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Neural Network Based Decentralized Controls of Large Scale
Power Systems

Wenxin Liu', Jagannathan Sarangapani’, Ganesh K. Venayagamoorthy”
Donald C. Wunsch II%, Mariesa L. Crow?, Li Liu', and David A. Cartes'

Abstract—This paper presents a suite of neural network
(NN) based decentralized controller designs for large scale
power systems’ generators, one is for the excitation control and
the other is for the steam valve control. Though the control
inputs are calculated using local signals, the transient and
overall system stability can be guaranteed. NNs are used to
approximate the unknown and/or imprecise dynamics of the
local power system dynamics and the inter- connection terms,
thus the requirements for exact system parameters are relaxed.
Simulation studies with a three- machine power system
demonstrate the effectiveness of the proposed controller designs.

I. INTRODUCTION

OWER systems are large scale, distributed and highly

nonlinear systems with fast transients. One difficulty in
controller design is the coordination of the control activities
for the subsystem controllers. Due to technical and economic
reasons, the concept of centralized control is not applicable.
A decentralized control strategy achieves subsystem design
separately, requiring local information measurement only or
with a minimum amount of information from other
subsystems.

The traditional decentralized control strategies of power
systems were based on linearized system models at some
operating points. The selection of base operating points and
tuning of parameters are quite empirical. Furthermore, the
controllers' performance cannot be guaranteed under certain
unforeseen large disturbances.

Since the differential geometric method was introduced to
nonlinear control systems design, various stabilizing control
results [1, 2] are reported based on nonlinear multimachine
power system models. However, a problem observed with the
differential geometric based nonlinear controller designs is
the need for the exact knowledge of the system dynamics.
Imprecise knowledge of the system dynamics will greatly
degrade the performance of controller designs. Since it is not
possible to know the system dynamics accurately and to
enhance robustness of systems, numerous results on the
decentralized nonlinear robust control of power systems, such
as [3~5] is introduced. In all these papers, the stability and
robustness of the control system were demonstrated using
Lyapunov analysis.
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Neural networks have been proven to be an excellent tool
for function approximation. NN have been widely used in the
indirect and direct types of nonlinear controller designs.
Recently, NN were applied to the design of decentralized
controllers, such as [6]. In these papers, NNs are used to
approximate the unknown nonlinear dynamics of the
subsystems and to compensate the unknown nonlinear
interactions. Though only local information/measurement are
used to design the controllers for subsystems, stability of the
overall system and coordination of subsystem controllers can
be guaranteed. However, most NN based decentralized
control designs are only applicable to nonlinear systems in
Brunovsky Canonical Form. To overcome this limitation and
to extend the design to a broader class of nonlinear systems, a
decentralized NN controller design for the control of a class
of more general large-scale nonlinear systems was proposed
in [7]. The first or higher order polynomial bound assumption
of earlier works on the unknown interconnection terms can be
treated here as special cases.

In this paper, the controller design in [7] is extended and
introduced to the decentralized excitation and steam valve
controls of large-scale power systems. It is shown that the
transient stability can be enhanced by both excitation and
steam valve control loops. The excitation control is in the
form of feedback linearization and the steam valve control is
in the form of backstepping. Since the steam valve control
model does not satisfy the matching condition, the steam
valve control design is more complex than that of excitation
control. If more detailed excitation system model is
considered, the excitation controller can be designed in the
same way as steam valve control. The controller designs in
this paper can also be used to enhance the decentralized
control of power systems described with differential
algebraic equations (DAE) in [8].

II. DYNAMIC MODELS OF LARGE SCALE POWER SYSTEMS

Following model is used to represent a large scale power
system with n interconnected generators

5 =,
W, == iw[+ “h P,-P)

2H, 2H,

1 (1)
E;i:%(Eﬁ_Eqi)

d0i

Pmi :_LBm' +KW Xei
T, T,
X, == Ko a)i_iXei-'_LPz'i

T,Ro, T, T, "~
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where i=1,...n, ¢, is the power angle in rad, w; is the relative
speed in rad/s, D; is the per unit damping constant, H; is the
inertia constant in second, P, is the mechanical input power
in p.u., P,; is the electrical power in p.u., Eq,-' is the g-axis
internal transient electric potential in p.u., E,; is the EMF in
the quadrature axis in p.u., £ is the equivalent EMF in the
excitation coil in p.u., P,; is the mechanical input power in
p-u., X,; is the steam valve opening in p.u., K, is the gain of
the turbine, K,; is the gain of the speed governor, T,,; is the
time constant turbine in second, T,; is the time constant of the
speed governor in second, R; is the regulation constant in p.u.,
and P,; is the power control input in p.u..

The following equations are necessary to calculated E,;
and P,; from the algebraic power network equations.
Eqi = E;i +(x, _x:li)ldi

Py =Ey Y EyBysin(6,=8)) |1, == EyB,cos(s,~5) @
= =

@

Qu =~EyD BBy cos(6,-5)) |1, = D EyB; sin(5,=5))
j=1 j=1

where Q,; is the reactive power in p.u., I is the direct axis
current in p.u., I,; is the quadrature axis current in p.u., and B;
is the ith row and jth column element of nodal suseptance
matrix at the internal nodes after eliminating all physical
buses in p.u. [5].

A. Model for excitation controller design

Since the time constants of the turbine control loop are
much larger than that of the excitation control loop, mechanic
power input to the generator is assumed to be constant, which
is P,;=P,. For simplification, electrical power deviation
AP,;, defined as AP,;=P,-P,,, 1s introduced as a new state
variable. After transformation, the model becomes

h=a 3)
== D w; — “ AP,
2H, ' 2H,

- 1 1
AP, =— AP, +—v, +y. (0,0
ei T,A ei T/ fi 7/1( )

doi

where v; is the control signal for the transformed system
model, ,(d,w) is called the interconnection term because it is
function of state variables other than the ith subsystem. v; and
7i(0,w) are defined according to (4) and (5) respectively. The
process resulting the following equations can be found in [1].

n n
7/(8.0) = Ey Y EyBysin(6; —8;)~ Ej; > Ey; By cos(S; = 8o,
J=1 j=1

“
Vi =1, By = (xy =X)Ly = B = 10,00, (5)

If vy is designed as the control signal for the transformed
model, then the actual control signal E; can be calculated
according to (5) from locally measurable variables.

Our decentralized controller design requires the bound of
the interconnection term to be expressed as a sum of functions
of subsystem signals. Same assumption as [4] is adopted here,
that is “E; may rise by up to k times of the E,;, with k£>1”.

WeC07.3

It is necessary to note that we are not assuming the exact
value of & to be known. We are assuming the ratio between Ej
and E,; is known instead. During the controller design, the
impact of k& will be approximated by NNs.

According to [5], y:(d,w) is bounded according to

7:(0, (0)‘ < 2(71'1;/ a)/‘) < i(yﬂf @; ‘) ©

where y;;; and y;,; are unknown constants decided by system
parameters.

The model can be further simplified into (7) by introducing

anew state vector x; =[x; x, x31" =[6, -8 @ @] .

sm5j‘+7‘,2

6;""7;2

X = X
Xy =X, (7
Xy =f(O)+u,+A,(x)
where  fi(.)=kixiptkix;;  with k.3 defined  as
kiy==Dy/(2H,T45:"), kiz=—Dy/(2H) —1/Taoi’, kiz=-wo/(2HTuy;’)
correspondingly, 4,(x)=-wy/(2H)y;(x), and the newly
introduced control signal u; is defined as u;=- wy/(2H;T ;" )vy.

After transformation, the bound of the interconnection
terms can be expressed as (8).

A, ()] < i‘su (|x‘/.1|,|x/.2|) ®)

B. Model for the steam valve controller design

The following set of equations is used in our decentralized
steam valve controller design.

51‘ =
d)[ =—— @, + “ (Pmi_Pe[)
2H, ' 2H, 9
Pmi = _iPmi +&Xa’
Tm[ T;ni
Xei:_ us wi_LXei-i_LBi
T, Rw, T, T,

For this steam valve control model, P, is the inter-
connection term. According to [5], P,; is bounded by (10).

|Ei|§igy'|sm5f|gzn:gv|5j| (19
j=1 J=1

where g; are unknown constants decided by generation
capacities.

Define AP, =Pyi-Ppigy AXoi=Xo-Xeig, Where P9 and X
are the stable values of P,;, X,; respectively for some initial
operating point, then (9) can be transformed into (11).

51 =0

@, =k, 0, + kAP, + ks — kP,

Apmi = kAP, +kAX,
AXei = ko, =k, AX, + ko P,
where, ki,=-D/(2H), kis=wy/(2H,), kis=kis/Pnio» kir=-1/Ti,
kis=K i/ Tis kio=-Ko/ (TeiRiwg), kizg=1/T;.

For simplification, define x.=/x;, xi.J'=/0, w]’ and
E=[ &, En]'= [kisAP,;, kiskisAX,;]", then the system dynamics
can be transformed into (12).

(11)
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X = X
Xy = Jio (%) + 6 +A(x) (12)
é‘] = fﬂ (9311 )+ é.':iZ

éziz = fiz (xi2’ §i2) +u,

where, fi(Xi)=kigxiptkis filli)=kilin fo(xinlo)=kiskiskiox:
-ki;o&i, and the bound of the interconnection term A;(x) is
given by (13).

\A/-(x)\ﬁi% xfl‘ (13)
=1

III. DECENTRALIZED CONTROLLER DESIGNS
The decentralized excitation and steam valve controls are

designed separately according to their corresponding
transformed models.

A. NN based decentralized excitation controller design
First consider the ith subsystem. Define the filter error 7; as
T T
n=A 1 x (14)
where x;=/x;,x;5,x:3] ", A;i=[Ai1, %2]" is an appropriately chosen
coefficient vector such that x,—0 as r—0 (i.e. s°+As+4,=0
is Hurwitz).
Taking the derivative of 7; to get
. T
=100 Ayl + fi()+u +A(x) + d; (15)
For subsystem without interconnection term A;(x), the
control signal #; can be chosen as:
T
up =—K;r; =[0 A5 Ix; = f;()
where K;>0 is the design parameter.
To counteract the effects of interconnection terms, NNs are

used here. According to the NN approximation theory, it can
be conclude that there is a NN such that

VVI.T(DI-(XI») + & = Zéji (|xil|’|xi2|)
=

(16)

(17)

x,|,1]" is the input vector to the NN, ¢; is

B

where X, = [| X,

the bounded NN approximation error given by |gl-| <&y -
Thus, the actual control signal can be chosen as

u; ==K [0 ATTx = f;()—sgn(r) W, @,(X,)  (18)
The Lyapunov function for the ith subsystem is chosen

according to

V; :l’"iz +lVI7iTFi71WN/i (19)
2 2
where VI7, is the weight estimation error defined as
W, =W, ~W, (20)
and I'; > 0 is another design parameter.
Taking the derivative of V; to get
V==K = || @,(X) 4 1, () + T W, 1)

< _Kiriz _|ri| Vf/iT(Di(Xi) +|ri|giM + Vf/iTFiilW;/i
Thus the Lyapunov function for the overall system
becomes

WeC07.3

r=2 (22)
i=1
Note that
leldi(|xfl|’|sz|) :lel5ji(|xil|’|xi2|) (23)
i=l j= i=l j=
Thus
V< Y[ =Ko = o, () WIT W e | 24
i=1
The weight updating rule is chosen according to
W, :Fi|ri|q)i(Xi)_airiVVi (25)
Then (24) becomes
V< Z(_Kiriz _aiVT/iTWi +|ri|‘9iM)
=l (26)
If W4 1s defined as the bound of W, then we have
—a’_I/IZTVf/’_ S—a[|VI~/[|Z+ai|VIZ||VK|S—%|VI~/[|2 +%VI/[r2nax (27)
In addition to (27), we have
Wl
5?/[‘}’[‘374-555\4 (28)
Thus,
. u 1 2 a; |~ |2 a; 2 1 2
V<Y [-(K, - ==L W[ + 22w +—& (29)
;[ ( i z)rz 2 | 1| 2 imax 281M]
For simplification, define _ Z": AW e . If the
= 2

selection of design parameters K; and a;, such that K;>y+1/2,
and ¢, > y4,, (I7"), then we get

V<X [7 +WT W ]+ p<—pV +p (30)
i=1

Theorem 1: Consider the closed-loop system consisting of
system (7), the controller (18), and the NN weight updating
laws (25). For bounded initial conditions, we have the
following conclusion.

All signals in the closed loop system remain uniformly
ultimately bounded, and the system states x and NN weight

estimates ¥ eventually converge to a compact set Q..

V<p}
Y

Proof: From (31), it can be seen that if 7, and W, are outside

Q{W (1)

of the compact set defined as (31), then ¥ will remain
negative definite until the systems state and the weight
estimate errors enter the Q. Thus, 7; and , are uniformly
ultimately bounded. Furthermore, since w, exist and are
bounded, then #, are also bounded. Considering (14) and the
boundedness of r,, we can conclude that x; is bounded.

Using (18), we conclude that control signal u is also
bounded.

Thus, all signals in the closed loop system remain
bounded, and the system states x, and NN weight estimates
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Vf/l- eventually converge to a compact set Q. Further analysis
of the compact set can be found in [9].

B. NN Based Decentralized Steam-Valve Control

According to backstepping, the design procedure is
described using three steps [9].

Step 0: First consider the ith subsystem. Define the error
between the actual and desired system output as

€ =Xn~ X (32)
Then the filtered tracking errors can be defined as
z, =[A4 e (33)

where e =[e,,é], 4>0 such that x;->x;4 as zp->0 (i.e.
s+1,=0 is Hurwitz).
Taking the derivative of (33) and using (12) to get
Zio = AXy + fio(x,) + & + A, () (34)
By viewing &;; as the virtual control signal, the ideal value
of which can be chosen according to

Aixip + fio(Xi2)] - Sign(zio)z Slxa| 35)

Jj=1

*

tio =—Kjozio [

where K;, >0 is the design parameter.

Based on NN approximation theory and applying the
Assumptions, the latter part of the above equation can be
approximated by using two NNs.

W TCD!OI( 01)+$ j’ixiZ +f;0(xi2)

i0l ) (36)
VV[OZTCDI'OZ (X)) + &0 = Z5ji |xi1|

where X, =[x,,,1]", Xjo= |] l-1|,,l]T, and the approximation

errors are bounded according to |8,-01| <&l and |5i02| <en.

If &, is the actual control signal, the virtual control signal
can be chosen as
Fo = W(n CDLOI(X[OI)_Sgn(Z[O)VVIOZTq)tOZ( ) G7)
Remark 3.' Durlng the following controller design, it is
necessary to take the derivative of the virtual control signal.
The procedure cannot proceed if the virtual control signal is
not continuously differentiable. This problem can be solved
by approximate of the discontinuous sign function with a
continuous function. A choice of the function is
fi(x)=(1-¢"™)(1+e¢™) with k>0. When |x| is approximated by
fr(x)=xfi(x). It is easy to verify that the estimation error is
bounded [6].

Thus, Xipo=[f>(x11), 1 ]T is selected to replace /|x;;|, 1] T as the
NN input and the realizable virtual control signal becomes

o =—Kiyzio — 101 D, (X,0))— 11(z; o) loz D,,(Xip) (38)
Define
zZyp =81~ "o (39)

Choose the Lyapunov function for this step as

n n 1 1
VOZZVO[:Z( +2W01F101W101+2W02F102W102j (40)
i=1

where I'y;=Ip,">0 and I',=Ip,">0 are the adaptation gain
matrices.

WeC07.3

Choose the weights updating rules for W,,, and W, as

Wi =Lipl2,0@ i (X)) — @iy 101]
D, (XiOZ) - aszioz]

According to the bound analysis in [7], we know the
following expressing is valid.

. n ~ 2
2 42
Vo < Z(_C[OIZ[O +Z,0Z; —Cip |Wf01| Cio3 | 102| + c[04) ( )

(41)

W =Lpllz

i0

i0

i _a a.,, —1
with w=K, __>0,C =050, =% >0-and
2 2 2
2
_ %y 2, % +Cy, 2 Lo 1
Cioa = 12 VV/’OI +— : Wioz +7702 I/V/oz +E]702+55i02

2
d"

+;(e;m +28 ]
8io

where Cj, is a constant as long as k and the NN parameters
(number of input neurons, number of hidden neurons, and
type of transfer functions) are decided [7].

Step 1 Taking the derivative of (39) and using (12) to get

¢10()+ S A,()+ O —T |ZIO|®10(X102) (43)
i i02
where
8};0 A 6;;0 A
$o = [ fro(in) + 1+ =2 Wigy == T00100Wi
axil 5392 i01 W
(44)
Thus
Zy =[G+ S~ — Ap()- . L6 Zi02| Pion (Xioz) (45)
a i2 I/V:’()Z
Define
Zp=&p —ay (46)

By viewing &, as the virtual control signal, the ideal virtual
control signal 7;;" can be chosen according to

rii =-z,,— Kz, =[/,(5) — ¢
o [ 47)
—sign(z, ){ ax_io {z S|, D} +La )20 |}

According to NN approximation theory, we know that
there exist two NN, such that one NN satisfies

111‘1)111( A+ én = fa(Sn) — o (48)
M
with X, =[x,,%,, zlaWzoszozali and g, < &) -
and another NN satisfies
0a || =
T
Win @2 (X)) + 512 = 6xlo [Z@'i(xil)]*'rfozzio (49)
i2 || j=1
with 0% 147 and |g, | < &
X =[Z,-o 51X | ] Eina| S €inn -
i2

Similar to Step 0, change the input vector to the NN to
Xy =1 G f ) f 2 (50)
0x;y
Correspondingly, the realizable control signal becomes
i =20 — Kz — W:nq)m(in) HGE)W, 1T2(D;12(X;12) (51)
Choose the Lyapunov function for this step as
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_ 1 _
Z += WATl i 1W111+2W11T2 i 1W12j (52)

Vv, = V+Z(

where I'y;;, [, >0 are the adaptation gain matrices, w,, and
W,, are the weights estimation errors.
The weights updating rules are chosen as

VVlll _l—‘zll[ 111( ll) azll 111]

(DiIZ(XilZ) - ailZVVilz]
Similar to Step 0, taking the derivative (52) and using (53)
to get

N ~
Vo=Vt 3| 2 + W, + T 07 |

(53)

le =Tllz

i

il

, o (54)
< " | ZiyZin ~ CiorZio _C[02|VV1'01| LO3| 102| +Cios
< 2 . o,
= TCinZn —Cin |VVi11| 113| 112| +Cis
-1
where . :Kn—§>0’ e =31 505 ¢y =12 >0 and
2 2
a; 2 Q i
Ciig :#lW;Hl +M|W12| +]:12|W12|+ 112
2
1 a¥ 1
+E[g,ﬁ +—L ] +—en?
&l 2
Step 2'Taking the derivative of (51) to get
’;i_¢ ”A() 'l I, D, (Xi )
1 )C VVI,OZ 02 02 (55)
671
: Fl i (Xt )
VKIZ 12 12 12
where
oa; oo A
¢i1:a_’1 i ll[fo( ,2)+~’§11]+a 2t — Wioi
Xi1 0x;y ézl W, (56)
oa; ~ oo,y A oq; ~
——- 0,0 Wi +fllW,‘n —— L Tnan W,
i02 ill i12
Thus,
. aal
Zin = fo (%05 80) U, — 4, — IA()
'x12 (57)
6a

— onz |Zzo|cD102(X,oz) “ F112|Zn|q)123(X112)
i02 VVIIZ
The desired control can be selected as:

uz* == Kz, =1 £ (%2, 62) — 4,1
(58)
_SZgn(th){ |:Z (|xi1|):|+ri02 |ZIO|+Fi12 |Zil|}

Similarly, one NN is used to approximate f, (x,,,&,) as
W@ (Xi2) + &1 = fi2(%2,12) (59)
where |¢,,,| <&}, and the NN input is defined as
KXoy = [%05 X125 &5 Gia s Wigrs Wi s W s Wi 11 (60)
and another neural network satisfying

122 D,y (Xinp) + 6 (61)

|ZIZ|{

|:25,, (lxlll):| +T, |Zlo| +, |Zn|}

0x,,

WeC07.3

M . .
where |gi,n—k,2| <&, 4, and the NN input is defined as

oa,

Xim =1 17" (62)

z

z

iol>|Zit]p [ Xit|>

i2
Since this is the last step, there is no need to approximate
sign(.) using f,(.) . Finally, the actual control signal can be

chosen as

u;=—z; —Kppzjp — W21(D121( 1)~ Slg”(Zzz)sz‘Dzzz( 22) (63)
Choose the weight updating rules for W21 and Wy, as

Wm =Toi[2:P 101 (X i21) — @i i21] (64)

Wip = rizz[lzizlq)izz (thzz) = U]

The Lyapunov function for the overall system is selected as
_ < (1 o l=r 1= 65
V—I/1+;V2f—l/1+;(2212+ Wil W[zj (65)

Evaluating (65)'s derivative and using the same analysis as
before to get

V<z[ pITERES WM A W, —g%}(“)

where ¢ -k 150 , ¢ %2 , . _% , and
i21 i2 i22 i23 T
2 2
_ 121+3122+a121| 121| +a122| 22|

Ci24 2
Theorem 2: Consider the closed-loop system consisting of
system (9), the desired output X, , the controller (63), and the

NN weight updating laws (41), (53) and (64). If the NN
transfer functions are selected to be smooth and bounded, and
the NNs are large enough, such that they can approximate
their objective functions accurately, then for bounded initial
conditions, we have the following conclusion.

All signals in the closed loop system remain uniformly
ultimately bounded, and the system states and NN weights
eventually converge to a compact set Q.

V<}
y

Limited by pages number, proof for Theorem 2 is omitted.

A A A A A

Q{EW,WWWWW (67)

il il i0. il 12!

IV. SIMULATION STUDY

The proposed decentralized controls are evaluated with a
three-machine power system described in [8].

A. Simulations Results for Excitation Controls

The excitation controller design is evaluated with a 3-phase
short circuit fault. The fault happened at the middle of one of
the transmission lines between generators G, and G,. The
fault happened at 1 second until it is cleared by disconnecting
the faulted line at 1.2 second, and then the faulted line is
restored at 2 second.

The design parameters for the two decentralized excitation
controllers are the same according to (68).

A, =[25,101, K, ,=5,T, =5 k=5

Simulation results are shown in Figs. 1 and 2.

= 5, o, (68)
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It should be noted that when there are no excitation

controls in the system, after the fault is cleared, the system
will still converge, but the oscillation takes long time and the
system may converge to another operating point other than

the original one.

time in seconds
Fig. 4. Relative speed responses comparison of G2

From the above simulation results, it can be seen that
although the subsystem controllers only take into account the
local signals, the coordination of the control activities can be
realized.

V. CONCLUSION

This paper proposed two NNs based decentralized
controller designs for the excitation and steam valve control
of multimachine power systems. The controller designs are
based on the bound analysis of the interconnection terms and
rigorous Lyapunov stability analysis. The introduction of
NN eliminates the need for precise parameters of the system
model. Simulation results demonstrate the effectiveness of
the two controller designs. Future work includes
consideration of more practical power system model and
simplification of controller designs.

Furthermore, it can be seen from Fig. 1 that the system
responses compose of different frequencies. This is because
the interaction of between the subsystems’ activities. From
Fig. 2, it can be seen that the interactions have been
successfully damped under the proposed decentralized
excitation controls.

B. Simulations Results for Steam Valve Controls

The proposed steam valve controller is evaluated under the
same fault as the excitation controller.

The design parameters for all of the decentralized
excitation controllers are the same according to (69).
ﬂ’i =5, Ki,0~z =5, k= 5:1—“,1~2,1~2 = 5»“',0~2,1~2 =5

i i (69)
wherei=1, 2
Simulation results are provided in Figs 3 and 4.
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Fig. 3. Relative speed responses comparison of G1
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