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Analysis of Radiation from an Open-Ended 
Coaxial Line into Stratified Dielectrics 

Sasan Bakhti~i ,  Member, IEEE, Stoyan I. Ganchev, Senior Mqmber, IEEE, and Reza Zoughi, Senior Member, IEEE 

Abstract-Radiation from an open-ended coaxial transmission 
liie into an N-layer dielectric medium is studied in application 
to nondestructive evaluation of materials. Explicit formulations 
for two cases of layered media, one terminated into an infinite 
half-space and the other into a conducting sheet are addressed 
in general form. In the theoretical derivations it is assumed that 
only the fundamental TEM mode propagates inside the coaxial 
line. The terminating admittance of the liie is then formulated 
using the continuity of the power flow across the aperture. The 
admittance expressions for specific cases of two-layer dielectric 
composite with generally lossy dielectric properties, and a two- 
layer composite backed by a conducting sheet are presented 
and inspected explicitly. The numerical results of the aperture 
admittance formulation are discussed and compared with the 
available infinite half-space model which had been experimentally 
verified. 

I. INTRODUCTION 
HE use of an open-ended coaxial line as a sensor for T measurement of complex dielectric properties of ma- 

terials at microwave frequencies has received considerable 
attention [ 11-[ 131. Open-ended coaxial sensors allow operation 
in a wide band of frequencies while requiring a relatively 
small sensing area. Open-ended transmission line methods 
such as open-ended waveguides and coaxial lines are in- 
herently nondestructive, and offer in situ measurement of 
dielectric properties. They may render valuable information 
about the constituency of dielectric mixtures, accurate thick- 
ness of thin dielectric slabs, presence of disbonds and de- 
laminations in layered media [ 141-[ 171. These features have 
rendered open-ended transmission line sensors as versatile 
sensinghnterrogating tools in contemporary biomedical, mi- 
crowave engineering, and microwave nonintrusive applica- 
tions. 

Several approaches are commonly sighted for modeling the 
terminating admittance of an open-ended coaxial line. The 
prevalent analytical procedures used in practice for dielectric 
properties estimation are limited to electrically small aper- 
tures or low operating frequencies allowing lumped parameter 
approach or quasi-static approximation [ 11, [3]. Furthermore, 
they usually pertain to an aperture terminated into an infinite 
dielectric half-space, thus, not addressing the problem of finite 
thickness dielectrics. Mosing et al. considers a more rigorous 
formulation which takes into account higher order modes, but 
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this computationally intensive solution only deals with the case 
of an infinite half-space [2]. Concise general formulation for 
open-ended coaxial lines terminated by multilayered dielectric 
media backed or unbacked by a conducting sheet which can 
be implemented without considerable computing resources has 
numerous applications. The available formulations for multi- 
layered dielectrics either use a lumped parameter approach, or 
a quasi-static approximation rendering frequency independent 
solutions [18], [19]. 

In this paper a general formulation for the radiation from 
an open-ended coaxial transmission line into a multilayered 
dielectric composite backed or unbacked with a conducting 
sheet is considered. Integral Hankel transforms are employed 
to construct the field solutions in the layered media. Only 
the fundamental "EM mode is considered to be propagating 
inside the coaxial line. The terminating aperture admittance in 
presence of multilayered dielectric is constructed by applying 
complex Poynting's theorem at the aperture cross section, and 
requiring the continuity of power flow. Consequently, solution 
of the boundary value problem renders a set of recurrence 
relations allowing for construction of solution for multilayered 
geometries. Explicit admittance expressions for two frequently 
encountered practical cases of single dielectric slab backed 
by an infinite dielectric half-space, and a two layer dielectric 
backed by a conducting sheet are presented and examined in 
detail. In all cases the dielectrics are assumed to be generally 
lossy. Numerical results for these geometries are presented 
along with a discussion on the significance of these results. 

11. THEORETICAL ANALYSIS 

Aperture admittance of a coaxial transmission line with a 
perfectly conducting flange of an infinite area, and opening into 
a layered dielectric composite media is formulated according 
to the work of Swift [20] which stemmed from the fundamental 
study developed by Levine and Papas [21]. Swift's formulation 
pertaining to a coaxial line antenna opening into a lossless 
dielectric covered ground plane is modified and expanded to 
take into account general N-layer media backed or unbacked 
with a conducting plate. 

Fig. l(a) shows the designated coordinate axis and the 
geometry of a coaxial transmission line with an infinite flange. 
Fig. 103) and (c) depicts the cross-sectional view of the 
line radiating into an N-layered media which is terminated 
by an infinite half-space and a perfectly conducting sheet, 
respectively. Each layer is assumed to be homogeneous and 
nonmagnetic with relative complex dielectric constant tTn = 
E:, - 
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Fig. 1. (a) Coaxial transmission line of inner diameter 2a and outer diameter 
2b opening onto a perfectly conducting infinite flange. (b) Cross section 
of coaxial line radiating into a layered media terminated into an infinite 
half-space. (c) Cross section of a coaxial line radiating into a layered media 
terminated into a perfectly conducting sheet. 

With the dominant TEM mode incident on the aperture, the 
structure only supports H+, Ep, and E, field components with 
no 4 dependence. The external fields may be constructed using 
an electric or magnetic Hertz potential of the form 

- 
JL(P, 47.1 = H;(P, z)&+ (1) 

where n denotes the layer number and n = 0 refers to 
the region internal to the coaxial line. The vector potential 
must satisfy the source-free Helmholtz wave equation in each 
region, and can be written as 

V2nn(P, 4, 2) + k:nn(~, 4, 2) = 0- (2) 

where I C ,  = I C 0 6  is the complex propagation factor in the 
nth layer and IC0 is the free-space wave number. In terms of its 
scalar component, the above expression can be expressed as 

Subsequently, the electric and magnetic field components 
satisfying the wave equation can be constructed from the 
vector potential formulation as 

- 1 
E n  

En(P, 2) = --V x L ( P ,  4, 2) 

The solution of (3) can be written in terms of Hankel integral 
transforms of the form 

l E ( P ,  2) = j)-k”, Z ) J l ( R P )  dR 

f i $ (P ,  2) = J O = h ( P ,  Z ) J l ( R P )  dP. 

(6a) 

where 

(6b) 

R is a transformation variable denoting radial wave number. 
The notation w represents the transformation and J1 is Bessel 
function of the first kind and of order one. Substituting (6a) 
into (3) and using the orthogonal Bessel eigenfunctions prop- 
erties and Dirac delta function Bessel integral representation 
[22] results in the following one-dimensional wave equation 

where 

IC,, = Jzp3, 
and it is chosen such that Re {IC,,} 2 0 and Im { I C z , }  5 0. 
Next, one may construct the solutions of (7) for z > 0 in terms 
of standing and traveling waves as 

fi;(R, z )  = d:(R)e-jkznt + d;(R)ejkznz 
Region bounded (8a) 

fi;(R, z )  = d ~ ( 7 2 ) e - j ” ~ ”  
Region unbounded in + z dir (8b) 

Consequently, with the aid of (4) and (5 )  similar solutions may 
be constructed for the transformed field components as 

f6’(R, 2) = jk,n[d;(R)e-j’Zn” - &(R)ej’zn’ I (9) 
En 

7?i(R, z )  = jw[d;(R)e-jkzn+ + &(R)ej’z-*]. (10) 

In accordance with (8b) the second term inside these brackets 
vanishes for an unbounded layer (i.e., in f z  direction). Next, 
the boundary conditions may be written in general form as 
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where 

f l < n < N - l  
Nth layer unbounded in + z dir. 

Nth layer backed by conducting sheet. i=l 

(12) 
With the dominant TEM mode incident on the aperture, the 

fields in this region, z 5 0 and a 5 p 5 b, can be written in 
terms of the incident and reflected wave as [23] 

with 

where E,.= is the permittivity of the dielectric filling inside the 
coaxial line. R = I'ej' is the complex reflection coefficient, 
and YO is the characteristic admittance of free-space. 

To construct a solution for the aperture E-field in terms of 
the internal field quantities, one can take the integral'Hanke1 
transform of both sides of (13) at z = 0 as 

JdPE,P(P, z = O)Jl(b)PdP = JdW$(l + R)Jl(CP)PdP 

(15) 
and with the left-hand side term representing the Hankel 
transform of the aperture E-field, the right-hand side may then 
be evaluated over the aperture a 5 p < b, resulting in 

Next, the continuity of power flow across the aperture required 
by Poynting's theorem is enforced over the aperture cross 
section S. Subsequently, application of Parseval's theorem 
for the integral transforms renders an equivalent relation for 
the complex conjugate of power flow in terms of the Hankel 
transform of the field components [22], 

From the above results, the outward power flow from the 
aperture, z = 0 and a 5 p 5 b, using (13) and (14) can 
be evaluated as 

Fz=o = 7rYc1Ao12(1 + R)*( l  - R)*ln (t) (18) 

where the arrow denotes the direction of flow (consistent with 
z-direction in Fig. 1). Similarly, the complex conjugate of 

power flow inward from layer one, at the aperture cross section 
as 

E=, = f { E [ ( R ,  0 z = 0)}* &?(R, z = 0 ) R d R  

Do 2 
= 1E[(R, z = 0)l F(R)RdR 

where in the above equation the transform of the magnetic 
field component in region 1 is replaced with its equivalent 
expression. Function F(R), relating &[(R, z )  and X ? ( R ,  z )  
results from enforcement of boundary conditions of (1 1) in 
the layered media and at the aperture. Equating (18) and 
(19) and substituting (16) for the transform of the aperture 
field allows construction of the normalized (with respect 
to characteristic admittance of the coaxial line) terminating 
aperture admittance. Consequently, using the normalization 
parameter C = (R/ko) the complex aperture admittance may 
be written as 

1 - R  
ys = gs + j b ,  = - 1 t R  

where g, and b, are the normalized aperture conductance 
and susceptance and R is the complex reflection coefficient. 
Consequently, enforcement of boundary conditions renders 

For an N-layer media, p1 may be calculated from the follow- 
ing recurrence relations. For i = 1 ,  2 ,  . . . N - 1 

where 

and 

and with zi given by (12). For i = N, 

Nth layer 00 in + z dir. 

Nth layer terminated into a conducting sheet. 

P N  = e - j 2 k ~ z ~ d 3  r (22d) 
The above calculations must start from i = N - 1 and carried 
out backward to i = 1 .  The value of p~ is chosen from (22d) 
depending on whether the Nth medium is an infinite half-space 
or is of finite thickness terminated into a conducting sheet. 

Since many practical applications may be encompassed by 
a two-layer case, the explicit form of F(C) for N = 2 in 
Fig. l(b) and (c) is given next. For the geometry of Fig. l(b) 
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where the second layer is infinite in +z direction, recurrence 
relations of (22) result in the following simplified expression 

where 

Similarly, for the case shown in Fig. l(c) and with N = 2, 
the procedure results in the following expression for 3 ( C )  for 
the case of termination a conducting sheet 

Consequently, substitution of (23) or (24) inside (20) will 
render the desired terminating aperture admittance solution for 
the N = 2 cases addressed here. 

III. VERIFICATION AND IMF’LICATIONS 
OF NUMERICAL RESULTS 

To examine the validity and significance of the formulation 
presented here, a series of numerical simulations for the two- 
layer media are presented next. Two basic geometries are 
considered namely; a finite thickness dielectric layer backed 
by free-space and a two-layer media backed by a conducting 
sheet. When the thickness of layer 1 in the former case is 
set equal to zero, the aperture admittance expression of (20) 
in conjunction with (23) simplifies to that reported in [21]. 
Moreover, when the thickness of the dielectric layer in both 
cases are increased such that it constitutes an infinite half- 
space, once again one should arrive at the same results. 

It should be noted that for the case of lossless (6; = 0) lay- 
ered media admittance expression given by (20) will encounter 
poles on the real axis along the path of integration, requiring 
contour integral techniques to carry out the integration. This 
problem, however, is not in the scope of this work since 
only generally lossy materials are of interest, in which case 
the poles move off the real axis and the integrand becomes 
smooth. In this case numerical integration routines such as 
Gauss-Legendre method [24], [25] may be readily employed. 

In the numerical simulations presented here the calculated 
parameters in view of (20) are the experimentally measurable 
quantities of phase @ of the complex reflection coefficient 
R = re j@ and the return loss RL = 2010g(l/I’). The 
dielectric filling of the coaxial line in all cases is Teflon with 
trC = 2.07. The real part of the complex dielectric constant 
of the medium is arbitrarily chosen to be E: = 10 and its 
loss tangent (tan6 = € ; / E : )  is varied between 0.01 and 1.0. 
These values are in the range of variety of synthetic rubber 
products and coating type materials on top of conducting 
sheets. First the effect of dielectric thickness is examined as 
shown in Fig. 2(a) and (b) at frequency of 5 GHz. It should 
be pointed out that by keeping koa and T = b/u constant 

8 

$ 6  

s! 

2 

0 

-20 

-40 

T - 6 0  3 
-80 

-I” -120 

0 0.5 I 1.5 2 2.5 3 
T 

(b) 

Fig. 2. (a) Return loss and (b) phase versus slab thickness normalized with 
respect to outer radius of the coaxial line. = 1 (air), frequency 
f = 5 GHz. 

= 10, 

the same set of plots may apply to various coax dimensions 
and operating frequencies. The frequency range used in the 
simulations here is chosen below cutoff which is determined 
by the coax dimension. This is done to further justify the 
validity of disregarding higher order mode propagation inside 
the coaxial line. For these plots the dielectric slab thickness 
is normalized with respect to the coaxial line outer radius 
T = dl / (ur ) .  This notation gives information about the ratio 
of the outer and inner conductor, as well as the absolute 
dimension of u or b. Fig. 2(a) and (b) displays a series of 
graphs for the return loss and phase of the complex reflection 
coefficient of a single layer terminated into an infinite free- 
space medium. This geometry may be deduced from Fig. l(b) 
with N = 2 and cr2 = 1. The normalized slab thickness is 
increased to ultimately approach that of an infinite half-space 
case. The points marked with x on these plots (Figs. 2 and 3) 
are calculated values using the infinite half-space formulation 
given in [21]. Clearly, there is a good agreement between 
these results. As expected, the response for the material with 
higher loss flatens out faster both for the return loss and phase. 
From Fig. 2(b) one may infer that the phase response does not 
change substantially below a certain value (e.g., tan6 < 0.1). 
Such curves (calculations) may be used to predict the “infinite” 
thickness for a given dielectric material for a specific operating 
frequency and coax dimensions. For the dielectric materials 
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12 I 

- - -. - rand= 0.01 ------rad= 05 I 
- - - t a d =  0.1 -fond = 1.0 

- Y  1 

0 0.5 1 1.5 2 2.5 3 
T 

(a) 

-80 I 

0 0.5 1 1.5 2 2.5 3 
T 

(b) 

Fig. 3. 
conductor backed slab. 

used to calculate Fig. 2(b), it is evident that at this frequency 
for normalized thicknesses below 1.5, phase information may 
be used to accurately estimate material thickness. This obser- 
vation suggests the possibility of utilization of coaxial sensors 
for accurate thickness measurement of thin dielectric sheets. 

Fig. 3(a) and (b) shows the results for the case when the 
infinite half-space of air is replaced with a conducting sheet. 
Once more, crosses represent calculated results for infinitely 
thick sample [21]. In this case the return loss and phase 
reach to the valve infinite half-space for smaller values of 
T compared to the previous case. This is due to the two- 
way transmission through the dielectric. Conversely, as the 
thickness approaches zero, the retum loss and phase values 
reach those of a short circuited coaxial line as expected. It 
can be observed from Figs. 2 and 3 that unlike open ended 
waveguide radiators [17], coaxial sensors in general seem to 
be less sensitive to small variations of complex permittivity 
for lossy materials. 

Fig. 4(a) and (b) shows the retum loss and phase as a 
function of frequency again for the case of a single slab of 
finite thickness terminated into an infinite free-space medium. 
The results are shown for dielectric with E: = 10 and 
tan6 = 0.1 for several different normalized slab thicknesses 
T = d l / ( u r ) .  The points marked with x and + on these plots 
are calculated using infinite half-space formulation [21] for 
the case of dielectric with the same properties and free-space, 

(a) Retum loss and (b) phase versus normalized thickness of the 
= 10, frequency f = 5 GHz. 

0 

-30 

-60 - 9 -90 
8 

-120 

-150 

-180 

Fig. 4. (a) Retum loss and (b) phase versus frequency for different 
thicknesses normalized with respect to outer radius of the coaxial line. 
T = &/(ar), T = b /a ,  e;1 = 10, tan51 = 0.1, erg = 1 (air). x denotes 
points calculated for infinite dielectric, and + for air half-space. 

respectively. For small thickness the plots follow the trend of 
free-space curve. However, when the thickness increases the 
curves begin to oscillate around the infinite dielectric half- 
space curve. From Fig. 4(a) and (b) it may be concluded that 
normalized thickness T = 4 and greater constitute infinite 
half-space. 

Subsequently, Fig. 5(a) and (b) shows the retum loss and 
phase for the case of one layer being terminated into a 
conducting sheet with all the other parameters kept the same as 
the previous case. Comparison of Fig. 5(a) with its counterpart 
Fig. 4(a) displays a smoother response for this case which is 
attributed to stronger reflections at the dielectrickonducting 
interface. Subsequently, this effect at high enough frequencies 
gives rise to the phase transition for the thinnest slab shown 
in Fig. 5(b). These graphs also indicate the fact that once 
the slab's electrical thickness is large enough the response 
becomes independent of slab thickness and similar to that of 
infinite half-space media (marked with crosses). 

Fig. 6(a) and (b) depicts retum loss and phase versus 
frequency for two-layer conductor backed media. These plots 
attempt to demonstrate the potential of detecting a disbonded 
layer in such composites. Different curves pertain to different 
thicknesses of the second layer d2 (i.e.. different disbonds). 
The calculation parameters for this case are a = 1.18 mm, 
b = 3.62 mm, = 10, tan6 = 0.01, dl = 0.5 mm, 
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Fig. 6. (a) Return loss and (b) phase versus frequency for different disbonds, 
d2, in a two-layer media backed by a conducting sheet. er2 = 1 (air), 

= 10, tan& = 0.01, dl = 0.5 mm, Q = 1.18 mm, b = 3.62 mm. 

applications such as measurement of dielectric properties 
(or dimensions) of finite thickness dielectric materials, esti- 
mating equivalent “infinite thickness” of a given dielectric, 
modeling of field coupling into layered biological media in 
biomedical applications, examination of multilayered coat- 
ing deposits on metals, and disbond detection in stratified 
dielectrics. 

An important practical issue, when dealing with open-ended 
coaxial lines, is calibration. Conventionally, loads such as short 
circuit, open circuit, and a liquid with well known dielectric 
properties are used for measurement calibration of open-ended 
coaxial sensors. However, it is relatively difficult to provide 
a perfect short or even a perfect open circuit. Incorporation 
of thickness into the solution provides for a new alternative 
method for calibration of open-ended coaxial sensors. Slabs 
with known dielectric properties and different thickness may 
be used for calibration too. Airgap distance variation between 
the aperture and the slab in front of the sensor may also be used 
as a means of calibration. In both cases multiple calibration 
data points may be obtained rendering for a more precise 
calibration technique. 
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