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DYNAMICALLY REGULARIZED FAST RLS WITH APPLICATION TO ECHO 
CANCELLATION 

Steven L. Gay 

Acoustics Research Department 
AT&T Bell Laboratories 

600 Mountain Avenue, Murray Hill, New Jersey 07974 
email: slg@research.attcom 

Abstract: This paper introduces a dynamically regularized fast 
recursive least squares (DR-FRLS) adaptive filtering algorithm. 
Numerically stabilized FRLS algorithms exhibit reliable and fast 
convergence with low complexity even when the excitation 
signal is highly self-correlated. FRLS still suffers from 
instability, however, when the condition number of the implicit 
excitation sample covariance matrix is very high. DR-FRLS, 
overcomes this problem with a regularization process which 
only increases the computational complexity by 50%. The 
benefits of regularization include: 1) the ability to use small 
forgetting factors resulting in improved tracking ability and 2) 
better convergence over the standard regularization technique of 
noise injection. Also, DR-FRLS allows the degree of 
regularization to be modified quickly without restarting the 
algorithm. 

The application of DR-FRLS to stabilizing the fast affine 
projection (FAF') algorithm is also discussed. 

1. Introduction 

One of the more promising classes of adaptive filtering 
algorithms for acoustic echo cancellation is fast recursive least 
squares['] ['I (FRLS). These exhibit reasonably low 
computational complexity combined with fast convergence even 
when the excitation signal is highly colored. Versions with 
improved numerical stability have appeared in the past few 
yearsi3] [41 yet, even these suffer from instability which occurs 
when the excitation signal's sample covariance matrix, R,, is 
poorly conditioned. This situation may arise from the excitation 
signal's actual statistics (it may be highly self-correlated) or 
from the use of an insufficiently long data window in R,'s 
estimation. Since RLS and FRLS rely on the explicit or implicit 
inversion (respectively) of R,, both become unduly susceptible 
to system measurement noise and/or numerical errors from finite 
precision arithmetic when R, has some small eigenvalues. 

Regularization is a common technique used in least squares 
methods whereby a matrix such as 61N is added to R, prior to 
inversion. Here, 6 is a small positive number and IN is the N 
dimensional identity matrix. This establishes S as the lower 
bound for the minimum eigenvalue of the resulting matrix, 
stabilizing the solution (if 6 is big enough) at the price of 
biasing the least squares solution slightly. 
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Here, we introduce a technique for regularizing the R, 
inverse in such a way that the O ( N )  complexity of the FRLS 
algorithms may be retained. Moreover, the degree of 
regularization (the size of 6) may be ctianged in real-time 
without restarting the adaptivle filter, resulting in a dynamically 
regularized FRLS (DR-FRLS:) adaptive filtering algorithm. 

2. Regularization Refresh 

RLS and FRLS are efficient ways of implementing the 
following algorithm, 

e n = d n - g I f , - l  (1) 

- h ,  = I f n - ,  + R;' z , e , .  (2) 

In acoustic echo cancellation parlance, the ,scalars, vectors, and 
matrix of (1) and (2) are defined as follows: 

d ,  is the desired signal. 11. consists of both the echo and any 
oher background acousbic signal, y , ,  picked up by the 
microphone. 

x,  is the excitation signal and is assumed to equal 0 for n < 0 
and x, is the N-length excitation vector, 

zn=[xn,  Xn-1, Xn-N+1IT* (3) 

I fn=[hl,nt )IZ,n, a * . ,  h N . n l T .  (4) 

h,  - is the N-length adaptive filter coefficilent vector, 

e ,  is the a priori error, or residual echo. 

R, is the N-by-N sample c:ovariance mairix of { x ,  1. 
Various windows can be applied to the data used to estimate 

R,. The exponential window is popular since it allows rank- 
one updating from sample period t13 sample period. 
Specifically, 

n 

R, =A"+' SODA + Pz,-iG-i (5 )  
i = O  

= hR, - t ~ , g  (6) 

where, h is the forgetting j'mfor selected within the range 
0 << hs 1, 6o is the initial regularization, 
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, ...) h, 1 } 3 (7) 

Exploitation of the rank-one update of R, of equation (6)  led to 
O ( N 2 )  complexity RLS from classical least squares methods 
( O ( N 3 )  complexity) and the exploitation of the shift invariant 
nature of 5, led to O(N)  complexity FRLS from RLS['It2]. 

With R, as defined in (5) through (8), 6,Dk serves to 
initially regularize the inverse in (2), but according to the first 
term in (5) its effect diminishes with time. Adding an 
appropriately scaled version of 61N to R, prior to inversion 
each sample period would indeed regularize the least squares 
solution, but that would require an additional rank N update 
each sample period, eliminating the computational benefit of the 
rank-one update in (6). An alternative, is to add an 
approximation to S I N ,  D,, which itself is updated each sample 
period with a rank-one update matrix constructed from the outer 
product of a shift invariant vector. Then, (2) can be modified to 

h n Z h n - 1  +R,!cxnen (9) 

RX,, =D, + R,. (10) 

where 

With both, D, and R, being maintained by rank-one updates, 
R,,, requires a rank-two update. This will increase the 
computational complexity somewhat over those algorithms 
using only R,, but with the benefit of regularization. 

It is desirable that D, be constructed recursively, using the 
outer product of a vector composed of a shift invariant signal 
such that the eigenvalues of D, are updated, or refreshed as 
often as possible. Accordingly, let us define the vector 

p , = [ O ,  - 0 ,  ..., 0, 1 ,  0, ..., O ] T  (11) 

where all elements in the vector are zero except for a one in 
position 1 + [n] mod N .  In addition we introduce two signals $, 
and 6 ,  which will control the size of the regularization in the 
adaptive filter. $, determines whether 52 will slightly inflate 
(when @,,=l) or deflate (when $,=-1) the regularization 
matrix. We can now define the regularization update to be 

with D-l = O  as the initial condition. If we further restrict the 
sample periods that $, and 5, may change values to those 
where the E,, vector has its only non-zero value in the first 
position, $ n 6 n ~ n  becomes shift invariant, and an O ( N )  
algorithm may then be derived. 

This D, is very similar to that proposed by Ljung and 
Soderstrom['] with the exceptions that here we exploit 1) the 
shift invariance of $ , ~ , p _ ,  to get to O(N)  complexity and 2) the 

potential deflationary effects of $, enabling us to manipulate the 
degree of regularization more easily. 

If 9, and 5, are fixed, then the if' diagonal element of D, 
will reach a steady state of 

hIn-i+ 1 Indx 
(14) 1-hN di,n = $ n  52 

Equation (14) shows that the regularization provided by the i" 
diagonal element of D, varies periodically due to the periodic 
nature of the regularization update. For reasonable values of h 
and N the condition number of D can easily be restricted to the 
range of 1.1 to 1.4. 

3. Dynamically Regularized FTF 
In this section we define the dynamically regularized fast 

transversal filter (FTF), an FRLS algorithm, which also 
incorporates numerical stabilization. The rank-two update of 
R,, can alternately be viewed as two rank-one updates, where 
an intermediate regularization refreshed covariance matrix Rp,, 
is defined as, 

Rp,n=hRx,n-1 +$nS;4En& 
and then, the data updated covariance matrix is 

Rx,n=Rp,n+Xng. 

Prediction 

PrediCtiOU 

of FRLS 

Joint 
Process 
Extensio i 

4 en 
I 

q y ( n  

Figure 1. DR-FRLS Block Diagram 

Using (16) and the matrix inversion lemma we can express the 
data aposterwri kalman gain vector, as 

(18) k I ,x,n = K,!t?n = 
= (R;,: -R&,( 1 + ~ R , - , ' , Z , ) - ~ ~ R ; , : ) ? ~ .  
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Now, define the data a priori kalman gain vector as 

ko,x,n =Ri,'nxn (19) 

Px,n=(l +&.nXn * (20) 

k1,x.n =Ri,!zXn =ko,x,nPx,n* (21). 

I f n  = i n -  I +ko,x,n Px,nen* 

and the data likelihood variable as 

Then, after some manipulation, (18) becomes, 

Using (21) in (9) the coefficient update becomes, 

(22) 
The remaining computations are all directed toward the stable, 
efficient computation of kos,, and px,n from sample period to 
sample period. These steps are summarized in the DR-FRLS 
block diagram of figure 1 and are detailed in tables 1 and 2. 

FRLS is often separated into two parts. The prediction part 
generates the kalman gain vector and the likelihood variable 
which are sent to the joint process extension part. The joint 
process extension uses the output of the prediction part together 
with the excitation signal, n,, and the desired signal, d,,  to 
generate the a priori error output, e,. Normally, the prediction 
part also maintains forward and backward prediction vectors 
and their corresponding prediction error energies as internal 
variables. DR-FRLS has an additional prediction part for the 
regularization process. It is driven by the shift invariant 
sequence $,E,p,. The prediction parts corresponding to the 
data and regularization processes influence each other via the 
prediction parameters as shown in the block diagram. Each 
maintains its own independent k h a n  gain vectors and 
likelihood variables. Both prediction parts use error feed-back 
for stabilizati~n[~I. In addition, the likelihood variable estimates 
are stabilized using the multi-channel, multi-experiment method 
of Slock and Kailathcq. 

The total complexity of DR-FRLS is 12N multiplies per 
sample period, only 50% more than stabilized FTFr4]. The data 
related prediction part requires 6N multiplies while the sparse 
nature of pn allows the computation of its prediction part to be 
reduced t04N multiplies. An additional 2N multiplications are 
required for the joint process extension. 

5. Application to FAP 

The fast affine projection (FAP) adaptive filtering 
algorithmp] [*I is a low complexity, fast converging adaptive 
filter which is particularly usr:ful in acoustic echo cancellation 
applications. If N is the length of the adaptive filter and P is the 
order of the affine projection algorithm, FIWS computational 
complexity is 2N+20P multiplications per sample period. 
Typically, P << N in acoustic echo cancellation applications. 
FAP uses the prediction part of a P'th order N-length sliding 
windowed FRLS to supply 6orward and backward prediction 
vectors and prediction error energies. The initial values of the 
prediction error energies provide regularization to the implicit 
sample covariance matrix inversion. An advantage of the 
sliding window is that this regiularization does not diminish with 
time. A disadvantage though, is that the pnediction parameters 
experience a slow build-up of numerical errors over time. One 
way to combat this problem is to modify ithe window on the 
FRLS algorithm to include a forgetting factor slightly less than 
one, producing a non-rectangular sliding window on the data. 
Thus, numerical errors dissipate with the forgetting factors. 
Unfortunately, other numerical errors arise when the forgetting 
factor is less than one, but these can be controlled using 
stabilized FRLS techniquest4] Another side-effect is that the 
forgetting factor will cause the initial regularization to be 
forgotten together with the: numerical errors. With the 
application of the DR-FRLS technique, though, the 
regularization can be refreshed each sample period. The 
resulting complexity is 2N + 2tV' multiplies per sample period. 

4. ASimulation 

In Figure 2 the convergence of the misalignment (the 
normalized coefficient error) in dB is shown for DR-FRLS and 
another common regularization approach called noise injection. 
In noise injection, a white noise signal is added to nn just prior 
to its input into the prediction part of the FRLS adaptive filter, 
regularizing the sample covariance matrix. In the simulation of 
Figure 2 the excitation signal was a 5 second speech signal, the 
variance of the noise injection signal was 4.50,2/N, N was 1O00, 
h=(l- l /3Nj,  E,,,-,=6=8.40: and the echo-signal to 
background-noise ratio, SNREB, was 30 dB. The DR-FRLS 
simulation used the same values and in addition, = 2.80; and 
$, = 1. The figure shows that DR-FRLS converges faster and to 
a lower final error level than noise injection. 

6. Conclusions 

This paper introduces dynamically regularized FRLS (DR- 
FRLS), a process for regularizing FRLS adlaptive filters at the 
cost of a 50% increase in computational, complexity. The 
degree of regularization can be modified easily without 
restarting the algorithm. Simulations indicate that DR-FRLS 
has better convergence performance that the noise-injection 
approach. Finally, the application of DR-FRLS to FAP was also 
discussed. 
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Table 1: DR-FRLS Initialization 

gx,-l =[1,0 ,..., 0lT bx,-l=[O ,..., 0,1IT 
Eb,x,- I =6 Ea,x,-l =hAf-lEb,x,-1 

& , - I  = 1 Px,-  I = 1 
k0,p.-1 =o k0.x.- 1 = 0 
E-, =0 r_-1 =o 
e-1 =o 

- - 

K1=1.5, K2=2.5, 1 Y d = O ,  K5=1 ~ 
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Table 2: DR-FRLS 

Multiplies 

N ..... ........ ....... j.. . . .  .; ....... ........... ;... .... 

Figure2. Convergence of DR-FRLS versus FRLS with Noise 
Injection 

N 
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