A steady centrifugal load was used in con-
junction with a steady and alternating bending load. The sensors
were zeroed with only centrifugal loading, i.e., no bending load.
The bending loads were maintained using the Hewlett Packard
control system in load-control mode. The hydraulic actuator
used to induce the bending loads operated at 4 Hz.

The test was conducted over 65 calendar days during which
17 725 000 cycles were applied to the propeller blade. The test
ran continuously as much as possible. When down time was
required, the propeller remained in the test fixture. A standard
fatigue test is conducted to 5 000 000 cycles, but this test was

Fig. 4. Static strain at camber location #4 for minimum bending load.

Fig. 5. Static strain at camber location #4 for maximum bending load. All
sensors show good correlation.

allowed to run past 17 000 000 cycles. The propeller blade did
not fail.

Static and dynamic strain measurements were taken every
business day for which the test was running. Static readings
were taken for both fiber-optic sensors and resistive gages while
the cyclic loading was interrupted. These readings were taken
for two conditions: strain with maximum bending load applied
and strain with minimum bending load applied. Dynamic read-
ings were also recorded once per day for 4-Hz cyclic loading.

B. Strain Readings at Camber Locations #4 and #5

Figs. 4 and 5 show the total static strain measurements at
camber location #4 for minimum and maximum bending loads.
Fig. 6 shows the delta strain for each sensor, i.e., the difference
in the strain for maximum and minimum loading conditions.
The resistive gage at this station failed near 8.8 million cycles.
Examination of the plots shows that all sensors correlated well
in terms of trends and order of strain magnitude. Since all sen-
sors could not be exactly co-located, i.e., placed on the center ra-
dius, some variation in strain magnitude and delta was expected.
Measurements for camber location #5 are not shown as they are
similar to those of camber location #4 and the resistive sensor
at camber location #5 failed too early in the test for any mean-
ingful comparison.

The results of dynamic strain measurement at the camber lo-
cation #4 for the standard EFPI sensor are shown in Fig. 7. This
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Fig. 6. Strain deltas for camber location #4. The EFPI and resistive
measurements are well correlated and the extensometer and resistive
measurements are somewhat correlated.

Fig. 7. Dynamic strain for standard EFPI sensor at camber location #4 (7.878
million cycles). The envelope of the dynamic data gives the maximum and
minimum strain.

data was taken at about the 7.9 million cycle point in the test.
Note that the data envelope defines the maximum and minimum
strains over time. Some stray data points were caused when
the automatic gain control failed to adjust properly in the dy-
namic environment and the instrumentation returned full-scale
strain readings erroneously. The AFSS-PC instrumentation rec-
ognized the problem and returned errors for these points. These
data points are not included in the figure and represented less
than five percent of the data points taken dynamically. Com-
parison of the dynamic data for the standard EFPI sensor at
camber location #4 to dynamic data from other stations showed
that the frequency of error readings decreased with decreasing
delta strain. While the AFSS-PC system is not designed for
high-speed cyclic testing, the results show it can be adapted for
such work—albeit with some limitations.

C. Strain Readings at the Camber and Face Location #6

Figs. 8–10 show the total static strain measurements for
minimum and maximum bending loads and the delta strains at
the camber location #6. The former measurements show minor
trends in opposite directions. However, the strain deltas closely

Fig. 8. Static strain at camber location #6 for minimum bending load.

Fig. 9. Static strain at camber location #6 for maximum bending load.

Fig. 10. Strain deltas for camber location #6. The resistive gage failed at
about 2.5 million cycles. The standard EFPI and resistive measurements show
excellent correlation until resistive gage failure.

matched while the resistive strain sensor was operating. The
resistive gage failed at about 2 500 000 cycles.

Three sensors were positioned at face location #6. The resis-
tive gage at this station survived the entire test. As can be seen
in Figs. 11–13, the extensometer sensor and resistive gage had
very good correlation in strain deltas, but a large offset in ab-
solute measurements. The standard EFPI sensor does not show
good correlation to the other sensors and appeared to under re-
port strain changes. This behavior was evident from the begin-
ning of the test and consistent throughout.



ZETTERLIND et al.: FATIGUE TESTING OF A COMPOSITE PROPELLER BLADE 397

Fig. 11. Static strain at face location #6 for minimum bending load.

Fig. 12. Static strain at face location #6 for maximum bending load.

Fig. 13. Strain deltas for face location #6. The extensometer and resistive
measurements show excellent correlation.

IV. DISCUSSION

A. Performance of Electrical Resistance Gages

Four resistive gages were placed at stations with fiber-optic
sensors. Only one survived the entire test. Failures occurred at
less than 80 000 cycles for the sensor at camber location #5, at
2 542 249 cycles for camber location #6, and at 8 776 959 cycles
for camber location #4. The surviving gage at face location #6
had an average delta strain of 2000strain and maximum strain
of 2100 strain. The fatigue test had eight other resistive gages

TABLE I
SUMMARY OF ELECTRICAL RESISTANCEGAGE FAILURES

TABLE II
AVERAGE STANDARD DEVIATION AND VARIANCE AT MAXIMUM AND

MINIMUM DISPLACEMENT FOREFPI SENSORS

at other locations. Only two of these additional gages survived
the entire test. Of the two, one gage was in the lowest strain
(delta and absolute) portion of the blade at camber location #1
(average delta of 1400strain and maximum of 3000) and the
other was at face location #4 (average delta of 2300strain and
maximum of 2500). Table I shows the breakdown of gage fail-
ures. Note that the sensor lifetime generally depended on both
the average delta and maximum strain. Those sensors subjected
to a higher maximum strain were more likely to fail than an-
other sensor subject to a similar delta but lower maximum. This
failure behavior is typical for this type of test.

B. Performance of Fiber-Optic Sensors

All of the fiber-optic sensors survived this high-cycle fatigue
test with no apparent degradation. The measured strain shows
only small variations over the course of the test even for the
maximum bending loading. Since the blade did not fail, uni-
form strain results are expected. In a load-controlled test, any
changes in the blade stiffness would cause strains to change as
the controller maintains applied load.

Standard deviation and variance were calculated for each set
of fiber-optic sensor readings and average values are given in
Table II. Standard deviation and variance were highest for the
maximum bending load data and significantly lower for the min-
imum bending load data. Although the maximum-load standard
deviation values were higher, the averages are quite acceptable
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and agree with the resistive data available, particularly in terms
of delta strain.

The fiber-optic strain values generally agree with the corre-
sponding resistive gage values. The strain deltas were consis-
tent. Some of the absolute maximum and minimum bending
strains do show discrepancies. The small strain offsets can be at-
tributed to slight positional differences and to time differences.
The fiber-optic and resistive measurements were taken within
a few seconds of each other, but, even in the static case, some
drift always occurs in the applied load. A large offset of about
2000 strain occurred for the prototype extensometer and the
resistive gage at face location #6. This offset is too large to be
a matter of position. However, the strain deltas for this case had
one of the best correlations. The cause is unclear, but it may be
related to errors in the gage attachment or to the effective gage
length calculation.

V. CONCLUSION

EFPI fiber-optic strain sensors and resistive strain gages were
compared in a fatigue test of a composite propeller blade. The
test followed a standard method that meets FAA regulations
and exceeded the standard cycle count by a factor of three.
Both static and dynamic data between fiber-optic sensors and
co-located resistive gages showed good correlation. All strain
deltas were comparable, although some absolute strain offsets
occurred. Most offsets were attributed to small positional dif-
ferences and to load variations. Furthermore, the most signifi-
cant result was that all fiber-optic sensors gave consistent mea-
surements throughout the long-term fatigue test. The testing and
qualification procedures of composite aircraft propellers must
follow prescribed guidelines to ensure safety and performance.
The ability of fiber-optic sensors to directly measure local strain
up to and during failure can provide valuable insight that is
not typically available from traditional sensors. This work is a
demonstration of fiber-optic instrumentation in an industrial set-
ting.

The investigation showed that EFPI fiber-optic sensors can
provide reliable measurements during a high-cycle, high-strain
fatigue test. During this 17 725 000-cycle test, none of the
fiber-optic sensors displayed any apparent degradation in
performance. The most extreme case was a constant strain
of 2000 strain in conjunction with a cyclic strain of 2000

strain. In comparison, nine of twelve resistive strain sensors
failed completely. Previously published studies of sensor
fatigue performance were done for significantly lower cycle
counts. This study provides a needed encouragement for
fiber-optic-sensor implementation in industrial processes and
products. For fatigue tests and other high-cycle applications,
fiber-optic sensors can provide monitoring for the duration of a
test or the lifetime of the structure.
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