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Neural Network Stabilizing Control of Single 
Machine Power System with Control Limits 

Wenxin Liu, Jagannathan Sarangapani, Ganesh K Venayagamoorthy, 
Donald C Wunsch 11, and Mariesa L Crow 

Electrical and Computer Engineering Department, University of Missouri - Rolla, MO 65401, USA 
Emails: wl3d@,umr.edu, saranrrap!&nx.edu, eaneshvlii;umr.edu, dwunschi&hnr.edu. and crm@unir.edu 

Absfrucf-Power system stabilizers are widely used to 
generate supplementary control signals for the 
excitation system in order to damp out the low 
frequency oscillations. This paper proposes a stable 
neural network (NN) controller for the stabilization of a 
single machine infinite bus power system. In  the power 
system control literature, simplified analytical models 
are used to represent the power system and the 
controller designs are not based on rigorous stability 
analysis. This paper overcomes the two major problems 
by using an accurate analytical model for controller 
development and presents the closed-loop stability 
analysis. The NN is used to approximate the complex 
nonlinear power system online and the weights of which 
can he set to zero to avoid the time consuming offline 
training process. Magnitude constraint of the activators 
is modeled as saturation nonlinearities and is included 
in the Lyapnnov stability analysis. Simulation results 
demonstrate that the proposed design can successfully 
damp oot oscillations. The control algorithms of this 
paper can also be applied to other similar control 
problems. 

1. INTRODUCTION 
The power system generators are equipped with voltage 

regulators to control the terminal voltage. It is known that 
the voltage regulator has a detrimental impact upon the 
dynamic stability of the power systems. During a change in 
operating condition, oscillations of small magnitude and 
low frequency oAen persist for long periods of time and in 
some cases even present limitations on power transfer 
capability. The issue of power system stabilizing control 
has received a great deal of attention since 1960's. Power 
system stabilizers (PSSs) are designed to generate 
supplementary control signal in the excitation system to 
damp out low frequency oscillations [I]. 

Earlier research works on stabilizing control are based on 
linearized model. For example, the widely used 
conventional power system stabilizer (CPSS) is designed 
using the theory of phase compensation and introduced as a 
lead-lag compensator. To have the CPSS provide good 
damping over wide operating conditions, its parameters 
need to be fine tuned in response to all kinds of oscillations, 
which is a time-consuming job. To simplify this process, 
intelligent optimization algorithms (such as simulated 

annealing, genetic algorithm, and tabu search) are applied 
to ofiline determining the "optimal parameters" of CPSS by 
optimizing an eigenvalue based cost function. In the past 
decade, fuzzy logic and NN were applied online to adjust 
the parameters of CPSS based on the knowledge gained by 
offline training, Since power systems are highly nonlinear 
systems, with configurations and parameters changing with 
time, the designs based on linearized model cannot 
guarantee their performances in practical operating 
environment. Thus, adaptive controller designs based on 
nonlinear models are required for the power system [2]. 

In recent years, stabilizing control schemes using NN and 
fuzzy logic have been proposed. Most of the papers only 
demonstrated the effectiveness of the controller design via 
simulation while not the stability analysis. The reason for 
the lack of stability analysis is due to the complexity of the 
power systems. Moreover, industy will he reluctant to 
accept controller designs if stability cannot he guaranteed. 
Consequently, it maybe very difficult to adjust the 
parameters of the controllers and the simulation results may 
be difficult to reproduce. To overcome this problem, certain 
controller designs have appeared based on feedback 
linearization or differential geometric theory. One problem 
with these papers is that controller designs are usually 
based on simplified models, which overlook the complex 
dynamics of practical system. Furthermore, exact 
linearization requires the system model to he known exactly, 
imprecise model will greatly degrade their performance. 
While practical power system models are very difficult to 
he known exactly, this assumption can seldom be satisfied. 
Since the stabilizing and voltage controllers are all 
implemented in the excitation system, there is the 
possibility for these two kinds of controls to interact with 
each other, while few papers show the performance of 
voltage control under the PSS designs. 

The paper tries to overcome the above mentioned 
problems by designing a stable adaptive neural network 
controller, The controller design is based on a full scale 
single machine infinite bus power system. Since the 
complex nonlinearity can he approximated using a neural 
network, the requirement on precise model is released. The 
weight updating rule of the NN is an unsupervised version 
of backpropagation through time which release the need for 
NN identifier. The initial weights of NN can be directly set 
to zero to avoid the time consuming offline training process 
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which is necessary in some papers before the controllers 
can be used online. Since practical operating conditions 
require the magnitude of control signal to be within certain 
limit, this paper also investigate the stability of the closed 
loop system when the magnitude of the ideal control signal 
overshoot the limit. Simulations under different operating 
conditions show that the proposed PSS design not only can 
damp out the power system oscillations very well but also 
can limit the impact on the voltage control within 
acceptable range. 

The paper is organized as follows. Section I1 presents a 
brief background on universal approximation properly of 
neural networks and stability of nonlinear system. Section 
III introduces the single machine infinite bus power system 
model. The neural network controller design is introduced 
in section IV. Simulation results are provided in section V, 
and finally the conclusion in Section VI. 

11. BACKGROUND 
The following mathematical notions are required for the 

development of adaptive output feedback NN controller. 

A. Approximafion Proper9 of" 
The commonly used property of neural network for 

control is its function approximation property [3]. Let/@) 
be a smooth function €ram R"-+R*, then it was shown that, 
as long as x is restricted to a compact set S E R " ,  for some 
sufficiently large number of hidden-layer neurons, there 
exist weights and ihresholds such that 

f ( x ) =  WT&)+&(X) (1) 

where x is the input vector, p(.) is the activation function, W 
is the weight matrix of the output layer and E(. )  is the 
approximation error. Equation (1) means a neural network 
can approximate any continuous function in a compact set. 
In fact, for any choice of a positive number E ~ ,  one can fmd 
a neural network such that &(x) 5 E~ for all x E S . For 
suitable function approximation, p(x) must form a basis [4]. 
For two layer neural networks, p(x) is defined as 
p(x)=u(V'x), where Vis the weight matrix of the first layer 
and U(.) is the sigmoid function. If Vis fixed, then the only 
design parameter in the NN is Wand the NN becomes a 
function link network (one layer neural network) which is 
easier to train. It has been shown in [5] that q(x) can forms 
a basis if V is chosen randomly. The larger the number of 
the hidden layer neurons Nh, the smaller the approximation 
error E@). Barron shows that the neural network 
approximation error E(. )  for one-layer NN is &ndamentally 
bounded by a term of the order (l/n)2'd, where n is the 
number of fixed basis functions and d is the dimension of 
the input to the NN [IO]. 

B. Sfnbilify of Sysfems 
To formulate the controller, the following stability notion 

is needed. Consider the nonlinear system given by 

(2) f = f ( x , u )  
Y = 4.4 

where x(t) is a state vector, U(!) is the input vector and y(s) 
is the output vector [6] .  The solution to (2) is uniformly 
ultimately bounded (UUB) if for any U, a compact subset 
of R", and all x( to)  = X o  E U there exists an &>O and a 
number T(E,xo) such that Ilx(f)ll<~ for all t?fo+T. 

1H. MODEL OF SINGLE MACHINE POWER SYSTEM 

Fig. 1 shows the configuration of the single machine 
infinite bus power system. The system consists of a 
synchronous generator, an exciter, an automatic voltage 
regulator (AVR) and a transmission line which connect the 
generator bus to the infmite bus. The control signal is added 
to the inputs of AVR. 

'z'+ , 
Proposed 
Conrrolle. 

vn, 

Fig. I :  Single machinc infinite bus power system configuration 

The dynamics of the single machine power system are 
expressed using a Flux-Decay model as in (3). The fust 
three equations represent the dynamics of the synchronous 
generator, the fourth and fifth equations represent the 
dynamics of the exciter and AVR respectively [7]. 

d6 
- = m - m ,  
dt 

dE T.$ = -Efd + V, 

T,dV,=-v,+K,(v,~,-Y-v,,) dt 

where, I ,  lq and V are subjected to the constraints of (4) and 
(5) respectively: 

(4) 
o = R ~ l d - ( X q + X ~ ~ ) I Y + V ~ s i n ( S - B , )  

o = RJ,  + (x; + x,)id - E; + v, CO@ - e,) 

V = M  (5) 
with 

(6)  
V, = RJd - X J q  + V, sin@ - 0,) 

vq = R J ~  + xEPid + v, cos(s - e , )  

1824 



&'=bo 

T.=U.Ol 

H=6.4 

g ( 3  = k,, k,, k,, [ k ,  sin( 6 - 8,) + k,, cos(d - 8 , )  + 2 k , ,  E ; ]  
( 9 )  

The feedback linearization process and the defmition of 
k, - k28 can be found in [8]. 

IV. h" CONTROLLER DESIGN 

A.  Assumptions 
Assumption I :  g(X) is bounded and the sign of which is 

known. That is, g ( ~ )  is either positive or negative. Without 
losing generality, we shall assume g(f) > 0. Furthermore, 
there exists two positive constants g, and g,,, , such that 

g, > g(X) > g ,  > 0 '  
Assumption 2: The derivative of g(X) is bounded, which 

means there exist a positive constant g, , such that 

Remark: For this single machine power system, g ( f )  is 
l m l  g ,  ' 

givenby K , [ K , s i n ( S - B , + ( ) + K , E b ] ,  where 

xd=o.a9sa x d = o . i i 9 a  x,=o.a64s 

K.=ZO R.=O.OZS x,=o.uas 

w,=377 Dfi=O.OIZS T ~ U . 3 1 4  

K I -  -+>O 
TeTdOTn 

K2 = W " ~ [ ( k ~ + k , k , ) k , - k , ] 2 + ( 2 k , k , k , - k , ) 2  2H > O  

Assumptions 1 and 2 hold for the single machine power 
system because of the range of the variables and the inertia 
of the system. 

B. Neural Network Controller Design 
Define the filtered error r as 

r = [Ar l]? (11) 

where A=[& & &IT is an appropriately chosen coefficient 
vector such that e-0 as r - 4 ,  (i.e. s3+Ag2+Lg+A, is 
Hurwitz). 

Differentiating (1 1) and substituting (7) to get 

i = [ O  A']Z+f(X)+g(T)u+d (12) 

According to the theory of feedback linearization, the 
desired control signal can be chosen as 

where K ,  is a selected positive constant. Now approximate 

-_ I (f(r) by using a NN, such that 
g(F) 
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1 kT@(i,T) =-y(f($ + [0 AT]Z = f.(Y,Z) (14) 

Define the ideal control signal v (without magnitude 

g(x) 

constraint) as: 

v = - K v r + W r @ ( T , F )  (15) 

Then the actual control signal applied to the power 
system is given by: 

(16) 
U = [  v whilelvl < Umar 

umsign(v) whi/elvl> umsr 

where umSx is the maximum allowed control signal 
magnitude. The structure of the controller is shown in Fig. 
2. It has multi-loop structure with an inner nonlinear 
adaptive NN loop used to estimate the nonlinear dynamics 
of the single machine power system and an outer PD 
tracking loop. The next step is to determine an appropriate 
weight updating rule so that the closed-loop stability of the 
single machine power system can be guaranteed. The 
performance of the proposed adaptive neural network 
controller is described by theorem 1. 

Fig. 2. Neural network feedback linearizing controller 

Assume there is a constant weight, W, that can 
approximate (14) within designated precision, such that 

where E is the approximation error, which is bounded by 
lel5qv. Assume W is bounded by W,,, that is, ~ l q < w ~ . .  
Rearrange (17) as an expression of f(x) and substitute 
which into (12) to get 

i =-K,g($r-g(i)WT@(F,Z)+g(F)E+d (18) 

where I? is the weights approximation error and is defined 
as: - 

W=W-w (1% 

Theorem I :  Assume the unknown disturbance d, the 
weight approximation emor E are bounded by known 
constants such that Id1 < d , ,  14 < E ,  respectively. Select 
the weight updating rule as 

i = -rd(z, e) - aril@ (20) 

where a, P O  are the adaptation gains and the gain K, 
satisfying 

Then the filtered error r ( t )  and the weight estimation 

error are uniformly ultimately bounded. 

Proof: The proof is done in two cases. 
Case I :  14 I u,,,u = v 

Filtered Error Bound 
Select the Lyapunov function candidate V E R as [IO] 

Evaluating the derivative of V to get 

Substituting the error dynamics (18) into (23) to get 

(24) 
Substituting (20) into (24) 

Rewrite (25) as 

Since K v  is chosen according to (21), f is negative as 
long as 

1 w,, a + E N  ++ 
g, (27) 4 

8 d M  
llrll ' 

K ,  -- 
22 
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. Weigh/ Eslimation Error Bound 

reevaluate V 
Choose the Lyapunov function the same as (22), now 

rd 3 = -Kr' + a~~r~~[-W'  w + F r w ] - r & + -  
d X )  

- I  

It can be seen that 3 < O  as long as 

\)PF.)r - w , , l l W l l - A > o  , so the weights estimation 

error bound is given by 

dki E N  +- 
a 

4 ( E N  +-) 

(29) 

w-+ j.".: w;,+ 

ll+ 2 

Case 2: [ V I  > U- ,U = u,,sign(v) 
Define Au = U  -V , with Au satisfying IAuI S AV,, . 

Substitute U = v + Au into (12), similarly, we can get 

i. = - ~ , g ( x ) r - g ( ~ W ' ~ ( x , ~ + g ( ~ ~  
+ d + g(X)Au (30) 

. FiNered Error Bound 
Choose the Lyapunov function candidate same as (22) 

and substituting (30) into (22) to get 

rd +r&+-+ rAu 
S ( 3  

Equation (27) is negative as long as 

(32) 
- a+  E,, + G + A u m x  

4 g. 

K" -2 
2g. 

Similar as case I ,  the weight estimation bound is given 

g, I4 > 

- Weight Esrimalion Error Bound 

by 

Remark I :  In the adaptive control literature, the 
unboundedness of parameter estimates when persistence of 
excitation (PE) fails to hold is known as "parameter drift". 
This phenomenon has been referred to as "weight 
overtraining" in the NN literature. The PE condition ensures 
that parameter drift does not occur. However, it is difficult 
to verify or guarantee the PE condition. Hence this theorem 
relaxes the PE condition. 

Remark 2: The weights of the hidden layer are randomly 
chosen initially between 0 and 1 and held constant and 
therefore not tuned. The initial weights of the output layer 
are just set to zero and then tuned online according to (20). 
There is no preliminary off-line learning phase, and 
stability will be provided by the outer tracking loop until 
the NN learns. This is a significant improvement over other 
NN control techniques where one must find some initial 
stabilizing weights, generally an impossible feat for 
complex nonlinear systems. 

Remark 4: A single NN is used to approximate both 
nonlinearities of f ( x )  and g(X) with an expression shown 
in (14). No need to use two neural networks to approximate 
f ( i )  and g(X) separately. This results in a well defined 
controller structure. 

Remark 5: Note that (32) and (33) is a local stability result 
since the control input was restricted to lie within certain 
limits. It can also be seen from these equations that the 
error bounds are proportional to Aumm. Larger um, will 
result in larger error bound. However, the tracking error 
bound can be made arbitrarily small by increasing Kv P I .  

V. SIMULATION RESULTS 
The neural network based PSS design is tested under 

different operating conditions, which are 3-phase short 
circuit fault at the infinite bus (Figs 3-5), change of 
operating points (Fig 6) and change of impedance between 
the generator bus and the infmite bus (Fig 7). The NN has 
10 inputs corresponding to the systems states, error 
dynamics and bias respectively. 

[6 w E; E,, V, el e2 e3 e4 11' (34) 

The hidden layer has 15 neurons. The weights of the 
input layers are set to random numbers between 0 and 1 and 
held fixed. The activation function of the hidden layer is 
hyperbolic tangent function. The initial weight of the output 
layer Ff' is set to zero and updated with time. Other 
parameters are set as follows: K,=O.Ol, A=[5IZ I92 247, 
um,=0.5, r=lO, and a=10. From the simulation results, it 
can be seen that the proposed controller can d m p  out 
oscillations very well. It can be seen that the neural network 
can adapt to changes in the operating condition in a fast 
manner which is the reason why offline line training is 
unnecessary. 
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Fig. 7. Spccd deviation response to a change ofthe impedance connected 
to the infinite bus (Rz=0.025, X,=O.OSSto~=O.O5.X,=O.l~ 

VI. CONCLUSION 

4.4 

The design of power system stabilizer is an important 
issue in power system control. To overcome the problems 
of using oversimplified model and lacking of stability 
analysis in power system control, this paper proposes a 
stable neural network controller for a single machine 
infinite bus power system. The weight updating rule does 
not require the PE condition and can guarantee the stability 
of the closed loop system when the control signal is subject 
to magnitude constraints. Simulations under different 
operating conditions demonstrate the effectiveness of the 
proposed control algorithm. The proposed control scheme 
can also be applied to control similar class of nonlinear 
systems. Future research will include the design of stable 
decentralized controllers for multi-machine power systems. 
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