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Software Engineering
Metrics for COTS-
Based Systems

T
he paradigm shift to commercial off-the-shelf
components appears inevitable, necessitat-
ing drastic changes to current software devel-
opment and business practices. Quality and
risk concerns currently limit the application

of COTS-based system design to noncritical applica-
tions. New approaches to quality and risk manage-
ment will be needed to handle the growth of CBSs. 

Our metrics-based approach and software engi-
neering metrics can aid developers and managers in
analyzing the return on investment in quality improve-
ment initiatives for CBSs. These metrics also facilitate
the modeling of cost and quality, although we need
more complex models to capture the intricate rela-
tionships between cost and quality metrics in a CBS.

COTS COMPONENTS
With software development proceeding at Internet

speed, in-house development of all system components
may prove too costly in terms of both time and money.
Large-scale component reuse or COTS component
acquisition can generate savings in development
resources, which can then be applied to quality improve-
ment, including enhancements to reliability, availabil-
ity, and ease of maintenance.

Prudent component deployment can also localize
the effects of changes made to a particular portion of
the application, reducing the ripple effect of system
modifications. This localization can increase system
adaptability by facilitating modifications to system
components or integration code, which are neces-
sary for conforming to changes in requirements or
system design.

COTS component acquisition can reduce time to
market by shifting developer resources from compo-
nent-level development to integration. Increased mod-
ularity also facilitates rapid incremental delivery,
allowing developers to release modules as they inte-
grate them and offer product upgrades as various com-
ponents evolve. 

These advantages bring related disadvantages,
including integration difficulties, performance con-
straints, and incompatibility among products from dif-
ferent vendors. Further, relying on COTS components
increases the system’s vulnerability to risks arising
from third-party development, such as vendor
longevity and intellectual-property procurement.
Component performance and reliability also vary
because component-level testing may be limited to
black-box tests, and inherently biased vendor claims
may be the only source of information.1

Such issues limit COTS component use to noncrit-
ical systems that require low to moderate quality.
Systems that require high quality cannot afford the
risks associated with employing these components.

METRICS FOR COTS-BASED SYSTEMS
In deciding between in-house development and

COTS component acquisition, software engineers
must consider the anticipated effect on system qual-
ity. We can define software quality in several ways:

• satisfaction level—the degree to which a software
product meets a user’s needs and expectations;

• a software product’s value relative to its various
stakeholders and its competition;

The growing reliance on commercial off-the-shelf components for large-
scale projects emphasizes the need for adequate metrics to quantify 
component quality. 
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• the extent to which a software product exhibits
desired properties;

• the degree to which a software product works
correctly in the environment it was designed for,
without deviating from expected behavior; and

• the effectiveness and correctness of the process
employed in developing the software product.2

Quality factors and quality metrics
Norman Schneidewind discusses quality in terms of

quality factors and quality metrics.3 He defines a qual-
ity factor as “an attribute of software that contributes
to its quality, where quality is the degree to which soft-
ware meets customer or user needs or expectations.”
For example, Schneidewind mentions reliability as a
quality factor. Direct measurement of quality factors
is generally not feasible, so we often measure them indi-
rectly—for example, by counting the number of fail-
ures reported for a particular module.

Schneidewind defines a quality metric as “a func-
tion whose inputs are software data and whose out-
put is a single numerical value that can be interpreted
as the degree to which software possesses a given
attribute that may affect its quality.” In contrast with
quality factors, which are user-oriented, quality met-
rics are developer-oriented because developers can use
them to estimate quality at a very early stage in the
software development process. Before using metrics
for design or integration decisions, software engineers
should validate them, establishing a statistical rela-
tionship between metrics and quality factors and
ensuring that the metrics provide a correct estimate
of the attribute visible to the user.

In addition to traditional software metrics, COTS-
based systems require metrics that capture attributes
such as integration complexity and performance.
Combining component-level metrics to obtain system-
level indicators of quality is a challenging issue that is
further complicated by COTS components’ black-box
nature, which masks their internal workings and
restricts system developers to accessing their interfaces. 

To be thorough, we should test the operational pro-
files of both the COTS components with respect to
both their own operational profiles and that of the
overall system. But when inaccessibility of the source
code for some components prevents such compre-
hensive testing, we can use metrics to guide the soft-
ware development process. In addition to metrics data,
certain aspects of the software product impact and
guide software development decisions: 

• the system’s expected functionality and the cus-
tomer’s requirements;

• the makeup of the various organizations involved
in the project and the level of maturity and capa-
bilities of the participating teams;

• the developers’ use of innovative processes
and the methods they adopt as a part of
the software engineering environment to
manage cost and value, including details
of development process models such as the
waterfall or spiral models; and

• features of the preexisting COTS compo-
nents that the system will use.

Risk management
The unpredictable quality of third-party soft-

ware creates a unique set of risks for software
systems using COTS components. The CBS
development process, then, should include risk man-
agement, which identifies high-risk items that can
jeopardize system quality and attempts to resolve
them as early as possible to ensure high quality and
rapid delivery. The two major steps in risk manage-
ment are

• risk assessment: assess the probability and mag-
nitude of loss for each risk item and prioritize
risk items according to their expected loss; and 

• risk control: generate and execute plans to resolve
the risk items.

Developers apply these two steps repeatedly through-
out the software development life cycle.4 

In CBSs, risk management focuses on evaluating
alternative components that meet system require-
ments, either selecting the component that fits best or
choosing in-house development. In either of these
tasks, developers or integrators can decide to relax
the requirements to allow a particular choice, using
risk management to determine the extent of tolerable
relaxation.5

Risk and quality-management metrics
Metrics can guide risk and quality management,

helping to reduce risks encountered during planning
and execution of software development, resource
and effort allocation, scheduling and execution, and
product evaluation.4 Risks can include performance
issues, reliability, adaptability, and return on invest-
ment. Risk reduction can take many forms, such as
using component wrappers or middleware, replac-
ing components, relaxing system requirements, or
even issuing legal disclaimers for certain failure-
prone software features. Metrics let developers iden-
tify and isolate these risks, then take corrective
action.

The key to success is selecting appropriate metrics—
especially metrics that provide measures applicable
over the entire software cycle and that address both
software processes and products. In choosing metrics,
developers should consider several factors:
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• the intended use of the metrics data;
• the metrics’ usefulness and cost-effectiveness;
• the application’s functional characteristics, phys-

ical composition, and size;
• the installation platform;
• the software engineering environment of the

development phase;
• the software engineering environment of the inte-

gration phase; and
• the software development or maintenance life-cycle

stage of both the components and the system.6

Table 1 shows our set of 13 system-level metrics for
CBS software engineering. These metrics help man-
agers select appropriate components from a reposi-
tory of software products and aid in deciding between
using COTS components or developing new compo-
nents. The primary considerations are cost, time to
market, and product quality.

We can divide these metrics into three categories:
management, requirements, and quality. 

Management. These metrics include cost, time to
market, system resource utilization, and software
engineering environment. Developers can use man-

agement metrics for resource planning or other man-
agement tasks or for enterprise resource planning
applications. 

• The cost metric measures the overall expenses
incurred during the course of software develop-
ment. These expenses include the costs of com-
ponent acquisition and integration and quality
improvements to the system. 

• The time-to-market metric measures the time
needed to release the product, from the begin-
ning of development and COTS component
acquisition to delivery. A modified version of this
metric can evaluate the speed of incremental
delivery, measuring the amount of time required
to deliver a certain fraction of the overall appli-
cation functionality. 

• The software engineering environment metric
measures the capability of producing high-quality
software and can be expressed in terms of 
the Software-Acquisition Capability Maturity
Model.7

• System resource utilization determines the per-
centage of target computer resources the system
will consume.

Requirements. Developers use requirements metrics
to measure the CBS’s conformance and stability so
they can monitor specifications, translations, and
volatility, as well as the level of adherence to the
requirements. COTS components are often unstable,
and component-level stability can affect requirements
stability if developers adapt requirements to incor-
porate changes to selected components.

Quality. These metrics include adaptability, com-
plexity of interfaces and integration, integration test
coverage, end-to-end test coverage, reliability, and
customer satisfaction. 

• Adaptability measures a system’s flexibility, eval-
uating its ability to adapt to requirements
changes, whether as a result of system redesign
or to accommodate multiple applications. 

• Complexity of interfaces and integration provides
an estimate of the complexity of interfaces, mid-
dleware, or glue code required for integrating dif-
ferent COTS products. Overly complex interfaces
complicate testing, debugging, and maintenance,
and they degrade the system’s quality.

• Integration test coverage and end-to-end test cov-
erage indicate the fraction of the system’s func-
tionality that has completed those tests, as well
as the effort testing requires.8 Developers can use
known measures to evaluate coverage, such as
statement or path coverage, depending on the
level of access to system source code.

Table 1. System-level metrics for component-based systems.

Category Metric Evaluates or measures  
Management Cost Total software development expendi-

ture, including costs of component 
acquisition, integration, and quality 
improvement 

Time to market Elapsed time between development start
and component acquisition to software 
delivery 

Software engineering Capability and maturity of the environ-
environment ment in which the software product is 

developed 
System resource Use of target computer resources as a
utilization percentage of total capacity 

Requirements Requirements Adherence of integrated product to
conformance defined requirements at various levels 

of software development and integration
Requirements stability Level of changes to established soft- 

ware requirements 

Quality Adaptability Integrated system’s ability to adapt to 
requirements changes 

Complexity of interfaces Component interface and middleware or
and integration integration code complexity 

Integration test Fraction of the system that has under-
coverage gone integration testing satisfactorily 

End-to-end test Fraction of the system’s functionality 
coverage that has undergone end-to-end testing 

satisfactorily  
Fault profiles Cumulative number of detected faults 
Reliability Probability of failure-free system opera-

tion over a specified period of time 
Customer satisfaction Degree to which the software meets 

customer expectations and requirements



• Reliability estimates the probability of fault-free
system operation over a specified period of time.
To obtain this metric, developers use techniques
similar to the techniques they use in traditional
systems, including fault injection into the inte-
gration code. 

• Customer satisfaction evaluates how well the
software meets customer expectations and
requirements. Beta releases can help estimate pre-
dictors of customer satisfaction before final prod-
uct delivery. Sample predictors include schedule
requirements, management maturity, customer
culture, marketplace trends, and the customer’s
proficiency. Such estimates can guide develop-
ment decisions such as release scheduling and can
aid in developing a test plan that accurately
reflects the product’s field use.

CBS metrics differ from traditional metrics in that
they do not depend on the components’ code size,
which is generally not known. If developers require a
size measure, they can use alternate measures such as
the number of use cases—business tasks the applica-
tion performs—that a given component supports. 

CBS metrics also approach time to market differ-
ently. Component acquisition changes the concept of
time to market because developers may not know the
component development time and cannot incorporate
it into time calculations. For CBSs, a simple delivery
rate measure can replace the time-to-market measure.
One proposed measure divides the number of use
cases by the elapsed time in months.9

Because our metrics are interdependent, under-
standing the relationships between them can aid deci-
sion making regarding CBS quality-improvement
investments. The most obvious relationship is between
cost and quality metrics, such as reliability. However,
more subtle relationships exist, such as among time to
market, test coverage, and reliability. Delayed product
release because of testing and debugging can result in
reduced revenues or, in extreme cases, loss of the mar-
ket to a competitor with an earlier release. On the other
hand, premature product release can lead to lower reli-
ability. Understanding the relationships among time to
market, test coverage, and reliability can help in select-
ing a suitable release schedule.

Developers can combine the cost metric and the sys-
tem resource utilization metric to determine whether
the budget allows purchasing additional computer
resources that will enhance the product’s quality.
Another effective strategy involves using the software
engineering environment in conjunction with the qual-
ity metrics to encourage vendors to improve their soft-
ware development process and adhere to standards,
thus increasing the likelihood that users will select
their component. 

COST OF QUALITY
The cost of quality (CoQ) represents the resources

dedicated to improving the quality of the product
being developed. For example, increasing or main-
taining reliability incurs costs that can be considered
the costs of reliability. The overall CoQ is the sum of
such costs plus other costs that we cannot directly
attribute to factors that quality metrics measure.
Quality costs, then, represent “the difference between
the actual cost of a product or service and what the
reduced cost would be if there were no possibility of
substandard service, failure of products, or defects in
their manufacture.”2

We concern ourselves with the cost of software qual-
ity (CoSQ) metric—corresponding to the cost metric
in Table 1—which we divide into two major types: cost
of conformance and cost of nonconformance. 

The cost of conformance derives from the amount
the developer spends on attempts to improve quality.
We can further divide conformance costs into preven-
tion and appraisal costs. Projects incur prevention costs
during activities targeted at preventing defects, such as
training costs, software design reviews, and formal qual-
ity inspections. Likewise, activities that involve mea-
suring, evaluating, or auditing products to assure con-
formance to quality standards and performance incur
appraisal costs. These activities include code inspections,
testing, quality audits, and software measurement activ-
ities such as metrics collection and analysis. 

The cost of nonconformance includes all expenses
the developer incurs when the system does not oper-
ate as specified. Internal failure costs stem from non-
conformance occurring before the product ships to
the customer, such as the costs of rework in pro-
gramming, defect management, reinspection, and
retesting. External failure costs arise from product
failure after delivery to the customer. Examples
include technical support, maintenance, remedial
upgrades, liability damages, and litigation expenses. 

Table 2 shows the various categories of software
quality costs for CBSs.
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Table 2. Software quality cost categories.

Category Typical costs of CBS software quality  
Appraisal costs Integration or end-to-end testing, quality audits, 

component evaluation, metrics collection, and 
analysis 

Prevention costs Training, software design reviews, process studies,
component upgrades 

Internal failure costs Defect management, design and integration rework,
component replacement, requirement relaxation 

External failure costs Technical support, maintenance, defect 
notification, remedial component upgrade or 
replacement
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CoQ and CoSQ models
In any development process, models that depict the

relationship between costs and quality can guide deci-
sions regarding investments in quality improvement.
Discussions of such models in the economics and man-
agement literature generally depict a nonlinear rela-
tionship between CoQ and quality.2 Accurate
cost-quality models can be invaluable to managers and
developers, guiding resource and cost management
and other aspects of the software development
process.

Figure 1a depicts the classic model of optimum
quality costs. In this model, which shows the rela-
tionship between the cost per good unit of product
and the quality of conformance, expressed as a per-
centage of total conformance, prevention and
appraisal costs rise asymptotically as the product
achieves complete conformance. 

Recent technological developments inspired a
revised model that reflects the ability to achieve very
high quality, or “perfection,” at finite costs. Shown in
Figure 1b, this model, proposed by Frank Gryna, has
two key concepts:

• moderate investments in quality improvement
result in a significant decrease in the cost of non-
conformance, and 

• focusing on quality improvement by defect pre-
vention results in an overall decrease in the cost
of testing and related appraisal tasks.

We can analyze these models in terms of our pro-
posed quality metrics. The quality of conformance
in the original model can represent one quality met-

ric, such as adaptability or reliability. Accordingly,
the vertical axis represents a CoSQ component—
namely, the portion of quality costs dedicated to
improving the particular quality factor. Intuitively,
the same nonlinear relationship should hold.
Increasing the investment in improving a certain
quality factor should increase the value of the corre-
sponding metric, and the amount of this increase
should taper off as the product achieves high quality
levels. “Perfect” quality may not be achievable at
finite costs, particularly in CBSs, where we cannot
accurately determine the quality and performance of
the COTS components. 

Although we may be able to determine the overall
CoQ with reasonable accuracy, determining the
amount dedicated to improving a particular quality
factor is difficult because all factors interrelate. For
quality metrics such as customer satisfaction, the rela-
tionship between cost and quality may be too com-
plex for such a simple model, as increased investments
in quality improvement may be invisible to the cus-
tomer. For example, users may find 95 percent relia-
bility satisfactory, making further investments in
reliability pointless. Further, customer satisfaction may
increase in jumps, resulting in a discontinuous cost-
quality curve, although empirical studies should ver-
ify this behavior.

Capability maturity models
Quality improvement’s return on investment depends

on the software engineering environment. Stephen
Knox discusses the cost of software quality based on
the Software Capability Maturity Model.10 The SW-
CMM maintains that a software development envi-
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ronment has a measurable process capability analogous
to industrial processes. The SW-CMM quantifies the
capability and maturity of the software development
process using five levels, ranging from a chaotic, ad hoc
development environment to one that is mature and
optimizing. These levels can also express the software
engineering environment metric we propose. Based on
the data presented, Knox makes two assumptions:

• The total cost of quality at SW-CMM Level 1
equals approximately 60 percent of the total cost
of development. 

• The total cost of quality will decrease by approx-
imately two-thirds as the development process
reaches SW-CMM Level 5, or full maturity. 

Figure 2 shows the various software cost-of-quality
categories, as well as the total cost of software qual-
ity, according to Knox, for the five SW-CMM levels.

A combination of Knox’s model and traditional
models provides a more accurate view of the CoQ in
CBSs. A three-dimensional model based on CoQ,
quality, and the software engineering environment can
help determine financially sound investments in qual-
ity, based on the development environment. In the case
of CBSs, where different vendors can have widely
varying software engineering environments, such a
model can help guide the vendor-selection process.

In place of Knox’s SW-CMM levels, we can use the
Software Acquisition Environment CMM to express
the software engineering environment.7 The levels of
acquisition maturity range from Initial, at Level 1, to
Optimizing, at Level 5. This model defines key process
areas for Levels 2 through 5, in which a key process
area states the goals the software must satisfy to
achieve each level of maturity. SA-CMM and SW-
CMM share a synergistic relationship, and we can use
them in parallel by defining a software engineering
environment metric with two weighted components,
one corresponding to each CMM.

Applying the metrics
One objective of evaluating costs of quality is to

determine ways to reduce them. A basic method
involves investing in prevention costs, with the goal
of eliminating nonconformance costs. As confidence
in system quality increases, we can afford reductions
in appraisal costs, leading to a reduction in total CoQ. 

We can approach investments in quality improve-
ment from the perspective of return on investment and
increased conformance to requirements such as relia-
bility,11 then use the metrics to evaluate the actual
quality improvement achieved as a result of a partic-
ular investment in software quality improvement.

Cost-benefit analysis of traditional software sys-
tems concludes that quality improvements yield the

greatest returns early in the life cycle.11 In CBSs, we
cannot make quality improvements during the early
stages of the acquired components’ development. To
compensate for this drawback, we must spread qual-
ity improvement efforts through the various stages of
system design and development. In the design phase,
such initiatives include 

• identifying cost factors and cost-benefit analyses
that address the unique risks associated with
CBSs, 

• determining the level of architectural match
between the application and the COTS compo-
nents, and 

• evaluating the complexity and cost associated
with integration, interoperability, and middle-
ware development. 

Our metrics can help decide between in-house
development and COTS acquisition and, if the latter,
how to select the most suitable component. In the
development phase, metrics can help estimate the costs
associated with the traditional development process.
During the entire life cycle, metrics can guide the esti-
mation of costs associated with the unique testing
requirements of COTS-based systems, such as inte-
gration testing, end-to-end testing, and thread testing.
After delivery, we can use cost metrics for trend analy-
sis of the COTS market.

I n the cost-benefit analysis of CBSs, we must avoid
premature judgment, as the benefits of COTS com-
ponent acquisition may materialize gradually. The

paradigm shift from conventional to COTS-based
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software engineering requires a considerable initial
investment. Short-term analysis results may favor in-
house development over COTS component acquisi-
tion, which argues for considering the software life
cycle and level of reuse when making such decisions.12

COTS products change rapidly, with long-term
effects, and research on CBS development is still in
the early stages. Given that cost-effectiveness and
quality are the two major factors in deciding for or
against component acquisition, we face an urgent
need for empirical and analytical research that will
lead to more accurate models of cost and quality in
CBSs. ✸
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