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Estimation of Heart-Surface Potentials
Using Regularized Multipole Sources

Daryl G. Beetner and R. Martin Arthur*

Abstract—Direct inference of heart-surface potentials from
body-surface potentials has been the goal of most recent work
on electrocardiographic inverse solutions. We developed and
tested indirect methods for inferring heart-surface potentials
based on estimation of regularized multipole sources. Regular-
ization was done using Tikhonov, constrained-least-squares, and
multipole-truncation techniques. These multipole-equivalent
methods (MEMs) were compared to the conventional mixed
boundary-value method (BVM) in a realistic torso model with up
to 20% noise added to body-surface potentials and +1 cm error
in heart position and size. Optimal regularization was used for
all inverse solutions. The relative error of inferred heart-surface
potentials of the MEM was significantly less (p < 0.05) than
that of the BVM using zeroth-order Tikhonov regularization
in 10 of the 12 cases tested. These improvements occurred with
a fourth-degree (24 coefficients) or smaller multipole moment.
From these multipole coefficients, heart-surface potentials can
be found at an unlimited number of heart-surface locations. Our
indirect methods for estimating heart-surface potentials based on
multipole inference appear to offer significant improvement over
the conventional direct approach.

Index Terms—Constrained least squares, inverse electrocardi-
ology, multipole expansion, Tikhonov regularization.

1. INTRODUCTION

HE objective of the electrocardiographic inverse problem

is to estimate the electrical activity of the heart from mea-
surements on the body surface. For example, equivalent sources,
such as the familiar single dipole of vectorcardiography [1],
multiple dipole sources [2], or multipole expansions [3], can
successfully represent cardiac activity [4]. These equivalents,
however, can be difficult to interpret. In contrast, heart-surface
potentials are easy to interpret and can be readily inferred. Con-
sequently, their direct inference, with either boundary- or fi-
nite-element methods, has been the goal of most recent work
on inverse solutions [5].

Compared to body-surface potentials, heart-surface po-
tentials are not strongly affected by torso shape and are
more indicative of cardiac sources [6]. Heart-surface po-
tentials have been used to find the location and extent of
myocardial infarction and ischemia, the accessory pathway
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in Wolf-Parkinson-White (WPW) syndrome, reentry sites in
ventricular arrhythmias, prearrhythmic events, and conduction
abnormalities (see [7]). Unfortunately, errors in heart-surface
potentials estimated with current techniques may limit their
widespread clinical application. The ill-posed nature of the
inverse problem causes small errors in measured body-surface
potentials or heart—torso geometry to produce large errors in
estimated heart-surface potentials. Regularization is almost
always required for usable results.

Here, we propose methods to estimate heart-surface poten-
tials from a cardiac-equivalent multipole source [7], [8]. Pos-
sible advantages of using an equivalent multipole source have
been suggested by others [9]. In this study, we develop regu-
larization techniques for a multipole source used to estimate
heart-surface potentials and evaluate these techniques in a re-
alistic torso model. Direct estimation of heart-surface potentials
with the conventional boundary-value method (BVM) of Barr
and coworkers [10] using zeroth-order Tikhonov regularization
was compared to indirect estimation with the multipole-equiva-
lent method (MEM). Comparisons were made with noise added
to body-surface potentials and for errors in heart geometry.

II. MULTIPOLE-EQUIVALENT METHOD

The multipole expansion is an infinite series representation
suitable for describing sources in the heart. The first term is the
familiar cardiac dipole. Multipole coefficients, @y, and by,
can be found either from an integral of the cardiac sources J°
within volume V' or from an integral of potentials ® on the sur-
face S of volume V' with conductivity o [11]. Using complex
notation for convenience, we have

Unm + Fbnm = / J - VU,,,.dV = / o®VU,,,, -dS (1)
v 5

where

—m)! .
Lm);T”P,T (cos )ed™? 2)

Vrm = (2_52") (n+m)!

and 69, is the Kronecker delta (6%, = 0, m # 0; 60 = 1), P™(-)
is the associated Legendre polynomial, and (7,6, ¢) is a point
location in spherical coordinates.

In practice, multipole coefficients M are found from body-
surface potentials, ® g, using a transfer coefficient matrix T g.
T 5 is based on forward-problem solutions for body-surface po-
tentials in an appropriate torso model. The least-squares-error
estimate for the multipole coefficients is

M = (T5Tp) ' Th®5 (3)

0018-9294/04$20.00 © 2004 IEEE
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where T7; is the Hermitian of Tz. M and ®p may either be
column vectors representing conditions at a particular instant
or may be matrices representing a sequence of conditions
over time.

Once M is known, then heart-surface potentials ® g can be
estimated using transfer coefficients T g, which are based on
forward-problem solutions on the heart-surface

&, = TyM. )

Because the inverse problem is ill-posed, the least-squares esti-
mate may be a pathological solution. To overcome this limita-
tion, the inverse solution should be regularized.

III. REGULARIZATION OF THE MULTIPOLE

Techniques for regularizing boundary-element methods in-
clude the use of truncated singular value decomposition [12],
[13], the generalized eigensystem approach [14], constrained
least-squares (CLS) methods [12], [15], and Tikhonov regular-
ization [16]. Tikhonov regularization is the most common ap-
proach used in the electrocardiographic inverse problem.

We developed three regularization techniques for multipole
estimation. Previously, we found that useful estimates of the
multipole coefficients could be found without regularization
using (3) [3]. This approach is the basis for regularization via
truncation of the multipole expansion, which we examine in
more detail here. CLS methods have been applied by others to
regularize multipole coefficients [9]. Here we formalize and
extend their use. In addition, we derive Tikhonov regularization
techniques for zeroth-order estimation of multipole coefficients

(71, [8].

A. Multipole Truncation

Previously, we found that lower degree multipole estimates
were more consistent when higher degree terms were included
in (3) [3]. Specifically, the dipole (n = 1), which is independent
of location, had less variation at two different origins when the
quadrupole (n = 2) was simultaneously estimated. Here this
technique was applied to the estimation of heart-surface poten-
tials. A higher degree multipole was estimated using (3) than
was used to calculate heart-surface potentials using (4). Exper-
imental results will be presented later to show optimal sizes for
the multiple expansion.

The multipole truncation approach is similar to truncated sin-
gular value decomposition and the generalized eigensystem ap-
proach where the solution is separated into orthogonal compo-
nents from which heart-surface potentials are estimated using an
expansion based only on the most significant few values. These
methods differ, however, in the expansion technique.

B. Constrained Least-Squares Method

CLS regularization is based on the statistical characteristics
of the signal and the noise. If N is a covariance matrix for noise
and S is the covariance matrix for multipole coefficients, then
the best statistical estimate of M is [15]

M= (TyN"'"Tp+S7") " TEN "85 (5)
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If N = 62T and S = o021, where I is the identity matrix, then
M = (T5Tp + 1) Th®p (6)

where 7 = 02 /02, This equation is similar to Tikhonov
zeroth-order regularization for the BVM, which can also be
shown to be a statistically constrained solution given the correct
assumptions.

Statistical characteristics of the signal and noise are difficult
to obtain, particularly for a theoretical construct like a multipole
expansion. A basic version of CLS regularization was developed
for the MEM based on the following simplifying assumptions
[7]:

* noise n is uncorrelated with zero mean and variance o2
and is uniformly distributed over a sphere of radius r sur-
rounding the heart;

e potentials on that sphere are generated from a multipole
source in the infinite medium, have zero mean, variance
o2, and are uniformly distributed spatially;

» each multipole moment contributes equally to the power
of the potentials.

Using these assumptions, the expected value of signal power
of potentials on a sphere of radius 7 in the infinite medium is

s (1T VSR 1
Oy = (m) ;mzzoﬁ(m—l)

2
Anmy

x (02 cos®m¢+ o, sin®mg) Pr(cosf)®  (7)

nm

where 02 and o  are the variance of coefficients ay,, and
bnm, respectively. If each component is independent of polar
angle 6 and azimuthal angle ¢, then

2
1 1 1
2 __ 2 2
Os = (47[.0T2> (TQ O dipole + 4 O quad + - ) . (8)

Further, if each pole contributes equally to the expected power
in heart-surface potentials, then
1
2 3y2 2 2

ﬁgs (47FU7‘ ) = Odipole — ﬁgquad = 9
where N is the total number of multipole coefficients. If the
noise-to-signal power ratio of heart-surface potentials is given
by o2 /o2, then the noise-to-signal power ratio matrix for the
multipole is proportional to

1 00 0 0 0
010 0 0 0
001 0 0 0
H,=|000 5 0 0 (10)
0oo0oo0o o0 2 0
S
(000 0 0 - S|

where ¢,,,, is the proportionality constant between coefficients
that allows signal power on the surface of the sphere to be uni-
formly distributed, as given in (9). H,, is proportional to the
inverse covariance matrix between individual multipole coeffi-
cients, as indicated by S—!in (5). Using H,,, in the CLS ap-
proach given in (5), multipole coefficients may be calculated as

M = (T5Tp +7H,,) " T;®p (11)

where 7 is a regularization constant.
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Pilkington and Morrow were able to reduce the error in in-
ferred heart-surface potentials using CLS regularization of the
MEM [9]. They empirically chose o2 /02, = 0.001 for the
dipole and 02/ ogole = 1 for the quadrupole. Our formaliza-
tion of a regularization technique for the MEM based on CLS
may provide an explanation for why these particular values im-
proved performance. For a heart radius of 3.2 cm, o7, /03 10 &

0.0010;, /02,4 using MKS units in (9).

C. Tikhonov Regularization

Conventional BVM estimation of heart-surface potentials
using Tikhonov regularization yields

®y = (Z5,Zpn + TR*'R) ™ 2%, 85 (12)

where Zpp is a transfer-coefficient matrix relating heart- to
body-surface potentials, 7 is a regularization constant, and R
is a regularization matrix. R is either I, the identity matrix, L,
the Laplacian operator, or G, the gradient operator. The case in
which R = T is known as zeroth-order Tikhonov regularization
and is commonly used in the literature as a basis for comparison
of regularization techniques.

Tikhonov regularization is based on minimizing the cost
function J, (®g) [17] as

J.(®n) = 7|R®u|* + |Zeu®u - @8>  (13)

where T is a regularization constant and R is a regularization
matrix. The cost function is a weighted sum of the norm of
regularized inferred heart-surface potentials ||R®x||? and the
body-surface residual ||Zpr®z — ®5||?. Setting the derivative
of the cost function to zero yields (12).

For the MEM, the regularized squared norm of heart-sur-
face potentials is |[RTzM]||?. The body-surface residual is
ITEM — ®@3||?. The cost function for Tikhonov regularization

of the MEM is, therefore
J-(M) = 7|RTzM||* + |TsM — &3|>  (14)

where T g is the regularizing operator. Minimizing with respect
to M, the regularized estimate is

M = (T5Tp + TR RTy) " Ts®5.  (15)

For zeroth-order Tikhonov regularization where R = 1,
we have

M = (T5Tp + 7T Ty) " Ts®p. (16)

Although the BVM and MEM expressions for [} i, (12) and
(4) [using (16)], may yield the same results under some condi-
tions, in general they will not. For example, the two will differ
for a simple heart—torso model where the only inhomogeneity is
the heart. In our case, the BVM model is homogeneous because
the heart is excluded from the volume conductor, but the MEM
model is inhomogeneous because it includes the cardiac blood
mass. In addition, the MEM and BVM may give different re-
sults because the implicit constraints (the number of multipole
terms) placed on the MEM limit its ability to reconstruct the
heart-surface potentials. For example, under ideal conditions,
the BVM may be able to represent heart-surface potentials ex-
actly but heart-surface potentials calculated with a dipole source
may have significant error. These implicit constraints may be an
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Fig. 1. Geometric measurements. The torso surface and electrode locations
were measured with the IPD shown in the left panel. The position of electrodes
is shown in the pictures in the right panel. Heart size and location were
estimated from ultrasonic images registered to the surface measurements. Torso
measurements were performed on R. Martin Arthur, an author of this study.

advantage when calculating inverse solutions in the presence of
errors in transfer coefficients or body-surface potentials [18],
which is the thrust of this study.

Similarities occur between CLS and zeroth-order Tikhonov
regularization. If the regularizing operator Ty is constructed
from uniform samples on a spherical heart then, due to the or-
thogonality properties of the Legendre polynomial, off-diagonal
components of T% T g will be zero. Diagonal components will
be proportional to 1/r%", where n is the degree of the associ-
ated multipole term. For a uniformly sampled spherical heart
in the infinite medium, the CLS formulation assumes energy is
contributed equally by each multipole moment to heart-surface
potentials, whereas the Tikhonov expression assumes energy is
contributed equally by each coefficient.

IV. METHODS

Inference techniques were tested using a human torso model
and known heart-surface potentials. The torso model was
created from measurements of the heart and torso geometry
of an adult male. Known heart-surface potentials were taken
from sock-electrode measurements. Effects of electrical noise
in surface potentials and geometric errors in the torso model
were compared to assess the BVM and MEM estimates of heart
potentials.

A. Heart—Torso Model

Torso shape and the location of 175 body-surface electrodes
were measured on an adult male using an Immersion Personal
Digitizer (IPD) as shown in Fig. 1. The torso was approximated
with a tenth-degree spherical harmonic, which fit measured lo-
cations with an rms error of less than 0.5 cm and provided caps
to close the torso-model surface as shown in Fig. 2.

The heart was approximated as a sphere. The 91-node sphere
had a radius of 5.28 cm and a position within the torso based on
size and orientation measurements made on 10 adult male sub-
jects. Ultrasound measurements were taken from images regis-
tered to the body surface by coupling an ultrasound probe to the
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Fig.2. Heart-torso model. The spherical heart surface contained 91 nodes; the
spherical-harmonic torso model 1026 nodes.

IPD. A spherical model was used because we could determine
the center and radius of a sphere, which circumscribed the heart,
from the registered ultrasound images in each of the 10 subjects.
Torso and heart conductivities were set to 0.21 and 0.67 S/m, re-
spectively [19]. Additional details of data acquisition and torso
approximation are reported in [7] and [20].

B. Forward-Problem Solutions

Forward-problem solutions relate sources in the heart to po-
tentials they produce on the body surface. The mixed BVM
directly relates heart-surface and body-surface potentials. The
transfer coefficients Z gz from heart H to body B are given by
Barr and coworkers as [10]

Zpun = - (Ppp — GBHGl}lgPHB)_l
x (Ppr — GeuGyyPun)

where P is a matrix of solid angles and G is a matrix of gra-
dient integral coefficients. Transfer coefficients were calculated
using seven-point Radon numerical integration to approximate
gradient integral terms [21].

MEM transfer coefficients T g and T iz were calculated from
the integral solution to the potential distribution on the surface
of an inhomogeneous conductor as [22]

[25) ‘I’H
53] = Leer, ey ][] -2 (] o0
os os gs
where P is a solid-angle matrix, ¥ is the infinite medium po-
tential for unit multipole sources, o is conductivity in the heart
H, the body B, the difference between heart and body D, or the
sum of heart and body S.

The accuracy of BVM transfer coefficients was verified using
concentric and eccentric spheres models by comparing our re-
sults with values found in the literature or values calculated an-
alytically [7], [10]. Potentials for unit multipole sources were
verified by determining their multipole content via surface inte-
gral [3]. The multipole transfer coefficients were also found by
spherical harmonic approximation, which matched the results
of (18) in the limit [22].

a7

Ll

C. Heart- and Body-Surface Potentials

Epicardial potentials were measured with a 90-electrode sock
on the heart of a human adult male with recent and remote my-
ocardial infarction. We estimated potentials on a static model
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surrounding the heart. Such a model is more indicative of a peri-
cardial surface, but epicardial potentials were more easily ob-
tained and are similar to pericardial potentials [23].

The 90-electrode sock was aligned with the left anterior de-
scending artery so that 45 electrodes covered the left side of the
heart and 45 covered the right, from apex to base. Unipolar po-
tentials were recorded with a gain of 500 for 1 s during normal
sinus rhythm. Bandwidth was 0.5-500 Hz. Potentials were dig-
itized over a range of 20 mV at 1000 samples per second with
12 bits of precision.

Measurements from 11 electrodes were discarded due to arti-
fact. Others were corrected for effects of baseline shift assuming
an isoelectric T-P interval. Locations of the 79 usable signals
were made nodes of the heart model. The surface was completed
in the apex and base regions with the addition of 12 nodes for a
total of 91. Potentials at the additional nodes were approximated
using linear interpolation. These 91 signals formed the known
heart-surface potentials ® .

Body-surface potentials ® g were found at all electrode loca-
tions from the BVM transfer coefficients Z gy and the known
heart potentials ® g

Q5 =Zpu®u. (19)
Inspection of the calculated potentials showed they were
consistent with those measured on patients. These calculated
body surface potentials were used to test and to compare
inverse solutions.

D. Inverse-Problem Solutions

Multipole inference via the truncation of least-squares-error
estimates (3), CLS solutions (11), and Tikhonov techniques (16)
were compared to the conventional BVM using zeroth-order
Tikhonov regularization (12). Each inverse was optimized to
minimize relative error (RE) at each instant of the QRS com-
plex as follows:

(@5 (ki) — @ig(t)) * (@ (1) — @ (1))

RE(t;) = &5, (1;) * ®% ()

(20)
where RE(t;) is the relative error calculated at time ¢;, ®%(¢;)
is a column vector representing the correct (known) potentials
on the heart surface at time t;, and ®%(¢;) is a vector repre-
senting the inferred potentials. Solutions were calculated with
noise added to body-surface potentials and with errors in heart
size and location.

Gaussian white noise was added to body-surface potentials,
with power ranging from 1% to 20% of total signal power in
the QRS complex [16], [20], [24]. Each result was an average
over 25 trials. We also shifted the heart position left (—1 cm)
and right (+1 cm) and under- and over-estimated heart size by
1 cm [25].

E. Data Analysis

The performance of the BVM and MEM techniques was as-
sessed by comparing relative errors in inferred heart-surface po-
tentials. Average REs over the QRS complex were compared
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using an unpaired ¢-test. REs were considered significantly dif-
ferent if the probability from the ¢-test was < 0.05.

V. RESULTS

Heart-surface potentials in an adult male torso model
were estimated directly using the conventional mixed BVM
method and indirectly using the MEM. Zeroth-order Tikhonov
regularization was used with the BVM. Three forms of
regularization were tested with the MEM: Tikhonov (TIK),
constrained-least-squared (CLS), and truncation (TRN). Rel-
ative error (RE) was used to evaluate the quality of estimated
heart-surface potentials.

Before evaluating the regularization techniques, experiments
were performed to find the appropriate sizes of the multipole
expansion to use in inverse calculations with the MEM. Based
on those findings an analysis of the multipole truncation method
was performed.

A. Multipole Size

The theoretical constructs for TIK and CLS regularization of
the multipole were described in Section III. In contrast to the
conventional BVM, useful estimates of heart-surface potentials
can be based on least-squares-error estimation using the MEM,
provided that the size of the expansion is limited. For example,
Table I shows the RE for multipole estimates found using (3),
i.e., least-squares estimates, for 5% noise added to body-sur-
face potentials then using those estimates to find heart-surface
potentials with (4). Minimum RE occurred for an octopole (n =
3) estimate.

B. Multipole Truncation

The REs of least-squares multipole estimates can be reduced
by truncating the number of terms in the multipole used to find
heart-surface potentials. Truncation was tested by calculating
least-squares-error multipoles of degree 7 using (3), then using
only degree n — 1 terms to find heart-surface potentials with (4).
Table II shows REs in inferred heart-surface potentials averaged
over the QRS complex for 1%—-20% additive noise. Table I1I de-
picts relative errors in inferred heart-surface potentials averaged
over the QRS complex with changes in heart position and size
of £ 1 cm.

Best performance (emphasized in bold face) occurred either
when truncating from n = 4ton = 3 or fromn = 3 to
n = 2. The best choice for a single strategy, based on the re-
sults in Tables II and III, was to truncate from n = 3 ton = 2.
This strategy increased the average RE by 2.5 percentage points
compared to picking the optimal truncation result. Optimal re-
sults, however, were used in the comparisons in the following
section.

To further test the truncation method, heart-surface potentials
were determined from truncated least-squares-error multipoles
of degree n — i, where « = 1 to n — 1. Calculations were per-
formed for 1%-20% noise added to body-surface potentials and
for =1 cm changes in heart size and position. Table IV shows
the result for a 1-cm shift left (S — 1) in heart position. The
bottom diagonal is the same as the first line of Table III.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 51, NO. 8, AUGUST 2004

TABLE 1
RE OVER QRS OF LEAST-SQUARES MULTIPOLE WITH 5% NOISE
ADDED TO BODY-SURFACE POTENTIALS

Pole
RE

n=3 n=4 n=>5

0.50+0.07 0.82+0.17 2.1840.49

n=2

0.54£0.11

TABLE 1I
RE OVER QRS OF TRUNCATED LEAST-SQUARES MULTIPOLES OF DEGREE N
WITH ADDITIVE NOISE

% | n=2->1 n==3->2 n=4->3 n=>5->4

1 |0.73+£0.11 0.54+0.11 0.49+0.07 0.98+0.17

5 10.73+£0.11  0.54+0.11 0.494+0.08 1.02+0.14

10 | 0.73£0.11  0.54+£0.11  0.51+0.09 1.14+0.17

20 | 0.73+0.11 0.55+0.11 0.57£0.15 1.49+0.44
TABLE III

RE OVER QRS OF TRUNCATED LEAST-SQUARES MULTIPOLES OF DEGREE N
WITH HEART SHIFT (S) AND RADIUS (R)

n=5->4
1.2840.21
0.8840.14
2.714+0.64
0.6610.06

n=3->2 n=4->3
0.584+0.10 0.65+0.06
0.56+£0.10  0.50+0.07
0.76+£0.06 0.9940.17
0.60+0.09 0.55+0.07

cm n=2->1

S-1 {0.734+0.11
S+1 ] 0.734£0.11
R-1 | 0.7940.09
R+1 | 0.75£0.10

TABLE 1V
RE OVER QRS WITH A — 1-cm HEART SHIFT (S — 1) FOR LEAST-SQUARES
MULTIPOLE OF DEGREE N TRUNCATED TO LOWER DEGREES

n 1 2 3 4
510.73+£0.11 0.56+0.11 0.57+0.08 1.2840.21
4 10.73+£0.11 0.584+0.10 0.65+0.06
310.73+£0.11 0.584+0.10

2 10.73+0.11

The minimum RE of 0.56 occurred when a fifth-degree least-
squares-error multipole was truncated to second degree for cal-
culation of heart-surface potentials. In this case, the REs using
an n = 2 multipole (dipole plus quadrupole) to calculate heart-
surface potentials varied by only two percentage points. In gen-
eral, the primary determinant of performance was the degree
of multipole used to calculate heart-surface potentials, not the
degree of the estimated multipole. Although the amount of the
optimal truncation varied somewhat, results for other error con-
ditions were similar.

C. Conventional BVM Versus Regularized Multipoles

Optimal regularization results using zeroth-order Tikhonov
(TIK), CLS, and truncation (TRN) of the multipole were com-
pared to optimal zeroth-order regularization of the conventional
BVM. A fourth-degree (n = 4) multipole was found for the
TIK and CLS solutions. The TRN solutions were optimized as
shown in Tables II-IV. Comparisons were made for 1%—-20%
additive noise in body-surface potentials, shift in heart location
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Effect of Additive Noise

T T ‘ ‘ T =
0 ol
o I
1% i 1 TRN
—a
5% 2 p=0.0017099
p=0.022314 —a
10% 3 Souieias
p=0.0067382 }—=a
20 %
T R 2
0 0.1 0.2 0.3 04 05 06 0.7 0.8
Relative Error
Fig. 3. Effect of 1%-20% additive noise. REs with optimal regularization

using the conventional BVM and the MEM with TIK, CLS, and TRN
regularization. The MEM was significantly better than the BVM where p
values are shown.

Effect of Heart Shift and Heart Radius

T T T T T T T

S+1

R-1

R+1 4

1 1 1 1 1 1
0 0.1 0.2 03 0.4 0.5 0.6 0.7 08
Relative Error

Fig. 4. Effect of heart shift (S) and change in heart radius (R) by £1 cm. REs
with optimal regularization using the conventional BVM and the MEM with
TIK, CLS, and TRN regularization. The MEM was significantly better than the
BVM where p values are shown.

of = 1 cm, change in heart radius of £ 1 cm, and combinations
of 10% additive noise with changes in heart location and size.
These results are shown in Figs. 3-5.

The REs of the multipole solutions were compared to the
BVM solution for each case using an unpaired ¢-test. For cases
in which the p value was <0.05, that value is shown on the bar
indicating the RE. With additive noise, the MEM REs were sig-
nificantly less than those for the BVM for TIK, CLS, and TRN
regularization at 5%, 10%, and 20%. For combinations of noise
and geometric errors with increased heart radius, the MEM REs
were significantly less for TRN regularization than those for the
BVM. For all combinations of noise and geometric errors, the
MEM REs using TIK and CLS regularization were significantly
less than those for the BVM.

1371

Effect of 10 % Noise, Heart Shift and Heart Radius
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Fig. 5. Effect of combined 10% noise, heart shift (S), and heart radius (R)
change of £1 cm. REs with optimal regularization using the conventional
BVM and the MEM with TIK, CLS, and TRN regularization. The MEM was
significantly better than the BVM where p values are shown.

VI. DISCUSSION

Three methods to regularize estimation of the multipole
moments of the body-surface distribution for estimating
heart-surface potentials were described and tested. They
were Tikhonov, CLS, and truncation regularization. Their
performance was evaluated by finding the relative error in
heart-surface potentials calculated from multipole estimates
with body-surface noise and geometric errors in the heart
model. REs were significantly lower than those of the conven-
tional mixed VM in 10 of the 12 cases tested.

It is difficult to ascribe the improved performance of the
MEM over the conventional BVM to any one factor. One
possible reason is that the number of multipole coefficients to
be inferred may be much smaller than the number of heart-sur-
face potentials of interest. In general, the fewer unknowns
for a given measurement set, the more accurate the estimate
of those unknowns [26], [27]. The performance of the BVM
might have been improved by reducing the number of nodes
representing the heart surface, thus reducing the number of
unknowns, but reducing the number of nodes would also reduce
the spatial resolution of the inferred potentials. The number of
unknowns and the spatial-frequency content of MEM solutions
is determined by the degree of the multipole, not the number of
nodes in the heart model, which is arbitrary for the MEM.

We estimated a fourth-degree multipole with both Tikhonov
and CLS regularization and either a third-, fourth-, or fifth-de-
gree multipole with regularization via truncation. A forth-de-
gree multipole contains 24 coefficients, i.e., 24 unknowns. The
number of unknowns (heart nodes) for the BVM in this study
at 91 was nearly 4 times as large. A lower limit for the number
of BVM unknowns is probably around the number used in the
original study of the BVM by Barr and coworkers [10]. Their
value of 58 is still more than twice the number of MEM un-
knowns routinely used here.
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Another possible reason the MEM outperformed the BVM
is that inference of multipole terms can easily be made depen-
dent on spatial frequency. The higher the spatial frequency of
the inferred source, the greater the error because higher spatial
frequencies in heart-potential maps are more attenuated on the
body-surface than lower spatial frequencies. Our results suggest
that spatial frequencies beyond those described by a fourth-de-
gree multipole may be lost in the noise on the body surface (see
Table I). This limit on recoverable spatial frequency determines
the number of unknowns for the MEM. The reduced number of
unknowns needed for the MEM to outperform the BVM may
give the MEM a significant advantage over the BVM in infer-
ring heart-surface potentials. Furthermore, although the same
number of nodes was used for both the BVM and MEM studies
to provide a consistent basis for comparison, the MEM can be
applied to a heart surface with any number of nodes without af-
fecting the number of unknowns in the inverse problem.

Inverse solutions using the BVM were constrained in
this study using zero-order Tikhonov regularization because
zeroth-order regularization is often used as a baseline for
performance. Other regularization techniques for the BVM
may perform better under some conditions. A rough com-
parison of the MEM approach can be made to the BVM
with other regularization techniques based on performance
reported in the literature. Considering published results under
similar conditions as were used here, studies with noise in
body-surface potentials show anywhere from no improve-
ment to 18% improvement in RE’s compared to zeroth-order
Tikhonov regularization when using truncated singular value
decomposition [13], first-order Tikhonov regularization [28],
second-order Tikhonov regularization [13], the generalized
eigensystem approach (GES), or the modified GES (tGES)
[14]. While the relative performance of the MEM approach
was not better than most of these approaches, its performance
was equivalent. However, these results also suggest that
better results can be expected using the MEM with first-
or second-order Tikhonov regularization [13], [28]. Similar
studies of geometric errors found that truncated singular value
decomposition [14], first-order Tikhonov regularization [29],
GES [14], and tGES [14] return relative errors from 12% to
14% lower than zeroth-order Tikhonov regularization with
the BVM. In our study, the MEM outperformed standard
zeroth-order Tikhonov regularization of the BVM by more than
any of these approaches. Care should be taken when comparing
our results to these studies, however, as subtle differences in
geometry or potentials can skew results. A more thorough
evaluation of the MEM with high-order regularization matrices
and a comparison to other regularization methods are topics for
further study.

The MEM may not perform as well as it performed here when
using a heart—torso model that includes inhomogeneities like
the lungs. Convergence criteria for the multipole require that a
sphere can be created which surrounds the cardiac sources and
does not intersect any torso inhomogeneities [30]. Such a sphere
may not exist in the presence of the lungs; however, studies in-
dicate that multipoles of degree five to eight or less may yield
acceptable results even when lungs are included [30], [31]. Our
study indicates that multipoles of degree five or less are adequate
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for estimation of heart-surface potentials under noise conditions
that are typically encountered. Thus, the results presented here
may be valid for torso models with lungs. Nevertheless, the ef-
fect of torso inhomogeneities on the MEM should be studied in
the future.

Poor estimates of regularization parameters produce large er-
rors in estimated potentials when using the BVM with zeroth-
order Tikhonov regularization. In contrast, the MEM performed
well without any regularization (see Table I). The stability of the
MEM is likely to be useful when regularization parameters are
estimated from a posteriori information. Because of this sta-
bility, the MEM is likely to be more resilient to errors in the
choice of the regularization parameter than the BVM. Deter-
mining the performance of the MEM with a posteriori regu-
larization parameters for the Tikhonov and CLS techniques, as
well as development of an algorithm for a posteriori application
of the truncation method, remains for future work.

VII. CONCLUSION

Estimating heart-surface potentials indirectly in an adult
male using the multipole-equivalent method generally led to
lower relative errors compared to direct estimation based on
zeroth-order Tikhonov regularization with the conventional
mixed-boundary-value approach. Multipole estimates were
regularized with zeroth-order Tikhonov, CLS, and truncation
techniques. The CLS technique was best in noise and with
most geometric errors. Results for combinations of noise and
geometric error were mixed with Tikhonov the best in two cases
and truncation in the remaining two. Which one will prevail will
likely depend on which is best at using a posteriori information
to estimate the regularization parameter or truncation degree.
Because the multipole estimates without regularization were
comparable to the results using regularization, we expect the
advantage of the MEM to be even greater compared to the
BVM when using a posteriori information than it was in this
study using optimal regularization.
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