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Abstract- In this paper a fast flux search controller based on the 
Neuro-fuzzy systems is proposed to achieve the best efficiency of 
a direct torque controlled induction motor at light load. In this 
method the reference flux value is determined through a 
minimization algorithm with stator current as objective function. 
This paper discusses and demonstrates the application of Neuro-
fuzzy filtering to stator current estimation. Simulation and 
experimental results are presented to show the fast response of 
proposed controller. 

I.  INTRODUCTION 

It is estimated that more than 50% of the generated electric 
energy in the world is consumed by electric machines [l]. 
Improving efficiency in electric drives is important, mainly, 
for two reasons: economic saving and reduction of 
environmental pollution [1].  This is why considerable effort is 
done to improve their efficiency. More than 60% of industrial 
electricity is consumed by the induction motors (IM). IM have 
a high efficiency at rated speed and torque [2]. However, at 
light loads, iron loss increases drastically which reduces 
considerable efficiency [1]. 
  To improve motor efficiency, the flux must be reduced with 
an expert control algorithm. That tries to obtain a balance 
between copper and iron loss when torque is constant [3].    
Vector control (FOC) and Direct torque control (sensorless 
vector control) are the two most popular techniques for 
induction motor torque control [4]. Unlike Vector control, 
direct torque control (DTC) does not require coordinate 
transformation and any current regulator and encoder. It 
controls flux and torque directly based on their instantaneous 
errors [5]. In spite of its implicitly, direct torque control is 
capable of generating fast torque response. In addition, direct 
torque control minimizes the use of machine parameters; 
hence it is much less sensible to parameter variation [6]. 
For such reasons, DTC has become one of the most popular 
methods for induction motor drive system control. However, 
there are many disadvantages with this control method.  
The most significant problem with DTC is that the nominal 
value of flux is optimized for nominal motor operating point. 
But at light load, using the same flux value decreases the 
power factor and efficiency of the drive [7].  
Among the flux controllers used to set the flux amplitude in 
light loads, the loss search controller is the best method adapted 
for DTC drives. That is because other flux controller categories 
eliminate the independence of DTC from machine parameters 
[8]. In past researches, this controller has been imposed on the 
DTC loop. It was shown that the stator current is better than 

input power to be used as the objective function [9]. But classic 
minimum loss search controller produces divergence problem 
and steady state flux ripple; this problem is referred to the 
existence of the noise in the measurements. 
In order to find the minimum stator current we need to 
accurately estimate the current. It is a challenging problem 
because the measurements are strongly affected by the noise. 
In the proposed method, from some point in steady state we 
gather experimental data for given flux values. We change the 
flux value in small steps starting from flux nominal value. Then 
we apply a neuro-fuzzy estimator to obtained data. Based on the 
result of this estimator, we decide either to gather a new data or 
calculate the optimal flux value.    
In the next section, a brief introduction to the DTC of induction 
motors is presented. Various methods for optimizing the motor 
flux are reviewed in Section III. The classic flux search 
controller is described in Section IV. ANFIS is reviewed in 
Sections V and VI. The proposed control algorithm is presented 
in Section VII. Experimental results are presented to show the 
performance of proposed controller. 

II. DIRECT TORQUE CONTROL 

The basic idea of the DTC concept, which its block diagram 
is shown in Fig. 1, is to choose the best vector of the voltage, 
which makes the flux rotate and produce the desired torque. 
During this rotation, the amplitude of the flux remains inside a 
pre-defined band. The stator flux vector can be calculated 
using the measured current and voltage vectors: 

∫ −= dtiRv ssss )(
vvvψ                    (1) 

Where ψs is stator flux space vector, νs stator voltage space 
vector, is stator current space vector, and Rs stator resistance. 
For calculation, in a stationary d–q reference frame, the 
electromagnetic torque of an induction machine is usually 
estimated as follows: 

)(
2
3

dsqsqsdse iiPT ψψ −=              (2) 

Where P is the number of pole pairs, ψds and ψqs are d and q-
axis components of ψs, ids and iqs are d- and q-axis components 
of is. 
Circular trajectory of the stator flux is divided to six 
symmetrical sections referred to inverter voltage vectors. For 
each section, a proper vector set is proposed. Voltage vectors 
are applied to motor to make amplitudes of the flux and torque 
remains constant [10]. 
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Fig 1. Block diagram of the DTC method 

III. CLASSIC FLUX SEARCH CONTROLLER 

In this family of flux controllers, the input power of drive is 
minimized by adjusting the flux value in consecutive steps. 
The stator flux is decreased from its initial value (ψo) to 
(ψopt), the optimal value of flux that results in minimum input 
power. The input power of motor is calculated using Eq. (3): 
 

qqddactive IVIVP +=                           (3) 
 
where d and q represent the Concordia transformation 
components of the current and voltage. 
 The flux reference value is varied in consequent steps to 
minimize the active power. It can be expected that the value of 
flux step determines the flux ripple at the steady-state. To 
achieve a low flux ripple, the flux step should be as small as 
possible. But, if the objective function is merged with some 
noise (∆n>0), if the flux step value is small enough, as it was 
mentioned in [11], [12], the control algorithm will have 
convergence problem and the flux controller does not tend to 
the optimum value of flux. In the classic search controller, the 
samples of motor input power which are obtained from Eq. (3) 
pass through an averaging operator to yield the average value 
of motor input power to attenuate the effect of noise. But the 
experimental results have shown that this method response is 
not satisfying enough and the convergence time is too long. 
Hence we need other noise cancellation algorithms (not 
averaging method).    
In next sections the anfis concepts and its application in noise 
canceling is described and base on it a flux search controller 
proposed. 

IV. NOVEL ADAPTIVE NOISE CANCELLATION METHOD  

Widrow and Glover first approached adaptive noise 
cancellation (ANC) [19]. The schematic diagram of their 
method is shown in Fig. 2. 

Here an information signal s(t) is unmeasurable and a noise 
source signal v1(t) is measurable. The noise source goes 
through an unknown nonlinear function to generate a distorted 
noise v0(t) which is unmeasurable. It is then added to an 
information signal s(t) to compose an output signal x(t) which 
is measurable. The goal is to recover the information signal 
s(t) from the compound output signal x(t). The detected output 
signal is presented as: 
 
x(t) = s(t) + v0(t) = s(t) + f (v1(t), v1(t − 1), . . .),                  (4) 
 
 

 
 

Fig. 2. The architecture of ANFIS for noise cancellation 
 
 
where the function f (.) denotes the nonlinear function that the 
noise source signal v1 goes through. If we know the function f 
(.) exactly, we can easily retrieve the original information 
signal by subtracting v1(t) from x(t) directly. However, f (.) is 
usually unknown in advance and may change with time. In 
this method Adaptive Neuro-Fuzzy Inference System (ANFIS) 
is used to implement f (.).  
The ANFIS applied in this paper uses Takagi and Sugeno’s 
fuzzy if-then rules [13] [14]. The basic learning rule to 
identify the parameters is based on gradient descent, which 
was proposed by Werbos [15]. but the method is generally 
slow and likely to become trapped in local minima. Here a 
hybrid learning rule [16], which combines the gradient method 
and the least squares estimate (LSE) is used[17][18]. 
 
The noise signal v1(t) and the distorted noise signal v0(t) do 
not relate to the information signal s(t). However, it cannot be 
measured directly because it is a part of the overall measurable 
signal x(t). The detected signal x(t) can be measured as the 
expected output of ANFIS training only if the information 
signal s(t) is not correlated with the noise signal v1(t). 
 
But according to the previous sections, we know that the 
motor’s input power signal is a smooth function of flux and 
this property of motor enables us to obtain another Adaptive 
noise cancellation method that is used in this paper.  In this 
method unlike the Widrow’s method, it is assumed that 
instead of the noise signal, the information signal is correlated 
in some unknown way with a primary signal, the schematic 
diagram of this method is shown in Fig.3. 
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Fig.3. The new architecture of ANFIS for noise cancellation 
 
 

 
In Fig. 3, signal s0(t) is  the information signal (input power 
signal) and v(t) is the unmeasurable noise signal  and s(t) is the 
primary function ,the information signal s0(t) is added to v(t) 
to form the measurable output signal x(t) . Here y(t) denotes 
the output of ANFIS and it is the output of the whole system 
which is the estimation of  information signal . 
The detected signal is: 
 

)()... ,)1 (),(()()()( 0 tvtstsftvtstX +−=+=          (5) 
 
The function f (.) denotes the nonlinear function that the 
primary signal goes through. The noise signal v(t) is not 
related to the information signal s0(t) and the primary signal 
s(t). if the information signal s(t) is not correlated with the 
noise signal v(t) shown in Fig.7,The detected signal x(t) can be 
the expected output of ANFIS training . 
Adaptive noise canceller has two inputs: the detected output 
signal, and the primary function. The information signal s0(t) 
is correlated to the distorted primary function and not 
correlated to the noise signal v(t). ANFIS accepts the error 
signal e to control and adjust the weights W which make the 
output of ANFIS, denoted as y(t), to approximate the 
information signal s0(t) . 
 

)()()()()()( 0 tytvtstytxte −+=−=                       (6) 
 
we square the above equation and obtain : 
                                                                            

2
0

2 ),...))2(),1(),(()()(()( −−−+= tststsftvtste    (7) 
                                                                                       
where f is the function implemented by ANFIS. v(t) is not 
related to s(t) and its previous values, Eq.(10) can be expanded 
to 

         (8)   )()(2)()(2))()(())(()( 0
2

0
22 tytvtstvtytstvte −+−+=  

   
Taking means of both sides of Eq. (11) yields 
 

][2][2])[(][][ 0
2

0
22 vyEvsEysEvEeE −+−+=          (9) 

 
It is assumed that v(t) is not correlated to s0(t) and y(t), 
then E[sv0] and E[sy] are equal to zero, 
 

])[(][][ 2
0

22 ysEvEeE −+=                                         (10) 
 
Here E[v2] does not change when ANFIS adjusts its MFs to 
minimize E[e2] because it is not related to weight W : 
 
E[e2]min ⇔E[(s0 − y)2]min                                                     (11) 
 
 Therefore, training ANFIS to minimize the total error E[e2] is 
equivalent to minimize E[(s0 − y)2]. The filter output Y(t) is 
the best squares estimate of the information signal and the 
function f (·) achieved by ANFIS can be as close as the 
passage dynamics f (·) in a least squares sense. 
 

V. NEURO-FUZZY SEARCH CONTROLLER 

In order to find the minimum of  the  input power signal ,in 
motor’s steady state , We change the flux value in small steps 
starting from flux nominal value and we gather experimental 
data for given flux values and Then we apply a neuro-fuzzy 
estimator to obtained data. After estimation, if the noise 
cancelled piece of signal is descending it means that we 
should gather more data, and if it is ascending it means that 
the minimum is in the obtained data and we can find it. The 
derivate of the piece has been used to find out if the 
corresponding piece of function is descending or ascending      
 

VI. SIMULATION RESULTS 

In order to evaluate the performance of the method the DTC 
control system with neuro-fuzzy estimator is performed by 
Matlab simulation. Fig.s 4 to 7 show the basic operation of 
controller. In this simulation, the flux period for each data 
gathering epoch is 0.1 wb   and every input has two 
membership functions with bell shape. Table 1 shows the 
motor parameters. These fig.s have three parts: A is the 
corrupted information signal but only shows the required data 
for finding the minimum, B is the estimation of A, that 
contains the minimum and C shows the variation of flux while 
finding the minimum. 
Fig.s 4 and 5 show a comparison between two different initial 
functions: parabolistic and ramp. It can be seen that operation 
of ramp function is more acceptable and the estimated stator 
current has a distinct minimum point with this function. This 
result is also shown in figs. 6 and 7. 
Comparison between figs 4 and 6 and figs 5 and 7 shows that 
variation of sampling point numbers has not obvious effect on 
the convergence time because less number of sampling points 
leads to more time interval required for ANFIS analysis. 
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Fig. 4. (A) Corrupted information signal. (B) Estimation of A. (C) 
Variation of flux while finding the minimum. Sampling period size = 500, 

Reference function=x^2, Calculated optimal flux =    0.3351, Final sampled 
flux =    0.3000 

 

 
Fig. 5. (A) Corrupted information signal. (B) Estimation of A. (C) 

Variation of flux while finding the minimum. Sampling period size = 500, 
Reference function=ramp, Calculated optimal flux =    0.3547, Final 

sampled flux =    0.3300 
 

 

 
 

Fig. 6. (A) Corrupted information signal. (B) Estimation of A. (C) 
Variation of flux while finding the minimum. Sampling period size = 1000, 

Reference function=ramp, Calculated optimal flux =    0.3493, Final 
sampled flux =    0.3000 
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Fig. 7. (A) Corrupted information signal. (B) Estimation of A. (C) 
Variation of flux while finding the minimum. Sampling period size = 1000, 
Reference function=x^2, Calculated optimal flux =    0.3351, Final sampled 

flux =    0.3000 
 

TABLE I 
CHARACTERISTICS OF INDUCTION MOTOR 

Parameter Value 
Rated Power 5.5 KW 

Number of Poles 4 
Stator Resistance 0.277 Ω  
Stator Inductance 0.0553 H 

Magnetizing Inductance 0.0538 H 
Rotor Resistance 0.183 Ω  
Rotor Inductance 0.0560 H 

VII. EXPERIMENTAL RESULTS 

To verify the simulation results, the proposed control 
method has been applied to a DTC experimental test setup. 
The experimental setup, shown in Fig. 8 consists of an 
induction motor, insulated gate bipolar transistor (IGBT) 
based inverter, and digital signal processor (DSP) (TMS320C) 
based controller. Detailed characteristics of DSP controlled 
inverter are presented in tables 3. The machine currents ia and 
ib and the dc bus voltage were interfaced into the controller 
through an analog to digital (A/D) converter built into the DSP 

board. The sampling time and motor speed are 133 µsec and 
300 RPM, respectively. 
Fig. 9 shoes the time response of proposed method for a 
torque step from Tn to Tn/4. It can be seen that the search 
controller finds the optimal flux value rapidly and has a 
smooth behavior in steady state.   
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Fig. 8. Block diagram of experimental setup 

 

 
 

Fig. 9. Response of proposed search controller 

VIII. CONCLUSION 

An online flux search controller has been used to determine 
the reference value of stator flux according to load in DTC. A 
neuro-fuzzy noise cancellation algorithm is proposed to 
optimize the process to achieve fast dynamics and good steady 
state response. Simulation and experimental results show that 
this new controller can determine the optimum value of stator 
flux rapidly without considerable ripple in steady state. 
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