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Abstract 
Traditionally, fed-batch biochemical process optimization 
and control uses complicated theoretical off-line 
optimizers, with no on-line model adaptation or re- 
optimization. This study demonstrates the applicability, 
effectiveness, and economic potential of a simple 
phenomenological model for modeling, and an Adaptive 
Critic Design, Heuristic Dynamic Programming, for on- 
line re-optimization and control of an aerobic fed-batch 
fermentor. The results are compared with those obtained 
using a Heuristic Random Optimizer. 

1 Introduction 
Biochemical processes provide a good opportunity for 
optimization and control because they produce high value 
end products like vitamins, baker's yeast, and antibiotics 
[ 11, [2]. In addition, fermentation processes are often non- 
stationary and, therefore, need continually adapting 
recipes for optimal performance. Fed-batch fermentations 
have been widely investigated for both optimization and 
control. The most important aspects to be considered are 
the changes in process parameters andor dynamics during 
the operation of the batch. This requires dynamically 
adjusting the process model, and re-optimization using the 
improved model. Previous research demonstrated this [3], 
[4], using a Heuristic Random Optimizer [5] for both off- 
line and on-line optimization. 

This study explores a variety of control schemes including 
off-line optimization, on-line model re-parametrization, 
and on-line re-optimization of a fed-batch fermentor, using 
an Adaptive Critic Design, Heuristic Dynamic 
Programming [6]. Specifically, a rigorous 
phenomenological model was used to represent the 
fermentation process, with an intentionally different model 
for the optimizer (to account for the process-model 
mismatch that exists in an industrial setting). Off-line 
optimization was performed using the HRO. The one-step 
M O L  technique [7] was used for dynamic model 
parameter adjustment. Heuristic Dynamic Programming 
(HDP) was utilized for on-line re-optimization, and the 
process performance obtained using the same was 
compared with that obtained using the HRO for both off- 
line and on-line optimization. Although the study was 

conducted for a specific case of cultivation of mammalian 
hybridoma cells (animal cells) to produce monoclonal 
antibodies [SI-[ lo], the overall development is perfectly 
general, and is easily applicable to any batch process that 
can be modeled. 

2 The Biochemical Growth System 
The system studied for optimization and control was the in 
vitro growth of hybridoma cells and the production of 
monclonal antibodies by these cell lines. The cell culture 
medium was complex, containing glucose as the main 
energy source. In addition, about 15 amino acids were 
added to fulfill the requirement of cells for protein 
synthesis. 

Glucose was converted to lactate through the glycolytic 
pathway, and thence broken down to carbon dioxide and 
water in the Krebs cycle. High energy phosphates in the 
form of ATP were generated by the removal of electrons, 
and their tunneling through the electron transport system. 
Amino acids could also be interconverted into fats and 
carbohydrates, and subsequently used to generate 
additional energy by entry into the Krebs cycle. 

The breakdown of amino acids into two carbon fragments, 
which is required for introduction into the Kreb's cycle, 
resulted in the formation of ammonium ion. Lactate and 
ammonium ion were the major cellular waste products, 
whose accumulation caused feedback inhibition of cellular 
metabolic processes. 

3 Model development. assumptions and sources of 
process-model mismatch 

The detailed phenomenological model can be found 
elsewhere [3]. Basically, the model comprised the overall 
mass balance as well as balances on individual 
constituents like viable and dead cells, the substrates, 
glucose and amino acid (chiefly glutamine), dissolved 
oxygen, lactate (the inhibitor) and monoclonal antibodies 
(product). The process simulator (henceforth referred to 
as the process) had almost the same form as the model. 
The Process-model mismatch introduced can be classified 
into three categories, viz., functional mismatch, 
differences in values of parameters, and measurement 
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errors. It should be noted that the measurement error 
considered here was purely random error. Effects of any 
outliers or gross error were ignored. 

Two case studies were formulated to investigate process- 
model mismatch due to errors in estimating parameters. 
The first study featured an erroneously low estimate of kd 

(specific death rate of cells) while the second study 
featured an erroneously low estimate of kI mm (specific rate 
of inhibitor formation). The values assumed by both the 
parameters, in the model and the process, are presented in 
Table I. The values assumed by all other parameters can 
be found elsewhere [3]. The model and process were 
formulated in such a way that the degree of process-model 
mismatch would be realistic by engineering standards. 

4 The Heuristic Random Optimizer W O )  
The HRO is a powerful optimization routine that has been 
demonstrated [5] to be superior or equivalent to a variety 
of optimization algorithms including Broyden-Fletcher- 
Shanno, Fletcher-Reeves, Cauchy, gradient descent, etc. It 
has the advantages of constraint handling and scale 
independent stopping criteria. Hence the KRO was 
chosen as both the off-line optimization algorithm, and a 
comparative non-neural network based optimization 
scheme to benchmark the performance of HDP. 

5 Off-line Optimization 
The generic approach used, for off-line optimization, was 
to determine the values of the following variables, so as to 
maximize the average production rate per batch. 
a> SO, the concentration of glucose in the 

continuous feed to the process as well as in the 
process at the start of fermentation, 

b) &, the concentration of amino acid in the 
continuous feed to the process as well as in the 
process at the start of fermentation, 
VO, the volume of the reactor contents at the start 
of fermentation, 
qO(l), the feed rate to the reactor in the first 
reaction stage where there is a net increase in 
the population of cells with time, 
q0(2), the feed rate to the reactor in the second 
reaction stage where there is a net decrease in 
the population of cells with time, 

e) Xd, the initial inoculum of viable cells, 
g) CLO, the concentration of dissolved oxygen at the 

start of fermentation. 
The batch time was determined as the time when the 
process hit the volume constraint (5 liters in this case) or 
when the average production rate dropped, whichever 
came earlier. The latter concept is applicable here since it 
has been observed [3] that the average production rate is a 
unimodal function of the operating time of fermentation. 
The constraints, under which the optimization was 
performed [3], were based on solubility and process design 
considerations. The best off-line optimization results, 

c) 

d) 

e) 

obtained from multiple random starts, are given in Table 
II. 

6 Development of Heuristic Dvnamic Programming 

6.1 Training of Critic 
The critic was a 9-10-1 self-organizing feedfoxward 
network, trained to estimate the Bellman Cost Function 
[ 1 11 associated with each system state. There was no one- 
step penalty imposed on any state, since a reference state 
was unknown. In other words, the critic was trained, 
using error backpropagation [12], to minimize the 
following error for all states. 

The inputs to the network were the system state (eight 
inputs that comprised the volume of reactor contents and 
concentrations of 7 state variables) and the remaining time 
of operation (9* input). The discount factor, y, was 
assigned a value of 0.5. 

e = yJ(t + 1) - J( t )  (2) 

For this study, the Bellman Cost function (also the 
objective function) was the negative of the average 
production rate, per batch, of monoclonal antibodies. 

6.2 Training of Action 
The action network was a 9-5-1 feedforward network that 
was trained, using the Node Decopled Extended Kalman 
Filter [13], to predict the feed rate to the reactor that 
would minimize the cost function predicted by the critic 
network. In other words, the error, which the action 
network was trained to minimize, was the gradient of the 
cost function relative to the control action given by the 
action network. 
Eight of the nine inputs to the action network were the 
system state, while the ninth input was the sign of the 

, i.e. sign of the rate of change of total quantity, - 

viable cell mass with time. This was included to ensure 
that comparisons of performance with the HRO (which 
utilized the above information while arriving at the feed 
rate) were meaningll. 

d(yx,)  
dt 

The detailed methods of training are not being presented 
here. However, it should be noted that both the critic and 
action networks were trained as per the general techniques 
developed by Prokhorov and Wunsch [6]. 

7 Model Re-parametrization: The IMPOL Technique 
During process operation, the true process parameters drift 
as per underlying relationships not exactly known to the 
engineer. Hence, dynamically, there is a need to adjust 
model parameters to ensure compliance with the process 
behavior. The lh4POL technique [7] is a one-step 
application of Newton’s method, per control interval, to 
update a model parameter using the actual process-model 
mismatch (PMM) and the model sensitivity to the 
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parameter. 
mismatch is defined as 

For a dynamic process, the process-model 

(4) 

where Y( t )  and y,,,(t) refer to measured and model 
predicted values of the state variable being considered. If 
the mismatch is to be eliminated by adjusting the value of 
a particular model parameter I), then a one-step application 
of Newton’s method would yield 

I I 

where At is the update time interval. In order to eliminate 
overestimation of the parameter I), and to avoid 
contamination effects of noise, a relaxation coefficient a, 
of the order of 0.1, is multiplied with the second term of 
(5). The resulting equation is 

I I 

The use of (6) is deemed sufficient for model adjustment 
insofar as control relevant issues are concerned. While 
there is no a priori method to ascertain convergence, the 
adjustment of the model, at every sampling, in a one-step 
mode should suffice in keeping process-model mismatch 
to a desirably low value. 

For this particular study, the parameter, Xma, denoting the 
maximum value of the specific product synthesis rate, was 
adjusted using Equation (6). Evaluation of the gradient in 
Equation (6 )  was performed numerically. 

It should be noted that, in this study, model re- 
parametrization and model parameter adjustment mean the 
same, and are being used interchangeably. 

8 DMamic Model Re-Darainetrization and On-line Re- 
oDtinnizaticn usin9 HRO and HDP 

The sequential strategy, used for on-line re-optimization, 
is as follows 
a) The product concentration in the process was 

measured (Noise was incorporated in the 
measurement). 

b) The extent of process-model mismatch, PMM, was 
estimated using (4). 

C) The process-model mismatch was eliminated using 
the W O L  technique. The parameter ’Ilmax, 
representing the maximum value of the specific 
product synthesis rate, was selected for adjustment, 
since it was directly involved in the rate of product 
formation. 

d) Once model adjustment was performed, both HRO 
and HDP were utilized for on-line re-optimization. 
Both were utilized to determine only the feed rate to 
the reactor. The remaining time of operation was 
determined as described previously, i.e., to ensure 
that the system doesn’t hit the volume constraint 
while maintaining the highest possible average rate of 
production of the desired product. While using HDP 
for on-line re-optimization, there was no on-line 
retraining of either the action and critic networks. 
Any changes in the model were reflected solely in the 
system state, that acted as an input vector to the 
networks. It should be noted that the system state 
was that predicted by the model and not obtained 
from the process since quantities from a differentiable 
model are needed for HDP critic and action network 
training. 

9 ComDarison of Results usin9 HRO and HDP 
The comparison of actual measured product concentration 
profiles along off-line optimal (using € B O )  and on-line 
optimal (using both HRO and HDP) trajectories is 
depicted in Fig. 1 for Case (1). Fig. 2 depicts the annual 
product yields for Case (1). It is clearly seen that HDP 
outperformed both off-line and on-line HRO insofar as 
average production rate was concerned. Specifically, for 
Case (l), the average off-line optimal production rate was 
64.5 g/annum per batch. On-line re-optimization, using 
the HRO, resulted in an average production rate of 67.8 
g/annum per batch. The use of HDP, for on-line 
optimization, resulted in an average production rate of 
89.1 g/annum per batch. For Case (2), the corresponding 
figures were 68.47 g/mum per batch and 78.4 g/annum 
per batch respectively, along off-line and on-line optimal 
operations using the HRO, and 85.0 g/annum per batch 
along on-line optimal operation using HDP. 

If the market demand for monoclonal antibodies is 
considered to be 5 kg/annum of recovered product, as is 
often the case [14]-[16], a detailed economic analysis for 
Case (1) indicated that the use of HDP resulted in an 
increase in the annual net profit by $ 9.3 million and $ 8.2 
million respectively, over off-line and on-line optimal 
operations using the HRO. For Case (2), the 
corresponding figures were $ 6.03 million and $ 2.33 
million respectively. 
In addition to improved productivity and better economics, 
the use of Adaptive Critic Designs offers significant 
advantages over traditional direct search optimization 
routines like the HRO. These are 
a) Adaptive Critic Designs facilitate easy constraint 

handling via penalty functions and bounded activation 
functions in Neural Networks. 

b) Neural networks compute rapidly, thereby facilitating 
a much reduced control interval relative to optimizers 
like HRO. This advantage of reduction in control 
interval would be highly significant in processes with 
fast dynamics like chemical reactions (as opposed to 
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biochemical reactions). Another area where this 
advantage would be clearly observed is massive 
systems like refineries, where optimization involves 
determination of several decision variables, and 
computational time is an important aspect of process 
economics. 
With traditional optimization routines, improvements 
in the model are translated into improved optimal 
operation only by dynamic re-optimization. However, 
with Adaptive Critic Designs, even no on-line 
retraining results in significant improvements as 
opposed to both off-line and on-line optimal operation 
using conventional optimizers like HRO. This is due 
partly to the fact that the system state (that reflects 
changes in the model) is explicitly used while 
computing the control action, and also due to the fact 
that Adaptive Critic Designs do not, in general, 
require a perfect model for true optimal process 
performance [ 171. 

10 Conclusions 
This study demonstrates the applicability and economic 
potential of a simple scheme for off-line optimization and 
on-line model parameter adjustment and re-optimization 
using Heuristic Dynamic Programming. In general, 
Heuristic Dynamic Programming is robust towards model 
uncertainties, and tracks the global optimum closely. 
Besides, the significant economic benefits and increased 
computational power, obtained by the use of HDP, is a 
pointer to possible avenues in exhaustive application of 
Adaptive Critic Designs in the field of bioreactor control. 
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Case (1) 
Parameter Erroneously low k dmax 

Value used in 

0.08 g dead cells/ g 

Value used in 
Model Process 

0.16 g dead cells/ 
viable cells/hr g viable cell& 

k drnax 
0.1675 g inhibitor/ 0.1638 g inhibitor/ g 

g viable cell& viable cel lsh 

[17] E. W. Saad, Personal Communications, 
Department of Electncal Engineering. Texas 
Tech University, 1998. 

Case (2) 
Erroneously low k I mw 

Value used in 
Model Process 

0.0786 g dead 
viable cellsmt- cells/ g viable 

cells/hr 
0.3348 g inhibitor/ 

Value used in 

0.08 g dead cells/ g 

0.1675 g inhibitodg 
viable cellsmt- g viable cell& 

- Tables 

Decision Variable Optimal Value 

qo(2) 
Tb 
XVO 

I VI7 I 4.64 1 I 

82.2 mllday 
12 days, 13 hr and 20 minutes 

30 mgA 

I ad11 I 14.4 ml/dav I 
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0 2 4 6 8 10 12 14 

Number of Days 

Fig. 1 .  Comparison of Product Concentration Profiles for Case 
(1) along various Optimal Recipe Schedules. 

100 

Off-line Optimal using 
HRO 

On-line Optimal using HRO On-line Optimal using H D F  

Operating Conditions 

Fig. 2. Comparison of Annual Product Recovery per Batch for 
Case (1) along various Optimal Operating Schedules 
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