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New External Neuro-Controller for Series Capacitive
Reactance Compensator in a Power Network

Jung-Wook Park, Member, IEEE, Ronald G. Harley, Fellow, IEEE, and
Ganesh K. Venayagamoorthy, Senior Member, IEEE

Abstract—The controllable capacitive reactance can be used as
the input variable for the external controller of a series capacitive
reactance compensator (SCRC) to improve the damping of low-fre-
quency oscillations of the rotor angle and active power in a power
system. Conventional linear PI controllers are tuned for best per-
formance at one specific operating point of the nonlinear power
system. At other operating point its performance degrades. Non-
linear optimal neuro-controllers are able to overcome this degrada-
tion. In this paper, the dual heuristic dynamic programming (DHP)
optimization algorithm is applied to design an external nonlinear
optimal neuro-controller for the SCRC. Simulation studies using
PSCAD/EMTDC® software are presented.

Index Terms—Dual heuristic programming, flexible ac transmis-
sion systems devices, optimization, power system, series capacitive
reactance compensator.

I. INTRODUCTION

I T has long been recognized that the damping of power oscil-
lations can be improved by dynamically altering the series

impedance of one of the transmission lines in an interconnected
power network using some form of controllable series capaci-
tive compensator [1]. In the last decade, the series flexible ac
transmission systems (FACTS) devices [2] have been progres-
sively developed to deal with the above control objective.

For the series capacitive reactance compensator (SCRC)
FACTS device, Ooi et al. [3], [4] first proposed making use of
a stand-alone inverter both to maintain dc capacitor voltage of
the inverter and to ensure the series reactance condition at the
inverter’s ac terminals. Rigby and Harley et al. [5] extended the
original work proposed by Ooi et al. into a working laboratory
prototype of a SCRC, and improving the performance of the
original SCRC scheme by modifying the voltage regulator
structure. Based on this work, they also reported [6] on the
analysis of a power oscillation damping scheme by applying
an external linear-controller with the aid of properly designed
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supplementary controls [7] to the SCRC, and they also con-
sidered the impact of the SCRC’s own internal dynamics
on the performance of an external damping controller. It is
important to note that the study of the external control (called
secondary or functional operation control [2]) for the FACTS
device makes it possible to progress further toward hierarchical
control and possible global dynamic optimization in large-scale
power networks.

In this paper, the theory and operation of the SCRC (in
[5]) as well as its conventional external linear-controller
(CONVEC) (in [6]) are briefly described. Thereafter, the new
external optimal neuro-controller for the SCRC using the dual
heuristic programming (DHP) optimization algorithm [8], [9] is
designed as an alternative to the CONVEC in order to improve
the damping of low frequency active power oscillations.

II. ANALYSIS OF A DAMPING SCHEME FOR SCRC

Based on the work proposed in [5] and [6], this section briefly
summarizes the operation of the internal and external control
schemes for the SCRC in Fig. 1, which shows a single generator
(160 MVA, 15 kV (L-L)) connected to an infinite bus through
two transmission lines, labeled Line #1 and Line #2. The param-
eters of the synchronous generator in Fig. 1 are given in [10].

Also, the EXAC1A (IEEE alternator supplied rectifier exci-
tation systems) and H TUR1/GOV1 (IEEE type hydro turbine-
governor) models in PSCAD/EMTDC software library [11] are
used as the AVR/exciter and turbine/governor systems, respec-
tively.

A. Internal Control of the SCRC

The internal control scheme for the SCRC is shown in Fig. 2.
The main objectives of the inner control for the SCRC are:

• to ensure that the injected voltage at the ac terminals of the
inverter is in quadrature with the transmission line current.
In other words, the injected voltage in Fig. 1 lags the
line current by 90 such that the injected voltage appears
to be a capacitive volt drop (as shown in Fig. 3).

• to keep the voltage constant during steady state,
like other series FACTS devices including the static
synchronous series compensator (SSSC) [8] (as shown in
Fig. 4).

For the operation of the SCRC, the transmission line currents
, and are first transformed by Park’s transformation

into d and q axes components and in a synchronously ro-
tating reference frame. Then, the peak value of the current vector

is calculated.

0885-8950/04$20.00 © 2004 IEEE
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Fig. 1. Schematic single-line diagram showing an inverter-based controllable series capacitive reactive compensator with external controller.

Fig. 2. Internal control scheme of the SCRC.

Fig. 3. Injected voltage v and line current i at steady state (t = 5:9 to 6
s).

The desired magnitude of the compensating voltage
vector is now determined by multiplying the magnitude of the

current vector by the factor and the total
commanded value of capacitive reactance , and the result is
the modulation index for the sinusoidal PWM inverter.

Also, the structure of the SCRC in Fig. 2 has an inner power
control loop as well as an outer voltage control loop. The dc ca-
pacitor voltage is fed back and subtracted from the reference
value to form the voltage error in the outer loop, which
is used to produce the commanded power . The action of the
SCRC in maintaining a constant voltage at steady state en-
sures that no real power is exchanged between the inverter and
the transmission line, thereby ensuring that the line current leads
the injected voltage by 90 .

Meanwhile, the instantaneous real power at the ac termi-
nals of the inverter is fed back and subtracted from the com-
manded power to form the error for the inner loop, which
is thereafter converted to the commanded phase angle for the
PWM inverter after passing through the power/angle conversion
block and PI compensator.

The advantage gained by the inclusion of the inner loop is that
the necessary bandwidth of the phase-locked loop (PLL) can be
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Fig. 4. DC capacitor voltage of the SCRC at steady state (t = 0 to 10 s).

achieved with less compromise in the response of the system to
a disturbance on the dc side of the inverter [5].

B. Conventional External Control of SCRC

The objective of the conventional external linear-controller
(CONVEC) for the SCRC (dashed block in Fig. 1) is to improve
the system damping performance.

By the internal control described in the previous subsection,
the voltage injected by the SCRC to the transmission line
appears to be a volt drop across a capacitive reactance

(see Fig. 3), of which the magnitude or set-point can
be specified.

Under a steady state condition with no power swings,
(speed deviation) and (active power deviation) at generator
terminal are zero, therefore the supplementary control signal

is zero, and . Otherwise, is modulated
by to provide damping.

From a system perspective, there are two design and perfor-
mance issues;

1) The CONVEC should be able to command proper
changes in compensating reactance in order to
damp low frequency active power oscillations that occur
between the generator and transmission system.

2) The internal control of the SCRC should be able to re-
spond to the commands from the CONVEC.

For issue (1), it is necessary to briefly review the analytical
approach to see the impact of dynamic changes in series com-
pensating reactance on the damping of a synchronous generator.
It is reported in [7] that the speed deviation of a generator
can be used to generate the supplementary control signal
(in Fig. 1) from the external control. The design of the CONVEC
in Fig. 1 is based on the work in [7].

In this paper, the active power deviation signal is also
considered as the input of the CONVEC. The use of additional
variable can provide the external controller more damping,
compared to in case that only the is used as the input of an
external controller. This is shown in Section IV.A by simulation
result.

Fig. 5. Active power (P ) at the ac terminal of SCRC versus X .

In Fig. 1, the SCRC is connected to Line #2, and provides
a set-point value of capacitive reactance compensation of

pu during a steady state condition. The
deviation signals and from the synchronous generator
are passed thorough the CONVEC (two first-order low-pass
filters, damping controller with a proportional gain and a
washout filter for , and a gain damping for ) to
form the signal . Then, is added to resulting in
the total commanded value of compensating reactance at
the input for the internal control of the SCRC. A more detailed
explanation of how to design two first-order low-pass filters
(with cut-off frequency of 13 Hz) and a damping controller are
described in [6].

The selection of the proportional damping gain and
(in Fig. 1) is determined by evaluating the damping of oscilla-
tions after a severe fault like a three phase short circuit (also,
see [6]). In this paper, the value of and
(which are designed at a particular operating condition) are used
for several case studies in Section IV.

For issue (2), the result in Fig. 5 shows that the relationship
between the value of and active power at the ac terminal
of the SCRC appears to be almost linear. This characteristic en-
ables the CONVEC to be an effective external controller such
that the internal control of the SCRC is able to respond directly
to the commands from the CONVEC. However, the within

pu around the set-point value of pu is used.
These specified boundary values (0.13 pu at maximum and 0.05
pu at minimum) are chosen to correspond to the range of the
value of , for which the practical series compensator has al-
ready been tested under a steady state condition in [6].

III. NEW EXTERNAL OPTIMAL NEURO-CONTROLLER DESIGN

This section proposes a new external nonlinear optimal
neuro-controller using the dual heuristic programming (DHP)
algorithm to replace the CONVEC shown in Fig. 1. This is
illustrated in Fig. 6. The external neuro-controller will be shown
to have the better damping performance than the CONVEC.

A detailed comparison of two adaptive critic designs (ACDs)
were carried out in [17] and the DHP algorithm was shown to be
the most powerful of the two. Therefore the DHP algorithm is
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Fig. 6. Schematic single-line diagram showing the new DHP based external optimal neuro-controller (DHPEC).

selected for this study. This algorithm solves the infinite horizon
optimal control problem based on the neuro-dynamic program-
ming (NDP) approach using artificial neural networks (ANN’s)
[12] (by the estimating the derivatives of optimal cost-to-go
function with respect to states of the plant). A more detailed
background of the ACDs and their relation to classical optimal
control theory is given in [12].

The design of the new DHP based external optimal
neuro-controller (DHPEC) requires a model network, a critic
network, and an action network for its implementation [8], [9].
In the following subsections, descriptions of how to design
the model, critic, and action networks, using the multilayer
perceptron neural network (MLPNN) [13], are given.

A. Design of the Model Network

The design of the model network (identifier) is an important
part in the implementation of the model-dependent ACDs
because its capability to learn the dynamics of the plant directly
affects the performance of the critic and action networks. The
input-output mapping structure of the model network for the
DHPEC to replace the CONVEC, is shown in Fig. 7. The
structure of the model neural network is based on the non-
linear autoregressive moving average with exogenous inputs
(NARMAX) model. Three variables are used for its input,
which are the real power deviation at the generator terminals

, speed deviation , and output control signal from
the action network . This assumes that and
will be available to the DHPEC at any remote location.

The three time-lagged values of , and for the
inputs of the model network are used, and this tapped time delay
of order 3 is enough to have an acceptable tracking capability of
nonlinear dynamics in a power plant (as reported in [8], [12], and
[13]) when the model network is trained by the backpropagation
algorithm [13].

It is important to note that, as the CONVEC shown in Fig. 1,
the variable is added for the design of the DHPNC because
it can provide the model network with additional information
about the dynamics of the plant. In other words, the proposed
DHPNC can easily deal with variations of active power at the
generator terminals (or any other number of input variables).
Moreover, this design could be useful for the study of the global

Fig. 7. Input-output mapping of the model network for the external DHP
controller.

dynamic optimization to reduce the total energy loss (in case of
minimizing the active power deviation at every generator termi-
nals) in a practical multi-machine power system network [14].
Fourteen neurons in the hidden layer are chosen after evaluating
convergence properties as reported in [13].

A more detailed explanation of how to design/train the model
network is given in [14].

B. Critic and Action Networks

After training the model network, the critic and action net-
works are designed as reported in [8] and [9]. The input-output
mapping structures for the critic and action networks are shown
in Figs. 8 and 9, respectively.

Ten neurons in the hidden layer are used for both the critic
and action networks. The inputs of the critic network are the
outputs from the model network
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Fig. 8. Input-output mapping of the critic network for the DHPEC.

and their two time-delayed values; the outputs of the critic net-
work are the derivatives of function with respect to the ob-
servables of the state (by the model network), which are

.
For the design of the action network, the following two dif-

ferent action networks are tested;

• The action network with only one input variable
and its two time-delayed values [see Fig. 9(a)] for its in-
puts.

• The action network with two input variables
and their two time-delayed values

[see Fig. 9(b)].
For both the above cases, the output of the action networks is

the same as in the CONVEC. From Fig. 9(b),
the availability of the variable (which is used to give the
model network more information about the dynamics of the
plant) can also make it possible to affect the neuro-controller’s
dynamic performance, compared to the action network with
only one input variable shown in Fig. 9(a). The result
showing the control performances by these two action networks
is given in the next Section IV.A.

The weights of the critic network are updated by the config-
uration (to minimize the error vector ) shown in Fig. 10,
and the associated mathematical equations are given in below
[8]:

(1)

(2)

Fig. 9. Input-output mapping of the action network for the DHPEC.

The second term (for the th component) of right-hand side
in (2) can be expressed as follow:

(3)

where and are the numbers of outputs of the model and the
action networks, respectively. Using (3), each component of the
error vector from (2) is computed by

(4)
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Fig. 10. Critic network adaptation in DHP: This diagram shows the implementation of (4). The same critic network is shown for two consecutive times, t and
t + 1. The discount factor 
 is chosen to be 0.5. Backpropagation paths are shown by dotted and dash-dot lines. The output of the critic network �(t + 1) is
backpropagated through the model network from its outputs to its inputs, yielding the first term of (3) and @J(t+1)=@A(t). The latter is backpropagated through
the action network from its outputs to its inputs forming the second term of (3). Backpropagation of the vector @U(t)=@A(t) through the action network results in
a vector with components computed as the last term of (4). The summation of all these signals produces the error vector e (t) used for training the critic network.

Using (4), the weights for the critic network are incrementally
updated by the following equation:

(5)

where is a positive learning rate .
The adaptation of the action network is illustrated in Fig. 11,

which propagates back through the model network to
the action network. The goal of this adaptation is expressed in
(6), and then the weights of the action network are updated by
(7).

(6)

(7)

where is a positive learning rate .

C. Derivation of Utility Function

The discount factor of 0.5 is used in (2) and (6), and the
utility function in (8) is used during training of the critic
and action networks.

(8)

A detailed explanation for the derivation of the utility func-
tion in (8) is given in [9]. This utility function plays an impor-
tant role to form the user-defined optimal cost-to-go function ,
and is selected to give the best trade-off between performance

Fig. 11. Action network adaptation in DHP: The discount factor 
 is chosen to
be 0.5. Backpropagation paths are shown by dotted lines. The output of the critic
network �̂(t+1) at time (t+1) is backpropagated through the model network
from its outputs to its inputs (output of the action network), and the resulting
vector multiplied by the discount factor (
 = 0:5) and added to @U(t)=@A(t).
Then, an incremental adaptation of the action network is carried out by (6) and
(7).

and cost of control. The utility function has to be positive and a
quadratic form is therefore selected.

D. Overall Training Procedure

A detailed explanation about the training procedures for a
model, a critic, and an action network in the DHP algorithm
are described in [8] and [9]. Note that the training procedure to
implement the DHP algorithm consists of two training cycles:
one for the model network and the other for the critic/action
networks. This is illustrated in Fig. 12.

The model network is first trained to learn the dynamics of
the plant before the critic and action networks are trained. After
the weights of the model network have converged (identifying
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Fig. 12. Training procedure for the model, critic, and action networks.

the plant outputs accurately as shown in [14]), they are fixed.
Then, the critic network is trained by associated (1)–(5) until
the derivatives of ( in Fig. 10) have converged to the value
as small as possible (this is so-called the value iteration by the
critic network). Then, the weights of the critic network are fixed.
Finally, the action network is trained by associated (6) and (7)
until the value of left-hand side in (6) has converged to zero
(this is so-called the policy iteration by the action network).
Thereafter the weights of the action network are fixed. The fixed
weights of the critic and action networks are now ready to be
used in a real-time control operation.

This training takes place at the same particular operating
point as used for tuning of the CONVEC parameters. The
psuedo-random binary signals (PRBS’s) [9], [14] are injected
for training the model network with the switch in position
1 in Fig. 6. For the training of the critic and action networks,
the switch is in position 2. Typical PRBS’s values of
appear in Fig. 13.

E. Computing Requirement

The computing time needed to train all the networks in
Fig. 12 varies and depends on the particular system, rate of
convergence, and computer processor speed. For the case
study in Section IV, it took 24 hours for the critic network
(with ) and 12 hours for the action network (with

) to converge on a Window NT workstation (with
Intel Pentium-III) during training by PSCAD/EMTDC® soft-
ware. Research is continuing to reduce these times.

IV. CASE STUDIES IN SINGLE MACHINE INFINITE BUS SYSTEM

After training the model network, the critic and action net-
works are trained until their acceptable performances are ac-
complished; thereafter the parameters (weights) of the critic

Fig. 13. Pseudo random binary signals used for�X during training.

Fig. 14. CONVEC with one input and with two inputs.

and action networks for the DHPEC are fixed and then used
for real-time simulation tests in the single machine infinite bus
(SMIB) system shown in Figs. 1 and 6.

The control performances by the action networks (of the
DHPEC) with one input variable [in Fig. 9(a)] and with two
input variables [in Fig. 9(b)] are firstly compared. The damping
performances of the CONVEC (in Fig. 1) with one input
and with two inputs ( and ) are also compared. This is
illustrated in Fig. 14.

Then, the dynamic damping performances of the SCRC with
a fixed set-point value of is firstly evaluated without an ex-
ternal controller, then with the CONVEC in Fig. 1 (with

and ), and then with the DHPEC in Fig. 6. The
dynamic damping performances of the controllers are evaluated
at two different operating points by a 100 ms three phase short
circuit applied at the infinite bus.

A. Tests at the Operating Condition Where Controllers Have
Been Designed

1) Controllers With One Input/Two Input Variables: The
control performances of the two action networks (in Fig. 9)
and two CONVEC’s (in Fig. 14) with one input variable
and two input variables ( and ) are now evaluated by a
100 ms three phase short circuit applied to the infinite bus (in
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Fig. 15. A 100 ms three phase short circuit test for the DHPEC: �[ ].

Fig. 16. A 100 ms three phase short circuit test for the CONVEC: �[ ].

Fig. 17. A 100 ms three phase short circuit test: �[ >].

Figs. 1 and 6) at s, at a particular operating condition
(called OP-I) where the DHPEC was trained and the CONVEC
was tuned. In other words, the generator operates with a rotor

Fig. 18. A 100 ms three phase short circuit test: �! [rad/s].

Fig. 19. A 100 ms three phase short circuit test at OP-II: �[ ].

Fig. 20. A 100 ms three phase short circuit test at OP-II: � ! [rad/s].

angle of 16.9 ( pu, pu) at a pre-fault
steady state operating point (OP-I), where the same amount of
power is flowing in Line #1 and Line #2 (with the same line
impedances).
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Fig. 21. Large-scale multi-machine power system equipped with SCRC.

The results are shown in Figs. 15 and 16. From Fig. 15, it is
clearly shown that the action network with two input variables
( and ) has a better damping performance than the ac-
tion network with only one input variable .

Likewise, it is shown in Fig. 16 that the CONVEC with two
input variables ( and ) improves the damping perfor-
mance for low frequency oscillations more effectively than the
CONVEC with one input . Therefore, the DHPEC [by the
action network in Fig. 9(b)] and CONVEC [in Fig. 14(b)] with
two input variables are used for further comparisons in the fol-
lowing subsections.

2) Three Phase Short Circuit at Infinite Bus: The controllers
(DHPEC and CONVEC with two input variables) are now com-
pared by the same 100 ms three phase short circuit test as used
in the previous test at the operating condition, OP-I.

The results appear in Figs. 17 and 18 for the rotor angle
and speed deviation ( [rad/s]), respectively. The curve SCRC
indicates the response of system with only an internal controller
(of the SCRC) and no external controller.

Figs. 17 and 18 clearly show that the damping control for low
frequency power swings by the DHPEC is better after the first
swing at the post-fault condition than those of the CONVEC and
the SCRC.

B. Dynamic Performances at a Different Operating Condition

1) Three Phase Short Circuit at Infinite Bus: The control
performances of the controllers are now re-tested at a different
operating condition (called OP-II) from the above the OP-I. In
other words, the line impedance of the Line #1 in Figs. 1
and 6 is changed from pu to
pu, therefore, the amount of steady state active power flowing
through the Line #1 is greater than that flowing through the Line
#2. The generator is operating with a pre-fault rotor angle of
35.88 ( pu, pu). However, the parameters
of the controllers are the same as those used in the previous sub-
section and have therefore not been tuned (CONVEC)/trained
(DHPEC) for this new operating point.

The same 100 ms three phase short circuit as used in the
previous test, is applied (as large disturbance) at the infinite

bus. The results appear in Figs. 19 and 20. They clearly show
that the DHPEC still has the better damping performance at
the post-fault condition than the SCRC and CONVEC, and the
CONVEC is also more effective compared to the SCRC.

Differently from the results in Figs. 17 and 18, the DHPEC (in
Figs. 19 and 20) shows the better damping than the CONVEC
even in the first swing after the fault is applied. This proves that
the performance of the CONVEC is degraded at the different
operating point (OP-II) at which it was not tuned, compared to
that of DHPEC with the same parameters as trained in the OP-I.

V. CASE STUDIES IN A MULTI-MACHINE POWER SYSTEM

The feasibility of the DHPEC on the multi-machine power
system shown in Fig. 21 is now evaluated. This model has been
used for the study of voltage stability on a practical large-scale
power system in [15] and [16]. In Fig. 21, the sending end (in
AREA1) has two generators (Gen 1 and Gen 2) transmitting
power to the receiving area (AREA 2) through five 500 kV, 200
km long, transmission lines. Gen 1 is given a large inertia so
that it functions as the slack bus. However, it is relatively small
electrically (5000 MVA) in order to provide only limited voltage
support (or reactive power support) for the load area in AREA
2. The parameters of Gen 2 and Gen 3 are identical and given
in the Appendix D (Unit ) of [10]. Also, Gen 1 and Gen 2
are equipped with an automatic voltage regulator (AVR)/exciter
and a turbine/speed governor (GOV) system.

It is important to assume that Gen 3 is close enough to the
SCRC FACTS device to be able to get the speed deviation
and active power deviation signals to the controller (DHPEC)
without any time delay.

The design and training procedure of the DHPEC on the
multi-machine power system in Fig. 21 is the same as men-
tioned in the single machine system study. As in that case, the
performances of the DHPEC are now evaluated by applying
a large impulse type disturbance, a 300 ms three phase short
circuit to bus 10 (in Fig. 21), at s. The Gen 2 and Gen 3
are operating with rotor angles of 50.41 and 51.2 with respect
to the bus 2 and 3 respectively during the pre-fault steady state
operating point.
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Fig. 22. A 300 ms three phase short circuit test at bus 10: ! [rad/s].

Fig. 23. A 300 ms three phase short circuit test at bus 10: ! [rad/s].

The results are shown in Figs. 22 and 23 for the speeds
( and ) of Gen 2 and Gen 3. They clearly show that the
DHPEC still improves damping of low frequency oscillations
more effectively, compared to the SCRC (without an external
controller).

The further simulation results tested at a very different oper-
ating condition (at which the DHPEC was not trained) show that
the DHPEC is still successful in damping of low frequency os-
cillations after a fault was applied. This proves the robustness of
the DHPEC with fixed parameters (after training) in multi-ma-
chine power system as well as SMIB system.

The FACTS device in Fig. 21 could have been placed at a
more strategic position, but the best position of a FACTS device
is not being studied in this paper.

VI. CONCLUSION

In this paper, the background of the series capacitive reac-
tance compensator (SCRC) was briefly described. Besides de-
scribing the internal control of the SCRC, the operation of the
PI based conventional external linear-controller (CONVEC) to
improve the damping performance of the SCRC was explained

based on the previous works in [5] and [6], and the study was
extended to the CONVEC with two input variables of both ac-
tive power deviation and speed deviation signals. Then, a new
external nonlinear optimal neuro-controller based on the dual
heuristic programming algorithm (DHPEC) was designed using
the multilayer perceptron neural network (MLPNN).

The simulation results by PSCAD/EMTDC software showed
that, when compared to the CONVEC, the DHPEC improves the
damping performance for low frequency oscillations at the dif-
ferent operating condition as well as the operating point where
the controllers are designed. Moreover, the use of fixed con-
trol parameters in the action and critic networks of the DHPEC
during real-time operation makes the controllers robust and re-
duces the requirement of complex computations at each sam-
pling period.

The improved damping of the DHPEC on a single machine in-
finite bus system has been extended to a multi-machine system.
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