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Abstract-- This study shows step by step the application of the 

Particle Swarm Optimization (PSO) method to solve the problem 

of optimal allocation and sizing of multiple Static Compensators 

(STATCOM) in a medium size power network (45 bus system, 

part of the Brazilian power network). The PSO is proposed as an 

alternative methodology for traditional heuristic approaches and 

complicated mixed integer linear and non linear programming 

methods. Simulation results show the suitability of the PSO 

technique in finding multiple optimal solutions to the problem 

(Pareto front) with reasonable computational effort. As a part of 

this study, the optimal setting of PSO parameters is investigated 

and different power system load conditions are tested to 

determine the impact over the location and size of each 

STATCOM unit. 

Index Terms—Flexible AC Transmission Systems (FACTS), 

Particle Swarm Optimization (PSO), Static compensators. 

I.  INTRODUCTION

t the present time, there is a consensus that the power 

grid has to be reinforced and to make it smart and 

aware, fault tolerant and self-healing, and dynamically and 

statically controllable. Flexible AC Transmission System 

(FACTS) devices, such as a STATCOM, a SVC, a SSSC and 

a UPFC can be connected in series or shunt (or a combination 

of the two) to achieve numerous control functions, including 

voltage regulation, system damping and power flow control 

[1]. 

In the case of voltage support, shunt FACTS devices, such 

as STATCOMs and SVCs, are typically used. While 

designing and installing these devices, two basic issues have 

to be addressed: (i) steady state performance and (ii) transient 

performance. This study is focused on the steady state 

performance of multiple STATCOM units in a medium size 

power system. Particularly, it is desired to determine their 

optimal location (bus number) and power rating (MVA). 

                                                          
Y. del Valle is with Department of Electrical and Computer engineering, 

Georgia Institute of Technology, Atlanta, GA 30332 USA 

(yamille.delvalle@gatech.edu). 

J. C. Hernandez is with Department of Electrical and Computer engineering, 

Georgia Institute of Technology, Atlanta, GA 30332 USA 

(jean.hernandez@gatech.edu).

G. K. Venayagamoorthy is with the Real-Time Power and Intelligent 

Laboratory, Department of Electrical and Computer Engineering, University 

of Missouri-Rolla, MO 65409 USA (gkumar@ieee.org). 

R.G. Harley is with Department of Electrical and Computer engineering, 

Georgia Institute of Technology, Atlanta, GA 30332 USA 

(rharley@ece.gatech.edu).

Heuristic approaches are traditionally applied to 

determining the location of FACTS devices, for instance, 

shunt FACTS devices are usually connected to the bus with 

the lowest voltage. These heuristics are sufficiently accurate in 

a small power system; however, more scientific methods are 

required in larger power networks. 

Traditional optimization methods such as mixed integer 

linear and non linear programming have been investigated to 

address this issue; however difficulties arise due to multiple 

local minima and overwhelming computational effort [2], [3]. 

In order to overcome these problems, Evolutionary 

Computation Techniques have been employed to solve the 

optimal allocation of FACTS devices. Different algorithms 

such as Genetic Algorithms (GA) [2], [4], [5], [6], and 

Evolutionary Programming [7] have been tested for finding 

the optimal placement as well as the types of devices and their 

sizes, with promising results. 

Particle Swarm Optimization (PSO) is an evolutionary 

computation technique that has been applied to other power 

engineering problems (economic dispatch [8], generation 

expansion problem [9], short term load forecasting [10], and 

others), giving better results than classical techniques and with 

less computational effort. 

This paper introduces the application of PSO for the 

optimal allocation and sizing of multiple shunt FACTS 

devices: Static Compensators (STATCOMs), in a 45 bus 

system that is part of the Brazilian power network. The 

problem statement is presented in section II along with the 

description of the power system used in this study. Section III 

introduces the particle swarm optimization principles and 

describes the classical formulation in real number space and 

integer number space (integer PSO). In section IV the 

implementation of the PSO algorithm is presented step by 

step: the fitness function and particle definition, constrained 

search space and parameter setting are described in detail. 

Section V shows the simulation results in terms of power flow 

results, multiple optimal solutions and impact of load profile 

in the power system. Finally, conclusions and future work are 

given in section VI. 

II.  PROBLEM DESCRIPTION

The problem to be addressed consists of finding the optimal 

placemen (bus number) and power rating (MVA) of multiple 

STATCOM units in a medium size power system, based on 

their steady state performance. Such a problem can be stated 
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as a constrained optimization problem in which the main 

objective is to find the best positions of the STATCOM units 

to minimize the bus voltage deviations throughout the power 

system, using a minimum (cost efficient) size for each 

STATCOM. In addition, other operating conditions can be 

imposed such as keeping all voltage deviations within ±5% of 

the corresponding nominal values. 

The multimachine power system used for this study appears 

in Fig. 1. It corresponds to a part of the Brazilian power 

network [12] and has two distinctive load centers, one of them 

located among buses 377-380 and the other in buses 430-433. 

The existence of these two load centers suggests that the 

voltage support should be done through two STATCOM units. 

All simulations are carried out using PSAT software [13]. 

III.  PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is an evolutionary 

computation technique inspired by the social behavior of bird 

flocking and fish schooling [14], [15], [16]. It utilizes a 

population of individuals, called particles, which fly through 

the problem hyperspace with some given initial velocities. 

At each iteration, each particle’s position is evaluated 

according to a predefined fitness function. Then the particle’s 

velocities are stochastically adjusted considering the historical 

best position of each particle itself and the neighborhood best 

position [15], [17]. 

A. Original PSO formulation 

Mathematically, in a real-number space, the PSO algorithm 

considers that each particle is given by a vector ix
n At 

iteration t , the particle position vector ( )ix t , is determined by 

the sum of the previous position vector ( 1)ix t  and its 

velocity )(tvi  [18]: 

( ) ( 1) ( )x t x t v ti i i (1)

The velocity of the particle is determined by both the 

individual and group experiences: 

( ) ( 1) · ·( ( 1)) ...
1 1

· ·( ( 1))
2 2

v t w v t c rand p x ti i iii

c rand p x tig

(2)

where:

iw is a positive number between 0 and 1. 

21, cc are two positive numbers called the cognitive and 

social acceleration constants. 

,1rand

2rand

are two random numbers with uniform distribution 

in the range of [0, 1]. 

The velocity update equation as given by (2) has three 

different components [19]. The first one, known as “inertia” 

or “momentum”, models the tendency of the particle to 

continue in the same direction it has been traveling. The 

second component is the linear attraction towards the best 

position ever found by the given particle (pbest), thus receives 

the name of “memory” or “self-knowledge”. Finally, the third 

term, referred to as “cooperation” or “social knowledge”, can 

be described as the linear attraction towards the best position 

ever found by any particle in the swarm (gbest).

In the case of a two-dimensional space, the particle’s 

movement is illustrated by Fig. 2. 

In order to avoid the divergence of the swarm, the 

maximum allowable velocity for the particles is controlled by 

Fig. 1. One line diagram of the 45 bus 10 machine section of the Brazilian power system. 

Generation level: 13.8 kV.    

Transmission level: 525 kV, 230 kV.   

Total installed capacity: 8,940 MVA. 

Load Center 1 

Load Center 2 
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the parameter Vmax. If Vmax is too high, the particles tend to 

move erratically; on the other hand, if Vmax is small, then the 

particle’s movement is limited and the optimal solution may 

not be reached. 

Fig. 2. A particle’s movement in a two-dimensional space 

B. Integer PSO formulation 

In the case where integer variables are included in the 

optimization problem, the formulation of the PSO algorithm 

can be reformulated by rounding off the particle’s position to 

the nearest integer [20]. Mathematically, (1) and (2) are still 

valid but once the new particle’s position is determined in the 

real-number space, the conversion to the integer number space 

must be done1:

)()(

1:,)()(

tandtx

ndtxt

idid

idid
(3)

where d corresponds to the dimension index. 

IV.  IMPLEMENTATION OF PSO ALGORITHM

In order to correctly implement the PSO algorithm, several 

aspects have to be considered: (i) to define a proper fitness 

function to evaluate the performance of each individual in the 

population, (ii) to define the particle vector such that each 

individual represents a potential solution to the optimization 

problem, (iii) to characterize the search space taking into 

account feasible solutions and discarding infeasible ones, and 

(iv) to tune parameters, such as inertia and acceleration 

constants, to have an optimal performance of the algorithm 

(less computational effort, more accuracy, etc.).

A. Fitness Function Definition 

To evaluate each particle’s position it is necessary to define 

a fitness function that can properly take into account the main 

objectives that are pursued.

In this case there are two goals that have to be 

accomplished: (i) to minimize the voltage deviations in the 

system and (ii) to have the minimum possible STATCOM 

sizes. Thus, two metrics J1 and J2 are defined as in (4) and (5). 

45

1

2

1 1iVJ (4)

where:

J1 is the total voltage deviation metric. 

Vi is the value of the voltage at bus i  in p.u, and 

                                                          
1 Bracket function rounds off the argument to its nearest integer 

212J (5)

where:

J2 is the STATCOM size metric. 

1 is the size of the first STATCOM in MVAr. 

2 is the size of the second STATCOM in MVAr. 

The multi-objective optimization problem can now be 

defined using the weighted sum of both metrics J1 and J2 to 

create the fitness function J shown in (6). The best solution is 

one for which J is a minimum. 

2211 JJJ (6)

 where: 

J is the PSO fitness function. 

The weight that multiplies each metric is adjusted to reflect 

the relative importance that each goal has with respect to the 

other. In this case, it is decided to give equal importance to 

both metrics, giving values of 1= 1 and 2= 1/500, so that 

the two terms in the fitness function are comparable in 

magnitude. 

B. Particle Definition 

The particle is defined as a vector containing the location 

(bus number) of the two STATCOM units and their sizes as 

shown in (7). 

4

2211 , ii xx (7)

where:

1 is the location (bus number) of the first STATCOM. 

2 is the location (bus number) of the second STATCOM 

All components of the particle vector (bus numbers and 

sizes) are integer numbers, thus  xi
4.

C. Search Space Definition 

 There are several constraints in this problem regarding the 

characteristics of the power system and the desired voltage 

profile. Each of these constraints represents a limit in the 

search space; therefore the PSO algorithm has to be 

programmed so that the particles can only move over the 

feasible region.

For instance, the network in Fig. 1 has 10 generators buses 

where voltages are regulated by the generator AVRs. These 

generator buses do not need a STATCOM and are omitted 

from the PSO search process, leaving 35 other possible 

locations for the STATCOM. In terms of the algorithm, each 

time that a particle’s new position includes a generator bus, 

the position is changed to the geographically closest load bus. 

Also, considering the topology of the system, the bus 

numbers are limited to the range from 1 to 45, thus the two 

constraints shown in (8) have to be considered. 

451

451

2

1
(8)

xi(t-1) 

x(t) 

vi(t)
vi(t-1) 

pg

pi
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To solve this issue, if either 1 or 2 are outside this range, 

their values are re-randomized, i.e. the particle moves to a 

randomly selected bus. 

Additionally, the event of having the two STATCOM units 

connected to the same bus is considered infeasible, giving the 

restriction in (9). This is solved by relocating the second 

STATCOM to the nearest bus. 

21 (9)

The desired voltage profile required that 45 restrictions 

have to be defined as in (10). 

451:,05.195.0 iVi (10)

Each solution which does not satisfy the above restrictions 

is considered infeasible, thus its fitness function value is set to 

infinity.

Finally, in order to limit the sizes of the STATCOM units 

the restrictions in (11) are applied to the particles. If the 

maximum size of the STATCOM is exceeded (or if a negative 

value is encountered) then the particle is re-randomized. 

2500

2500

2

1
(11)

D. PSO Parameters 

In the PSO algorithm, there are five different parameters to 

be tuned for optimal performance: (i) type and value of inertia 

constant, (ii) acceleration constants, (iii) maximum velocity 

for each dimension of the problem hyperspace, (iv) number of 

particles in the swarm, (v) maximum number of iterations. 

In the author’s previous work [11], it has been shown that 

the most suitable type of inertia constant corresponds to a 

linearly decreasing scheme shown in (12). 

where:

wi is the inertia weight at iteration i.

iter is the iteration number. 

max_iter is the maximum number of iterations. 

Under this scheme, the convergence of the swarm is improved 

by reducing the inertia weight from an initial value of 0.9 to 

0.1 in even steps over the maximum number of iterations. 

The optimal individual and social acceleration constants for 

this type of application are c1 = 2.5 and c2 = 1.5, which 

indicates that giving more importance to the individual’s 

knowledge with respect to the social information improves the 

performance of the PSO in this particular type of application 

[11], [21]. 

The value for maximum velocity has been determined to be 

equal to 9 in the case of the bus number (rapid changes are 

allowed) [11], and equal to 50 in the case of the STATCOM 

size [21]. Accordingly, the maximum velocity vector is: 

509509maxv (13)

In the case of the number of particles in the swarm and the 

maximum iteration number, there is no previous work to guide 

the setting of these parameters; different values are therefore 

tried according to Table I. It is important to note that there is a 

trade-off between the number of particles, the number of 

iterations, and the computational effort; it is therefore 

preferred to keep the values of these two parameters as small 

as possible. 
TABLE I 

PSO PARAMETERS 

Parameter Tested values 

Number of particles {15, 20} 

Number of iterations {50, 75, 100} 

Inertia weight Linearly decreased 

Social acceleration constant (c1) 2.5 

Social acceleration constant (c2) 1.5 

Vmax for bus location 9 

Vmax for STATCOM size 50 

The final implementation of the PSO algorithm is illustrated 

in the flow chart shown in Fig. 3. 

V.  SIMULATION RESULTS

A. PSO Parameter. 

In order to find the best set of parameters for the PSO, 50 

trials are performed for each possible set of parameters. For 

each trial the best fitness function value is recorded and once 

all 50 trials have been performed, the minimum, maximum, 

average, and standard deviation are computed as a statistical 

indication of the PSO performance. In addition, a performance 

index called Convergence Rate (CR) is defined as the number 

of cases (over the 50 trials) in which the swarm converges to 

any feasible solution (optimal or near optimal).  

The simulation results indicate that the choice of the number 

of particles equal to 20 and the maximum number of iterations 

equals to 100, gives the best performance in terms of the 

standard deviation (more accuracy in finding the best 

solution) and CR. Other simulations were carried out with a 

larger number of individuals (up to 50 particles) and iterations 

(up to 500) without finding any significant improvement in 

the PSO performance; however the computational time was, 

as expected, considerably larger. 

The optimal set of parameters appears in Table II. 

TABLE II

OPTIMAL PSO PARAMETERS

Parameter Tested values 

Number of particles 20 

Number of iterations 100 

Inertia weight Linearly decreased 

Social acceleration constant (c1) 2.5 

Social acceleration constant (c2) 1.5 

Vmax for bus location 9 

Vmax for STATCOM size 50 

B. Power Flow Results. 

The solution found by the PSO algorithm, in terms of bus 

location and size for each STATCOM unit, is shown in Tables 

1
0.9 0.8

max_ 1
i

iter
w

iter
(12)

1887



III and IV. Additionally the power flow results, with and 

without the STATCOM units is shown in Table V. 

TABLE III

SOLUTION FOUND BY PSO ALGORITHM

STATCOM

Unit

Location

(Bus number) 

Size 

(MVA)

1 378 95 

2 430 137 

TABLE IV

RESULTS FOR VOLTAGE DEVIATION METRIC (J1)

Parameter Value 

J1 without STATCOM units 0.2481 

J1 with STATCOM units 0.1753 

Minimum J1 0.1753 

Maximum J1 0.2265 

Average J1 0.2076 

Standard deviation J1 0.028% 

Convergence rate (%) 60% 

The system without the STATCOM has 7 buses with 

voltages below 0.95 p.u., these buses correspond to the two 

load centers described in section II. Once the STATCOM 

units are connected to buses 378 and 430, the voltage 

deviations improve in the respective closest load area. 

TABLE V

BUS VOLTAGES FROM POWER FLOW RESULTS

Bus

number 

Voltage p.u. w/o 

STATCOM units 

Voltage p.u. with 

STATCOM units 

343 1.0088 1.0342 

344 0.9902 1.0244 

366 1.0200 1.0200 

367 0.9565 0.9683 

368 1.0014 1.0106 

369 1.0400 1.0400 

370 1.0125 1.0158 

371 0.9826 0.9870 

372 0.9743 0.9794 

373 1.0200 1.0200 

374 0.9876 0.9929 

375 0.9903 1.0068 

376 0.9567 0.9975 

377 0.9607 1.0074 

378 0.9126 1.0000 

379 0.9321 0.9885 

380 0.9440 0.9771 

381 1.0220 1.0220 

382 1.0175 1.0298 

383 0.9625 1.0046 

384 0.9652 1.0027 

385 0.9399 0.9933 

386 1.0190 1.0256 

387 1.0118 1.0216 

388 1.0234 1.0338 

389 1.0317 1.0421 

390 1.0180 1.0180 

391 1.0275 1.0360 

392 1.0300 1.0300 

393 0.9899 0.9967 

394 1.0300 1.0300 

395 1.0300 1.0300 

396 0.9888 1.0000 

397 1.0200 1.0200 

398 1.0233 1.0302 

399 1.0183 1.0282 

402 1.0272 1.0370 

407 1.0000 1.0000 

408 0.9848 0.9868 

414 1.0292 1.0391 

430 0.9354 1.0000 

431 0.9690 1.0102 

432 0.9203 0.9679 

433 0.9150 0.9544 

437 0.9550 0.9667 

C. Alternative Solutions 

The nature of the problem defined in section II (constrained 

multi-objective optimization problem) allows the possibility of 

having more than one solution. In this case the PSO algorithm 

is able to find different options for both placement and sizing 

of the STATCOM units that gives similar fitness function 

values (J) and voltage deviation metric (J1). The existence of 

these multiple solutions constitutes the Pareto front for this 

Fig. 3. Flow chart of the implemented PSO.
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particular problem and gives more flexibility to take the final 

decision about the locations and sizes of the STATCOM units. 

The multiple results obtained for this problem are shown in 

Table VI. 

TABLE VI

ALTERNATIVE SOLUTIONS FOUND BY PSO ALGORITHM

Solution STATCOM #1 

(Bus, Size) 

STATCOM #2 

(Bus, Size) 

(J, J1)

1 (377, 154) (432, 144) (0.767, 0.171) 

2 (378, 95) (430, 137) (0.639, 0.175) 

3 (378,150) (433,103) (0.667, 0.162) 

D. Analysis under Different Load Conditions. 

In order to study the effect of the load conditions in the 

optimal solution found by the PSO algorithm (solution 

number 2 on Table VI), simulations are carried out by 

changing the load in each load center in a range from 90% to 

110%.

In the case of load center 1 (buses 377-380) the load change 

is applied to buses 378, 379 and 380; while in the case of load 

center 2 (430-431) the variations involve buses 430, 432 and 

433. It is important to note that the geographical distance 

between the two load centers is relatively large, thus the 

change in the load conditions in one center has a minimum 

impact in the other center. 

The results obtained by the different load conditions in 

center 1 are shown in Table VII. The same results in the case 

of load center 2 are presented in Table VIII. 

TABLE VII

LOCATION AND SIZE OF STATCOM UNIT 1 FOR DIFFERENT LOAD CONDITIONS

Load (%) Location (Bus) Size (MVA) 

90 378 18 

95 378 53 

100 378 95 

105 378 112 

110 378 189 

TABLE VIII

LOCATION AND SIZE OF STATCOM UNIT 1 FOR DIFFERENT LOAD CONDITIONS

Load (%) Location (Bus) Size (MVA) 

90 433 20 

95 433 50 

100 430 137 

105 430 181 

110 431 242 

 From Table VII, the location of the STATCOM doesn’t 

change under different load conditions, however the 

requirements in terms of reactive power do change. Fig. 4 

illustrates the relationship between the load conditions in 

center 1 and the STATCOM unit located in this load center. 

In the case of load center 2, the position of the STATCOM 

varies under different load values. For relaxed load conditions 

(90% and 95% of load in load center 2), the STATCOM is 

located at the bus with the lower bus voltage (bus 430). 

However, if the load increases (cases of 105% and 110% 

loading) the location moves to buses 430 and 431, thus it is 

not possible to establish a strict correlation between load 

conditions and STATCOM size. 
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Fig. 4. STATCOM size for different load conditions in load center 1 

Finally, Table IX and Fig. 5 show the impact of the two 

STATCOM units on the voltage deviation metric (J1) for 

different load conditions. 

TABLE IX

IMPROVEMENT ON J1 FOR DIFFERENT LOAD CONDITIONS

Load (%)
J1 w/o 

STATCOM

J1 with 

STATCOM

Improvement 

(%) 

90 0.1868 0.1786 4.4 

95 0.2120 0.1776 16.2 

100 0.2481 0.1753 29.3 

105 0.2952 0.1771 40.0 

110 0.3540 0.1696 52.1 
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Fig. 5. Improvement on J1 for different load conditions 

Considering the information presented in Table IX, the 

improvement in the voltage deviation metric (J1) changes 

dramatically as the loading is increased. In fact, an 

improvement greater that 50% is achieved for the highest load 

condition (110% loading). Fig 5 shows that the improvement 

in J1 changes linearly with respect to the load condition. 
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VI.  CONCLUSIONS AND FUTURE WORK

This study has shown step by step the application of the 

Particle Swarm Optimization method to solve the problem of 

optimal placement and sizing of multiple STATCOM units in 

a medium size power network. 

The algorithm is easy to implement and it is able to find 

multiple optimal solutions to this constrained multi-objective 

problem, giving more flexibility to take the final decision 

about the location and sizes of the STATCOM units. 

The settings of the PSO parameters are shown to be optimal 

for this type of application; the algorithm is able to find the 

optimal solutions with a relatively small number of iterations 

and particles, therefore with a reasonable computational 

effort.

The load profile has been modified in the main load centers 

in order to measure the impact on the size and location of each 

STATCOM unit. The results indicate that in one of the load 

centers the location of the STATCOM does not change but its 

size decreases linearly below 100% loading and tends to have 

a quadratic shape above this condition. In the other load center 

the optimal location changes, moving from the bus with the 

lowest voltage to a central bus in the same area. Additionally, 

the impact of the two STATCOM units in the power system, 

in terms of the improvement of the voltage profile, becomes 

more significant as the loading increases. 

The results as promising for the medium size power 

network used as an example. For large power systems, the 

PSO algorithm could have a significant advantage compared 

to exhaustive search and other methods by giving better 

solutions with less computational effort. Future work can be 

done by testing the algorithm on larger power systems and 

including other types of FACTS devices. Additionally, 

different optimization criteria can be considered such as 

minimization of transmission losses and stability issues. 
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