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Channel Estimation for OFDM systems in the Presence of Carrier
Frequency Offset and Phase Noise

Jun Tao†, Jingxian Wu§ and Chengshan Xiao‡
†Dept. of Electrical & Computer Eng., University of Missouri-Columbia, MO 65211, USA
§Dept. of Engineering Science, Sonoma State University, Rohnert Park, CA 94928, USA

‡Dept. of Electrical & Computer Eng., Missouri University of Science & Technology, Rolla, MO 65409, USA

Abstract— Channel estimation for orthogonal frequency divi-
sion multiplexing (OFDM) system at the presence of carrier
frequency offset (CFO) and phase noise is discussed in this
paper. A CFO estimation algorithm is developed by exploiting
the time-frequency structure of training symbols, and it provides
a very accurate estimation of CFO at the presence of both
unknown frequency selective fading and phase noise. Based on the
estimated CFO, the phase noise and frequency selective fading
are jointly estimated by employing the maximum a posteriori
(MAP) criterion. Specifically, the fading channel is estimated in
the form of frequency domain channel transfer function (CTF).
The estimation of CTF eliminates the requirement of the priori
knowledge of channel length, and it is simpler compared to
the time domain channel impulse response (CIR) estimation
method in the literature. Theoretical analysis with Cramer-Rao
lower bound demonstrates that the joint phase noise and CTF
estimation can achieve near optimum performance.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) sys-
tem has emerged as one of the most promising data trans-
mission technologies for both wireless and wireline commu-
nication systems. By multiplexing data streams over mutually
orthogonal subcarriers, OFDM has high spectral efficiency and
is robust against intersymbol interference (ISI). However, the
performance of OFDM system is very sensitive to both carrier
frequency offset (CFO), which is caused by the frequency
mismatch between oscillators at transmitter and receiver, and
phase noise from local oscillators (LO). The CFO and phase
noise, if not properly estimated and compensated, will cause
amplitude reduction and phase drift at the receiver, and intro-
duce inter-carrier interference (ICI), thus seriously degrade the
performance of OFDM system [1], [2].

Channel estimation in the presence of CFO and phase noise
is a challenging task for OFDM system design, and it usually
involves simultaneous CFO estimation [1], [3], [4], and phase
noise estimation/suppression [2], [5], [6]. In [7], the CFO is
estimated and compensated before channel estimation, and the
phase noise is suppressed when passing the estimated channel
through a filter. This phase noise suppression method is just
a byproduct of additive noise cancelation process. A joint
CFO/phase noise/channel impulse response (CIR) estimator
(JCPCE) is presented in [8]. The JCPCE gives a nonclosed-
form estimation of CFO, thus requires high complexity numer-
ical search to find the optimum solution. To reduce the com-
plexity of JCPCE, a modified JCPCE (MJCPCE) algorithm
with closed-form CFO estimation is also developed in [8] by
adopting a special training symbol structure as proposed in

[1]. The MJCPCE method, however, suffers in three aspects:
first, it requires the knowledge of channel length; second, the
resulting phase noise estimator has a very complex form; third,
it can only estimate CFO with value less than subcarrier space.

To adress the problems in the MJCPCE method, we present
in this paper an enhanced channel estimation algorithm for
OFDM system at the presence of both CFO and phase noise.
The CFO estimation is developed by exploiting the time-
frequency properties of two consecutive training symbols
with structures similar to those used in [4]. With the new
method, CFO with arbitrary value can be accurately estimated
at the presence of both unknown frequency selective fading
and phase noise. With the estimated CFO, the phase noise
and frequency selective fading are jointly estimated based
on the maximum a posteriori (MAP) criterion. In particular,
the channel is estimated in terms of the frequency domain
channel transfer function (CTF), and it is different from the
time domain CIR estimation used in MJCPCE. The adoption
of CTF instead of CIR leads to an estimator with lower
complexity while higher accuracy. In addition, it eliminates
the requirement for priori knowledge of channel length, which
is usually unavailable at receiver before channel estimation.
The Cramer-Rao lower bound (CRLB) for the mean square
error (MSE) of channel estimation is derived to benchmark
the performance of the proposed algorithm. Simulation results
show that the enhanced channel estimator can achieve a
performance close to CRLB.

II. SYSTEM MODEL AND ASSUMPTIONS

Baseband OFDM signal can be obtained by performing
normalized inverse discrete Fourier transform (IDFT) on a set
of modulated data, s = [s0 , s1 , · · · , s

N−1 ] ∈ C1×N , at the
transmitter, as

xn =
1√
N

N−1∑
k=0

s
k
ej2πkn/N ,−Np ≤ n < N (1)

where N is the number of subcarriers, and Np ≥ L is the
length of cyclic prefix (CP), with L being the length of the
equivalent discrete-time CIR, {hl}L−1

l=0 .
We consider a slow frequency selective fading channel in

this paper. The CIR is assumed to be constant over one
slot duration, which contains two OFDM training symbols
followed by multiple OFDM data symbols [8].

The OFDM training symbol is generated by transmitting
N/2 pilot symbols on the even indexed subcarriers and zeros
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on the odd indexed subcarriers. The OFDM training symbol
in the time domain can then be represented as

xn =
1√
N/2

N/2−1∑
k=0

s2k
ej2π(2k)n/N ,−Np ≤ n < N (2)

where the normalizing factor 1/
√

N/2 is used to maintain
constant signal energy. It’s clear that (2) performs a N/2-
point IDFT operation, and the time domain OFDM training
symbol has two identical halves, i.e., {xn}N/2−1

n=0 is the same
as {xn}N−1

n=N/2. This property of the training symbol will be
exploited to assist CFO estimation.

At the receiver, after removing CP, we have the time domain
samples of the received OFDM training symbol as

yn = ej(2πnε/N+φn)(hn ⊗ xn) + vn

= ej(2πnε/N+φn) 1√
N/2

N/2−1∑
k=0

s2k
H2k

ej2π kn
N/2 + vn,

for n = 0, 1, · · · , N−1 (3)

where ⊗ denotes circular convolution, vn is the additive white
Gaussian noise (AWGN) with variance σ2, ε is the CFO
normalized with respect to subcarrier spacing 1

NTs
, with Ts

being the sampling period, φn is the phase noise, and the
frequency domain CTF, H2k

, is defined as

H2k
=

L−1∑
l=0

hle
−j2π(2k)l/N , 0≤k≤N/2−1 (4)

Define E = diag([1, ej2πε/N , · · ·, ej2π(N−1)ε/N ]T ), P =
diag([ejφ0, ejφ1 , · · ·, ejφN−1 ]T ), S = diag([s0 , s2 , · · ·, sN−2 ]

T ),
with diag(a) being a diagonal matrix with column vector a
on its diagonal, and H=[H0,H2, · · · ,HN−2]T , then (3) can
be represented in matrix format as

y = EPF̃HSH + v (5)

where y = [y0, y1, · · ·, yN−1]
T, v = [v0, v1, · · ·, vN−1]

T ,
(·)T and (·)H stand for transpose and Hermitian transpose,
respectively, and F̃ = [F,F] with F being the N/2-point
normalized DFT matrix. The (k, l)-th element of F is (F)k,l =

1√
N/2

e−j2π(k−1)(l−1)/(N/2).

For phase-locked system, the phase noise can be modeled
as a zero-mean, stationary, finite-power Gaussian distributed
random process [9], i.e., φ=[φ0, φ1, · · · , φN−1]

T has a mul-
tivariate Gaussian distribution of φ ∼ N (0,Rφ), where 0 is
an all zero column vector, and Rφ is the covariance matrix of
φ. The value of Rφ can be calculated with the specifications
of phase-locked voltage controlled oscillator (VCO).

III. DEVELOPMENT OF THE ESTIMATION ALGORITHM

A. CFO estimation in the presence of unknown fading and
phase noise

Since xn = xn+N/2, the received time domain training
samples, yn and yn+N/2, for n = 0, 1, · · · , N/2−1, are the

same except a phase difference, in the absence of additive
noise and phase noise [c.f. (3)], that’s

y∗
nyn+N/2 = |yn|2ejπε (6)

Obviously, (6) is a periodic function of ε with period 2z, where
z is an integer. Thus, the CFO can be estimated by measuring
the phase difference between y1 = [y0, y1,· · ·, yN/2−1]T and
y2 =[yN/2, yN/2+1,· · ·, yN−1]T , up to an ambiguity, 2z.

In [8], CFO estimation with additive noise and phase noise
rejection is performed as

ε̂ =
1
π

�[yH
1 (Y1R∆YH

1 + 2σ2I)−1y2] (7)

where �a ∈ (−π, π] returns the phase of the complex-valued
number a, Y1 =diag(y1), I is a size N/2 identity matrix, and
R∆ =2RN/2−Υ−ΥT , with RN/2 ∈ C N

2 ×N
2 and Υ ∈ C N

2 ×N
2

being sub-matrices of Rφ as follows

Rφ =
[

RN/2 Υ
ΥT RN/2

]
(8)

The validation of (7) implies |ε| < 1. However, the actual
CFO could be ε=ε0+2z with |ε0| < 1, since ε has a period of
2z, as described in (6). We denote ε0 as fractional CFO, and 2z
as integer CFO. Obviously, (7) only provides an estimate for
fractional CFO ε0 while leaves the ambiguity of integer CFO
2z. In the following, we will estimate the integer CFO, 2z,
in the frequency domain by utilizing two consecutive OFDM
training symbols.

From (3), the received samples of the first and second
OFDM training symbols can be written as

y1,n =
1√
N/2

ej(2πnε/N+φn)

N/2−1∑
k=0

s1,2k
H2k

ej2π kn
N/2 +v1,n (9a)

y2,n =
1√
N/2

e
j
[
2π(n+N+Np)ε/N+φ

n+N+Np

]
×

N/2−1∑
k=0

s2,2k
H2k

ej2π kn
N/2 + v2,n (9b)

where n=0, 1, · · · , N−1 for both y1,n and y2,n. The ratio of
the two training sequences, s1,2k

and s2,2k
, is set to be equal

to a predefined pseudo-noise (PN) sequence {αk}N/2−1

k=0
, i.e.,

s2,2k
/s1,2k

= αk, for k = 0, · · ·, N/2 − 1.
Fractional CFO ε0 is first estimated from (9a) with (7), then

corrected by multiplying e−j2πnε̂0/N and e−j2π(n+N+Np)ε̂0/N

to y1,n and y2,n, respectively. The result can be written as

ŷ1,n =
1√
N/2

ejφ̃n

N/2−1∑
k=0

s1,2k
H2k

ej2π
(k+z)n

N/2 + v̂1,n (10a)

ŷ2,n =
1√
N/2

ej4πzNp/Ne
jφ̃

n+N+Np ×
N/2−1∑

k=0

s2,2k
H2k

ej2π
(k+z)n

N/2 + v̂2,n (10b)

where v̂1,n and v̂2,n are the noise components after fractional
CFO compensation, and φ̃n and φ̃

n+N+Np
are the effective
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phase noises resulted from the combination of the original
phase noises, and phase rotation caused by residual fractional
CFO, ∆ε0 = ε0 − ε̂0. To estimate integer CFO, we first use

the approximations, ejφ̃n ≈ 1 and e
jφ̃

n+N+Np ≈ 1, since the
effective phase noises are usually small in practice, and then
perform N -point DFT on ŷ1,n and ŷ2,n. We therefore have

Ŷ1,k ≈
√

2s1,(k−2z)N
H(k−2z)N

+V̂1,k (11a)

Ŷ2,k ≈
√

2ej4πzNp/Ns2,(k−2z)N
H(k−2z)N

+V̂2,k (11b)

where (·)N denotes modulus N operation, Ŷi,k and V̂i,k are
DFTs of ŷi,n and v̂i,n, respectively, for i = 1, 2. There is
a phase difference, ej4πzNp/N , between Ŷ1,k and Ŷ2,k in the
frequency domain, and the phase difference is independent of
the subcarrier index k. It should be noted that the approx-
imation used in (11) is only for the convenience of integer
CFO estimation, and the estimation of phase noise will be
discussed in the next subsection. It’ll be shown in simulation
that the integer CFO 2z can be accurately estimated even with
the approximation used in (11).

To estimate 2z, define the cost function as

M(z) =

∣∣∣∣∣∣
N/2−1∑
k=0

Ŷ ∗
1,2k+2zα

∗
kŶ2,2k+2z

∣∣∣∣∣∣ (12)

where (·)∗ denotes complex conjugate, and only even indexed
subcarriers are considered since zeros are transmitted over odd
indexed subcarriers. With M(z) defined in (12), the estimated
value of z is obtained as

ẑ = arg max
z

M(z) (13)

The estimation of the CFO, ε = ε0+2z, can then be expressed
as

ε̂ = ε̂0 + 2ẑ (14)

B. Joint Phase Noise and CTF Estimation

With ε̂ in (14), we are able to construct the CFO com-
pensation matrix as Ê=diag([1, ej2πε̂/N , · · ·, ej2πε̂(N−1)/N ]T ).
Multiplying both sides of (5) with ÊH , we get

ỹ = PeffF̃HSH + ṽ (15)

where ỹ = ÊHy, and Peff = (∆E)P is the effective
phase noise matrix after CFO compensation with ∆E =
diag([1, ej2π∆ε/N , · · ·, ej2π∆ε(N−1)/N ]T ) as the additional
phase rotation matrix due to CFO estimation error ∆ε=ε−ε̂.
The equivalent noise ṽ=ÊHv is still AWGN with covariance
matrix σ2I.

The effective phase noise matrix can be alterna-
tively represented as Peff = diag (φeff), where φeff =[
φ0, φ1 + 2π ∆ε

N , · · · , φN−1 + 2π ∆ε(N−1)
N

]T

is the effective
phase noise vector. The effective phase noise vector φeff has
a multivariate Gaussian distribution of φeff ∼ N (0,Rφeff).
The covariance matrix, Rφeff , depends on the variance of

residual CFO ∆ε. At high SNR, the variance of ∆ε can be
approximated by [1], [4]

σ2
∆ε =

1
π2 · (N/2) · γ (16)

where γ denotes SNR in linear scale. Therefore, the covariance
matrix of φeff can be accurately approximated as Rφeff =
Rφ+ 8

N3·SNRT, where T = bT b with b = [0, 1, · · · , N−1].
Noting the fact that the scaling factor 8

N3·SNR of T is inversely
proportional to N3, while the maximum element in T is in
the order of N2, we conclude that the effect of residual CFO
on phase noise is negligible. As a result, it’s reasonable to
assume that φeff has the same distribution as φ, i.e. φeff ∼
N (0,Rφ). Simulation results show that the assumption of
φeff∼N (0,Rφ) is valid under both low SNR and high SNR,
and it doesn’t apparently affect the accuracy of the proposed
channel estimation method.

The MAP criterion is adopted for the joint estimation of φeff
and H from (15). The a posteriori probability (APP) density
of φeff and H can be written as

p(φeff,H|ỹ) = p(ỹ|φeff,H)p(φeff)p(H)/p(ỹ) (17)

where it is assumed that φeff and H are mutually independent.
During the estimation, the CTF vector, H, is treated as an
unknown constant, thus p(H) = 1. From (17), the negative
log-likelihood function is calculated as

L(φeff,H) =
1
σ2

∥∥∥ỹ − PeffF̃HSH
∥∥∥2

+
1
2
φeff

T R−1
φ φeff + log p(ỹ) (18)

where ‖a‖2 = aHa for a column vector a.
Solving ∂L(φeff,H)/∂H∗ = 0 and assuming that p(ỹ) is

irrelevant to specific φeff and H lead to the optimal estimation
of the CTF vector, H, as

Ĥ =
1
2
S−1F̃PH

effỹ (19)

Substituting (19) into (18) and simplifying yield

L(φeff) =
1
σ2

pT Bp∗ +
1
2
φeff

T R−1
φ φeff (20)

where p = ejφeff , B = ỸH(I − 1
2 F̃

HF̃)Ỹ, and Ỹ = diag(ỹ).
Using the approximation of p=ejφeff ≈1N + jφeff for small
φeff, and by solving ∂L(φeff)/∂φeff = 0, we have the optimal
estimation of φeff as

φ̂eff = [Re(B) + (σ2/2)R−1
φ ]−1Im(B)1N (21)

where 1N denotes a N × 1 all-one column vector. Obviously,
the estimation of φ̂eff is independent of the modulation data
matrix S, as is different from [8].

The estimated value of φ̂eff can then be substituted back into
(19) to obtain the estimation of the CTF vector Ĥ. Equation
(19) provides estimation of H ∈ C N

2 ×1, which is the CTF on
even indexed subcarriers. The estimation of normalized CTF
on all subcarriers can be obtained from Ĥ as

Ĥfull =
√

2/NF
N

[(FHĤ)T 0T
N/2

]T (22)
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where F
N

is N -point normalized DFT matrix with (k, l)-th
element as (FN

)k,l = 1√
N

e−j2π(k−1)(l−1)/N , and 0
N/2 is an

all zero column vector with size N/2.
Furthermore, the time domain channel CIR h =

[h0, h1, · · · , hL−1]T can be estimated by performing IDFT
over the estimated CTF vector Ĥ as [c.f. (4)]

ĥ =
√

2/NFH
1:LĤ (23)

where F1:L ∈ C N
2 ×L contains the first L columns of the N

2 -
point DFT matrix F.

Compared to the MJCPCE method, the new algorithm has
four main advantages. First, the new method can accurately
estimate CFO with arbitrary value, while MJCPCE can only
estimate CFO with value less than subcarrier spacing. Second,
estimating CTF instead of CIR leads to a simpler estimators
with lower computational complexity. Third, the phase noise
estimator of (21) is independent of transmitted data. Therefore,
the estimation can be performed also on OFDM data symbols.
In MJCPCE, the estimation relies on transmitted data, thus can
only be applied to training symbols. Fourth, the knowledge of
channel length L is not required during CTF estimation. The
matrix F1:L used in (23) can also be replaced by FH when
L is unknown.

IV. CRLB FOR OFDM CHANNEL ESTIMATION

The CRLBs for the estimation of the frequency domain
CTF, H, Hfull, and the time domain CIR, h, are evaluated
in this section.

In the absence of CFO and phase noise, the log likelihood
function, log p(y|H), can be calculated from (5) as

log p(y|H)= c− 1
σ2

(y − F̃HSH)H(y − F̃HSH) (24)

with c being a constant independent of y and H. Taking the
derivative with respect to H∗, we have

∂

∂H∗ [logp(y|H)]=
1
σ2

SHF̃(y−F̃HSH)=
1
σ2

SHF̃v (25)

and the Fisher information matrix is evaluated as

I(H) = E

{[
∂

∂H∗ [logp(y|H)]
] [

∂

∂H∗ [logp(y|H)]
]H

}

=
1

(σ2)2
E

[
SHF̃vvHF̃HS

]
=

2
σ2

E
[
SHS

]
(26)

Then, the CRLB is calculated as

CRLB(H) = tr
{

[I(H)]−1
}

=
σ2

2
tr

{{
E

[
SHS

]}−1
}

(27)

From the relationship in (22), it’s easy to prove that
CRLB(Hfull)= 2

N ×CRLB(H).
Similarly, from (23), (26), and (27), the Fisher information

matrix and CRLB for the estimation of the time domain CIR
vector h can be written as

I(h) =
N

σ2
FH

1:LE
[
SHS

]
F1:L (28)

CRLB(h) =
σ2

N
tr

{{
FH

1:LE
[
SHS

]
F1:L

}−1
}

(29)

Assume that the modulation symbols are equiprobable and
independent, i.e., E

[
SHS

]
= σ2

sI, then we have

CRLB(Hfull) = σ2/2σ2
s (30)

CRLB(h) = Lσ2/Nσ2
s (31)

Comparing (30) and (31), we find CRLB(Hfull) 	= CRLB(h).
This is due to the fact that a low pass filter operation is implied
in (23) by using prior knowledge of channel length L, while
in (22), L is not used. If we transform ĥ in (23) back to CTF,
then CRLB(Hfull)=CRLB(h).

V. SIMULATION

Simulation results are presented in this section. System
parameters similar to those used in [8] are adopted here for
comparison purpose: the number of subcarriers is N = 64,
and the system sampling rate is fs = 20MHz leading to a
subcarrier spacing of ∆f = fs/N = 312.5KHz. Phase noise
is simulated by passing a white Gaussian process through
a one-pole Butterworth low pass filter with 3dB bandwidth
fo =100KHz. The covariance matrix of phase noise Rφ is cal-
culated as (Rφ)m,n =(πφrms/180)2 exp {−2πfo|m − n|/fs}.
Fractional CFO ε0 is generated as a uniform distribution over
(-1,1), and integer CFO z is taken randomly from [-4,4]. The
frequency selective fading has a power delay profile (PDP) of
1.2257×e−0.8l(0≤ l<10), which is normalized to unit energy.
QPSK modulation is selected and φrms is set as 6 degrees
in the simulations. The PN sequence {αk}N/2−1

k=0 is generated
randomly with the set {1, j,−j,−1}.

We first investigate the accuracy of CFO estimation. Fig.
1 plots the residual CFO, ∆ε, at different SNRs. For each
SNR, 300 independent CFO estimations are performed at
the presence of phase noise. From the figure, it’s obvious
that the residual CFO, ∆ε, is consistently close to zero.
This observation indicates that the proposed algorithm can
accurately estimate the integer part of the CFO without error,
i.e., ẑ = z, at the presence of unknown frequency selective
fading and phase noise.

The performance of joint phase noise and CTF estimation
algorithm is studied in the next example, where we focus
on the case that |ε| < 1. Fig. 2 illustrates the MSE and its
corresponding CRLB of the estimated normalized CTF, Ĥfull,
at the presence of phase noise. The results from MJCPCE
method and the proposed algorithm neglecting phase noise
are also shown in the figure for comparison. Obviously, the
new algorithm achieves a performance that is very close to
CRLB. As expected, the estimation performance degrades
when phase noise is ignored. For the MJCPCE method, it
has been shown in [8] that its MSE performance is very
close to the CRLB when |ε|< 0.4. However, its performance
degrades when the range of ε is extended to (−1, 1), as shown
in Fig. 2. The performance degradation of MJCPCE method
is caused by phase flipping at the stage of CFO estimation.
Phase flipping is referring to the case that −π is estimated
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Fig. 1. CFO estimation Error (ε0 ∈ (−1, 1), z ∈ [−4, 4]).

as π, or vice versa, when the phase difference πε in (6)
approaches −π or π. The performance of MJCPCE method
suffers greatly from phase flipping, even in system with only
fractional CFO. Due to phase flipping, the inclusion of CFO
estimation and compensation in MJCPCE results in worse
performance compared to the case that CFO is not estimated
at all. Phase flipping also happens in the proposed method.
However, the incorrectly estimated fractional CFO caused by
phase flipping can be easily corrected at the stage of integer
CFO estimation. Therefore, the performance of the proposed
method is not affected by phase flipping.
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Fig. 2. CTF estimation MSE versus SNR (QPSK, ε0 ∈ (−1, 1), z = 0).

The next example demonstrates the channel estimation
performance when integer CFO z is introduced in addition
to fractional CFO ε0. The MSE results along with the CRLB
of CIR estimation are presented in Fig. 3. As expected, the
MJPCE method, which neglects the integer CFO, doesn’t
function properly in such system configuration. The proposed
scheme, on the other hand, consistently works well regardless
of the presence of integer CFO.
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Fig. 3. CIR estimation MSE versus SNR (QPSK, ε0 ∈ (−1, 1), z ∈ [−4, 4]).

VI. CONCLUSION

An enhanced channel estimation algorithm operating at the
presence of both CFO and phase noise was proposed for
OFDM systems in slow frequency selective fading environ-
ment. The CFO was estimated by a hybrid time-frequency es-
timation method, with which both fractional and integer CFOs
could be estimated accurately. With the CFO-compensated
signal, a joint phase noise and CTF estimation algorithm was
developed by employing the MAP criterion over time domain
samples. Compared to the CIR estimation algorithm in the
literature, the new algorithm had lower complexity, and it
didn’t require the knowledge of channel length. Simulation
results showed that the joint phase noise and CTF estimation
algorithm achieved a MSE performance close to CRLB. In
addition, the proposed channel estimation scheme could be
easily extended to single input multiple output (SIMO) system.
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