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Recurrent Neural Network Based Predictions of Elephant
Migration in a South African Game Reserve

Parviz Palangpour, Student Member, IEEE, Ganesh K. Venayagamoorthy, Senior Member, IEEE,
and Kevin Duffy

Abstract— A large portion of South Africa’s elephant popu-
lation can be found on small wildlife reserves. When confined
to enclosed reserves the elephant densities are much higher
than observed in the wild. The large nutritional demands
and destructive foraging behavior of elephants threaten rare
species of vegetation. If conservation management is to protect
threatened species of vegetation, knowing how long elephants
will stay in one area of the reserve as well as which area they
will move to next is essential. The goal of this study is to train
a recurrent neural network (RNN) to continuously predict an
elephant herd’s next position in the Pongola Game Reserve.
Accurate predictions would provide a useful tool in assessing
future impact of elephant populations on different areas of the
reserve. The particle swarm optimization (PSO) algorithm is
used to adapt the weights of the neural network. Results are
presented to show the effectiveness of RNN-PSO for elephant
migration prediction.

I. INTRODUCTION

Converting farmland into small wildlife reserves is be-
coming common throughout South Africa. These reserves
introduce the major species that attract tourists: lion, leopard,
elephant, rhino, giraffe and hippopotamus. The last four are
often classified as mega herbivores due to the large size and
great nutritional demand of the species. It is known that
several mega herbivores, such as the elephant, are destructive
foragers and their overpopulation can adversely impact the
ecology of their range. Elephants are also known to exhibit
preferences for certain species of vegetation [1]. As a result,
elephants confined to small areas can have a heavy impact
on the diversity of vegetation throughout their habitat.

Knowing which areas of vegetation are being threatened
by elephant overpopulation is essential for effective con-
servation management. A short term prediction system that
could model an elephant herds migration would provide a
powerful tool to conservation management. As the elephants
migrate, the herd is continually reducing the amount of
vegetation available in different areas of the reserve. This in
return changes the migration behavior of the herd since the
availability of vegetation is a large factor of habitat selection.
Because of the labor required to continually survey the health
of the vegetation in an entire reserve, this information is
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rarely known. Using the previous positions of an elephant
herd without knowing the state of vegetation throughout the
reserve makes elephant migration prediction very difficult.

The neural network (NN) has been applied successfully
to many problems involving time series prediction and mod-
eling of non-linear systems [2]. These NN’s typically use
a fixed number of previous states to predict the next state
of the system. Recurrent Neural Networks (RNN), utilize
feedback within the network which allows them to memorize
previously presented patterns. This capability makes RNN’s
superior to feedforward NN’s when modeling dynamic tem-
poral systems because the networks output is a function of
both the current inputs as well as all of the previous inputs. In
this paper, RNN’s are used to model the short term dynamics
of elephant herd migration in a small reserve. The particle
swarm optimization (PSO) is applied for training two RNN’s,
one network predicts the = coordinate and the other predicts
the y coordinate of the herds position.

This paper is organized as follows. Section II describes
the game reserve from which data was collected. Section
IIT explains the RNN architecture. Section IV presents the
techniques used to train the RNN’s to predict elephant
migration. Finally, Section V analyzes the results obtained
from the study and offers some future research directions.

II. CASE STUDY

Located on the southeastern border of Swaziland in South
Africa is the Pongola Game Reserve. In June 1997, a family
group of 17 elephants from another park were introduced to
the reserve. While the reserve is 73.6 km2, the same family
group had grown to 37 individuals by January 2004. Three
bulls which move independently of each other also live on
the reserve. In addition to the family group and bulls, a group
of five young elephants also shared the habitat during this
period. Each of these three groups migrate to different areas
of the reserve as separate herds. A study has indicated at
least one rare tree, the Sclerocarya birrea is being removed
at a rate higher than annual regeneration [1]. The diversity
of vegetation in the reserve can be seen in Fig. 1.

A. Data Collection

In February 2000, a cow from the family group was fitted
with a GPS satellite collar to monitor their movement. The
GPS positions of the collar were recorded on semi-regular
intervals until March 2002. Because elephants in a family
herd move as a group, the movement of a single elephant
represents the general movement of the herd.
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Fig. 1. Pongola game reserve

B. Preprocessing of GPS Data

The longitude and latitude coordinates from each set
of recorded positions are first transformed to a projected
cartesian coordinate system. The data from each group is
then interpolated to produce a dataset consisting of one
position for every twenty-four hour interval. All positions
are normalized to be in [-1,1].

III. RNN FOR ELEPHANT MIGRATION PREDICTION

The Elman RNN model adopted here stores the previous
state of the hidden layer into what is known as the context
layer. When a pattern is presented to the network, the values
in the context layer serve as additional inputs to the hidden
layer. This feedback in the RNN topology allows RNN’s to
incorporate all of the previous input patterns. The weights
of the connections from the hidden layer to the context
layer are fixed and equal to 1. The layers which are fully
connected are denoted by bold arrows in Fig. 2. The RNNs
used are of size 4x16x1. To predict the elephant herd
position at the time ¢ + 1, the network is presented the
herds’ current position Z(t), and a number of time-delayed
positions, Z(t — 1), Z(t — 2), Z(t — 3). The neurons in the
hidden layer use the hyperbolic tangent activation function.
As the input values are normalized to be in [-1,1], the output
layer denormalizes the output to scale the predicted position

in units of kilometers.

2{t+1)

Output
Layar
(1

Hidden
Layer zi
(18]

Context
Inpugdfl.}ayer I‘I:E:'-'éa}r
v v v v [

2y Z(1)  Zie2)  Z(3)

Fig. 2. RNN (size-4x 16 1) architecture for elephant migration prediction

IV. TRAINING THE RNN

A batch learning technique is used to update the weights
of the RNN’s after each presentation of the entire training
dataset. The training dataset consists of 180 days of recorded
positions. After each iteration, the weights are updated based
on the cumulative error of the networks predictions over the
training dataset.

There are a number of different training algorithms used
for this purpose, though backpropagation and other forms
of gradient descent have been used the most extensively. In
addition, evolutionary algorithms such as PSO and genetic
algorithms have also been used to optimize the weights of
NN’s [3]-[4]. When used to train the same NN, comparisons
of backpropagation, genetic algorithms and PSO have shown
that PSO requires the fewest number of training iterations to
achieve the same error [5]-[6]. PSO is selected because it has
been shown to be efficient for training NN’s and performs
well on a large variety of problems [8].

Two separate RNNs are needed to predict the position
(z,y), the network that predicts the x position (NN_x) and
the network that predicts the y position (NN_y). Attempts
are made to use both the x and y coordinates to train each
network, but this did not prove feasible.

A. Particle Swarm Optimization

Particle swarm optimization is used to find the optimal
weights of the RNNs. The PSO algorithm was developed by
Kennedy and Eberhart and is based on the evolution of a
population of particles [3]. Each particle in the population
has a position vector which represents a potential solution
to the problem. In this problem, each value in the position
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vector of a particle corresponds to a weight in a RNN, thus
each particle represents a complete RNN. The particles are
initialized to random positions throughout the search space
and for each iteration of the algorithm a velocity vector
is computed and used to update each particles position.
Each particles velocity is influenced by the particles own
experience as well as the experience of its neighbors.

In this study, the global version of the PSO algorithm
is applied. For each iteration, a cost function f is used to
measure the fitness of each particle ¢ in the population.
The position of each particle 7 is then updated, which is
influenced by three terms, the particles velocity from the
last iteration, the difference between the particles known best
position and the particles current position, and the difference
between the swarms best known position and the particles
current position. The latter two terms are each multiplied by
a random number in [0,1] to randomly vary the influence of
each term, as well as an acceleration coefficient to scale and
balance the influence of each term. The best position each
particle attained is stored in the vector p;, while the best
position attained by any particle in the population is stored
in the vector p,. The velocity vector v;(t) for each particle
is then updated.

vi(t+ 1) = v (t) + c1p1(pi — x4(t))
+cap2(pg — z4(1)) (D

where ¢; and ¢y are positive and p; and po are uniformly
distributed random numbers in [0,1]. The term ¢; is called
the cognitive acceleration term and cs is called the social
acceleration term. These two values balance the influence
between the particles own best performance and that of
the population. The velocity is constrained between the
parameters V,,;, and V4, to limit the maximum change
in position.

UM ax ifv;(t+ 1) > Vipaa
'Ui(t + 1) = UMin if Ui(t + 1) < V;nin (2)
vi(t+1) else

The position of each particle is then updated using the new
velocities.

.%‘i(t + 1) = Z‘i(t) + ’Ui(f, + 1) 3)

The position in each dimension is limited between the
parameters X,,,;, and X4,

TMax if mi(t + l) > Xmaz
xi(t + 1) = TMin if x;(t+ 1) < X,in 4)
xi(t+1) else

B. PSO Parameter Selection

The original PSO algorithm uses static parameters, though
several studies have shown that using dynamic parameters
for PSO can greatly improve the convergence speed and
reduce the probability of converging on a local minima [4]-
[7]. Many approaches use parameters that are time-varying
and typically favor global exploration at the beginning of
the search and local search toward the end. Shi and Eberhart

suggested using an inertia term, w, in the velocity update
equation to control the amount of momentum added [12].

vi(t+ 1) = wxv(t) + c1p1(pi — xi(1))
+capa(pg — i(t)) (5)

By starting the algorithm with a large inertia term and gradu-
ally decreasing it toward the end of the search, PSO performs
global exploration in the early stages while transitioning
towards finer improvements with iterations. Another strategy,
is to vary the acceleration coefficients so either the cognitive
component or the social component has a larger influence on
the particles at different stages of the search [13].

The approach used in this study uses the velocity update
equation (5) where c; is a fixed value, cy is an increasing
function of iterations, and the inertia term w is a decreasing
function of iterations. The value for ¢; is 1.5 and ¢y is
increased linearly with iterations from 0.1 to 1.5. During the
early stages of training, co is very small and thus the social
term has little impact on the particles velocity, this prevents
premature convergence on the global best. The inertia term
is held fixed for the first 75% of the allowed number of PSO
iterations and then decreased linearly with iterations. The
inertia term is

if m < (0.75)e
else

0.8
w = 0.8 — 0.4[m—(0.75)e] (6)

(0.25)e
where m is the current iteration and e is the total number of
allowed iterations. The parameters X,,,, and X,,;, are set
to 1 and -1 respectively, to constrain the weights and biases
of each RNN to be in [-1,1]. The V,,,4, and V,,;,, parameters
are used to constrain the velocity for any dimension to be in
[-1,1], or half of the dynamic range of the search space.

C. Fitness Function

Each distinct area of the Pongola Game Reserve has been
classified by the dominate vegetation, as seen in Fig. 1. For
the purpose of assessing the elephant population’s impact on
distinct areas of vegetation, even a very small error in the
predicted position can result in the wrong vegetation being
classified; therefore, the network with the least mean square
error (MSE) is the most ideal. The fitness of particle p; is

1P|

Fpi) = ﬁ S (Z(t) - P(t))? ™

where P is the dataset of training patterns, Z(t) is the output
of the NN and P(t) is the target output. Using the MSE as the
fitness function will put a non-linear emphasis on removing
errors in the predictions that are greater than the mean error.

V. RESULTS

The optimal number of hidden neurons and time-delayed
inputs for both networks is found empiricly to be 16 and 4,
respectively. Each network is trained for 350 iterations. The
population size is equal to 40 particles, where each particle
in the population represents a RNN for each iteration. The
networks are trained using 180 days of recorded positions.
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The trained networks are then used to predict positions one
day in advance, for the following 180 days. Table I shows
our training and testing results for networks NN_x and NN_y.
It can be observed from Table I that both networks achieved
a lower MSE on the testing dataset than the training dataset.
This is due to much larger variations in movement during the
first six months when compared with the second six months,
which can be seen in Figs. 3-4 and 5-6, respectively.

TABLE I
COMPARISON OF THE TRAINING AND TESTING ERRORS

Training MSE | Testing MSE
NN (km?) (km?)
NN_x 0.8641 0.6740
NN_y 5.1063 3.4510
12 T T T T T T T T
......... Target
Predicted

¥ Paosition (km)
o
|

il I I I I I I I !
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Time (days)
Fig. 3. Comparison of NN_x training results against the recorded data
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Fig. 4. Comparison of NN_y training results against the recorded data

A. Predict-Correct Technique

Because the output of a RNN is a function all the previous
input patterns presented, any error in the output of the hidden
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Fig. 5. Comparison of NN_x testing results against the recorded data
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Fig. 6. Comparison of NN_y testing results against the recorded data

layer will influence future predictions. A predict-correct tech-
nique is used to compensate for the networks current output
error as a function of the networks previous output error
during testing. Using this technique, the corrected output of
the network is

Z5(t) = Z(t) + 0.5 (P(t — 1) — Z(t — 1)) ®)

where Z(t) is the output of the network at time ¢ and
P(t) is the recorded position at time ¢. Using this predict-
correct technique, we were able to improve the accuracy of
both networks NN_x and NN_y; our results are compared in
Table II. Figs. 7 and 8 show the networks predictions using
predict-correct to compensate for previous errors.

VI. CONCLUSIONS

A short term prediction system for elephant movement
in a South African game reserve has been presented. RNN
trained with PSO have been shown to provide some degree
of success, though research in neural networks and opti-
mization algorithms are constantly progressing. Better results
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TABLE I
TESTING ERROR IMPROVEMENT FOR PREDICT-CORRECT

NN Testing Predict-Correct Testing Predict-Correct
MSE (km?) MSE (km?) Improvement (%)
NN_x 0.6740 0.3308 50.91
NN_y 3.4510 0.8301 75.94
14 . . . . . : : ‘

Target
Predict-Correct | |

¥ Paosition (km)

0 | | | | | | | |
180 200 220 240 260 280 300 320 340 360
Time (days)

Fig. 7. Comparison of NN_x predict-correct testing results against the
recorded data
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Fig. 8. Comparison of NN_y predict-correct testing results against the
recorded data

are surely attainable given the inherent flexibility of neural
networks.

The results indicate that short term prediction is feasible.
While the networks are not accurate enough to be used
for vegetation classification, much can be done in terms
of network architecture, training parameters and the amount
of data used for training. In this experiment, the network
topologies are fixed, no neurons are added or removed during
the training process. Using PSO to optimize the topology of
the network in addition to the weights is being investigated.
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